StructurizeCFG.cpp 32.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
//===- StructurizeCFG.cpp -------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/SCCIterator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/LegacyDivergenceAnalysis.h"
#include "llvm/Analysis/RegionInfo.h"
#include "llvm/Analysis/RegionIterator.h"
#include "llvm/Analysis/RegionPass.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/SSAUpdater.h"
#include <algorithm>
#include <cassert>
#include <utility>

using namespace llvm;
using namespace llvm::PatternMatch;

#define DEBUG_TYPE "structurizecfg"

// The name for newly created blocks.
static const char *const FlowBlockName = "Flow";

namespace {

static cl::opt<bool> ForceSkipUniformRegions(
  "structurizecfg-skip-uniform-regions",
  cl::Hidden,
  cl::desc("Force whether the StructurizeCFG pass skips uniform regions"),
  cl::init(false));

static cl::opt<bool>
    RelaxedUniformRegions("structurizecfg-relaxed-uniform-regions", cl::Hidden,
                          cl::desc("Allow relaxed uniform region checks"),
                          cl::init(true));

// Definition of the complex types used in this pass.

using BBValuePair = std::pair<BasicBlock *, Value *>;

using RNVector = SmallVector<RegionNode *, 8>;
using BBVector = SmallVector<BasicBlock *, 8>;
using BranchVector = SmallVector<BranchInst *, 8>;
using BBValueVector = SmallVector<BBValuePair, 2>;

using BBSet = SmallPtrSet<BasicBlock *, 8>;

using PhiMap = MapVector<PHINode *, BBValueVector>;
using BB2BBVecMap = MapVector<BasicBlock *, BBVector>;

using BBPhiMap = DenseMap<BasicBlock *, PhiMap>;
using BBPredicates = DenseMap<BasicBlock *, Value *>;
using PredMap = DenseMap<BasicBlock *, BBPredicates>;
using BB2BBMap = DenseMap<BasicBlock *, BasicBlock *>;

// A traits type that is intended to be used in graph algorithms. The graph
// traits starts at an entry node, and traverses the RegionNodes that are in
// the Nodes set.
struct SubGraphTraits {
  using NodeRef = std::pair<RegionNode *, SmallDenseSet<RegionNode *> *>;
  using BaseSuccIterator = GraphTraits<RegionNode *>::ChildIteratorType;

  // This wraps a set of Nodes into the iterator, so we know which edges to
  // filter out.
  class WrappedSuccIterator
      : public iterator_adaptor_base<
            WrappedSuccIterator, BaseSuccIterator,
            typename std::iterator_traits<BaseSuccIterator>::iterator_category,
            NodeRef, std::ptrdiff_t, NodeRef *, NodeRef> {
    SmallDenseSet<RegionNode *> *Nodes;

  public:
    WrappedSuccIterator(BaseSuccIterator It, SmallDenseSet<RegionNode *> *Nodes)
        : iterator_adaptor_base(It), Nodes(Nodes) {}

    NodeRef operator*() const { return {*I, Nodes}; }
  };

  static bool filterAll(const NodeRef &N) { return true; }
  static bool filterSet(const NodeRef &N) { return N.second->count(N.first); }

  using ChildIteratorType =
      filter_iterator<WrappedSuccIterator, bool (*)(const NodeRef &)>;

  static NodeRef getEntryNode(Region *R) {
    return {GraphTraits<Region *>::getEntryNode(R), nullptr};
  }

  static NodeRef getEntryNode(NodeRef N) { return N; }

  static iterator_range<ChildIteratorType> children(const NodeRef &N) {
    auto *filter = N.second ? &filterSet : &filterAll;
    return make_filter_range(
        make_range<WrappedSuccIterator>(
            {GraphTraits<RegionNode *>::child_begin(N.first), N.second},
            {GraphTraits<RegionNode *>::child_end(N.first), N.second}),
        filter);
  }

  static ChildIteratorType child_begin(const NodeRef &N) {
    return children(N).begin();
  }

  static ChildIteratorType child_end(const NodeRef &N) {
    return children(N).end();
  }
};

/// Finds the nearest common dominator of a set of BasicBlocks.
///
/// For every BB you add to the set, you can specify whether we "remember" the
/// block.  When you get the common dominator, you can also ask whether it's one
/// of the blocks we remembered.
class NearestCommonDominator {
  DominatorTree *DT;
  BasicBlock *Result = nullptr;
  bool ResultIsRemembered = false;

  /// Add BB to the resulting dominator.
  void addBlock(BasicBlock *BB, bool Remember) {
    if (!Result) {
      Result = BB;
      ResultIsRemembered = Remember;
      return;
    }

    BasicBlock *NewResult = DT->findNearestCommonDominator(Result, BB);
    if (NewResult != Result)
      ResultIsRemembered = false;
    if (NewResult == BB)
      ResultIsRemembered |= Remember;
    Result = NewResult;
  }

public:
  explicit NearestCommonDominator(DominatorTree *DomTree) : DT(DomTree) {}

  void addBlock(BasicBlock *BB) {
    addBlock(BB, /* Remember = */ false);
  }

  void addAndRememberBlock(BasicBlock *BB) {
    addBlock(BB, /* Remember = */ true);
  }

  /// Get the nearest common dominator of all the BBs added via addBlock() and
  /// addAndRememberBlock().
  BasicBlock *result() { return Result; }

  /// Is the BB returned by getResult() one of the blocks we added to the set
  /// with addAndRememberBlock()?
  bool resultIsRememberedBlock() { return ResultIsRemembered; }
};

/// Transforms the control flow graph on one single entry/exit region
/// at a time.
///
/// After the transform all "If"/"Then"/"Else" style control flow looks like
/// this:
///
/// \verbatim
/// 1
/// ||
/// | |
/// 2 |
/// | /
/// |/
/// 3
/// ||   Where:
/// | |  1 = "If" block, calculates the condition
/// 4 |  2 = "Then" subregion, runs if the condition is true
/// | /  3 = "Flow" blocks, newly inserted flow blocks, rejoins the flow
/// |/   4 = "Else" optional subregion, runs if the condition is false
/// 5    5 = "End" block, also rejoins the control flow
/// \endverbatim
///
/// Control flow is expressed as a branch where the true exit goes into the
/// "Then"/"Else" region, while the false exit skips the region
/// The condition for the optional "Else" region is expressed as a PHI node.
/// The incoming values of the PHI node are true for the "If" edge and false
/// for the "Then" edge.
///
/// Additionally to that even complicated loops look like this:
///
/// \verbatim
/// 1
/// ||
/// | |
/// 2 ^  Where:
/// | /  1 = "Entry" block
/// |/   2 = "Loop" optional subregion, with all exits at "Flow" block
/// 3    3 = "Flow" block, with back edge to entry block
/// |
/// \endverbatim
///
/// The back edge of the "Flow" block is always on the false side of the branch
/// while the true side continues the general flow. So the loop condition
/// consist of a network of PHI nodes where the true incoming values expresses
/// breaks and the false values expresses continue states.
class StructurizeCFG : public RegionPass {
  bool SkipUniformRegions;

  Type *Boolean;
  ConstantInt *BoolTrue;
  ConstantInt *BoolFalse;
  UndefValue *BoolUndef;

  Function *Func;
  Region *ParentRegion;

  LegacyDivergenceAnalysis *DA;
  DominatorTree *DT;

  SmallVector<RegionNode *, 8> Order;
  BBSet Visited;

  SmallVector<WeakVH, 8> AffectedPhis;
  BBPhiMap DeletedPhis;
  BB2BBVecMap AddedPhis;

  PredMap Predicates;
  BranchVector Conditions;

  BB2BBMap Loops;
  PredMap LoopPreds;
  BranchVector LoopConds;

  RegionNode *PrevNode;

  void orderNodes();

  void analyzeLoops(RegionNode *N);

  Value *buildCondition(BranchInst *Term, unsigned Idx, bool Invert);

  void gatherPredicates(RegionNode *N);

  void collectInfos();

  void insertConditions(bool Loops);

  void delPhiValues(BasicBlock *From, BasicBlock *To);

  void addPhiValues(BasicBlock *From, BasicBlock *To);

  void setPhiValues();

  void simplifyAffectedPhis();

  void killTerminator(BasicBlock *BB);

  void changeExit(RegionNode *Node, BasicBlock *NewExit,
                  bool IncludeDominator);

  BasicBlock *getNextFlow(BasicBlock *Dominator);

  BasicBlock *needPrefix(bool NeedEmpty);

  BasicBlock *needPostfix(BasicBlock *Flow, bool ExitUseAllowed);

  void setPrevNode(BasicBlock *BB);

  bool dominatesPredicates(BasicBlock *BB, RegionNode *Node);

  bool isPredictableTrue(RegionNode *Node);

  void wireFlow(bool ExitUseAllowed, BasicBlock *LoopEnd);

  void handleLoops(bool ExitUseAllowed, BasicBlock *LoopEnd);

  void createFlow();

  void rebuildSSA();

public:
  static char ID;

  explicit StructurizeCFG(bool SkipUniformRegions_ = false)
      : RegionPass(ID),
        SkipUniformRegions(SkipUniformRegions_) {
    if (ForceSkipUniformRegions.getNumOccurrences())
      SkipUniformRegions = ForceSkipUniformRegions.getValue();
    initializeStructurizeCFGPass(*PassRegistry::getPassRegistry());
  }

  bool doInitialization(Region *R, RGPassManager &RGM) override;

  bool runOnRegion(Region *R, RGPassManager &RGM) override;

  StringRef getPassName() const override { return "Structurize control flow"; }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    if (SkipUniformRegions)
      AU.addRequired<LegacyDivergenceAnalysis>();
    AU.addRequiredID(LowerSwitchID);
    AU.addRequired<DominatorTreeWrapperPass>();

    AU.addPreserved<DominatorTreeWrapperPass>();
    RegionPass::getAnalysisUsage(AU);
  }
};

} // end anonymous namespace

char StructurizeCFG::ID = 0;

INITIALIZE_PASS_BEGIN(StructurizeCFG, "structurizecfg", "Structurize the CFG",
                      false, false)
INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis)
INITIALIZE_PASS_DEPENDENCY(LowerSwitchLegacyPass)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(RegionInfoPass)
INITIALIZE_PASS_END(StructurizeCFG, "structurizecfg", "Structurize the CFG",
                    false, false)

/// Initialize the types and constants used in the pass
bool StructurizeCFG::doInitialization(Region *R, RGPassManager &RGM) {
  LLVMContext &Context = R->getEntry()->getContext();

  Boolean = Type::getInt1Ty(Context);
  BoolTrue = ConstantInt::getTrue(Context);
  BoolFalse = ConstantInt::getFalse(Context);
  BoolUndef = UndefValue::get(Boolean);

  return false;
}

/// Build up the general order of nodes, by performing a topological sort of the
/// parent region's nodes, while ensuring that there is no outer cycle node
/// between any two inner cycle nodes.
void StructurizeCFG::orderNodes() {
  Order.resize(std::distance(GraphTraits<Region *>::nodes_begin(ParentRegion),
                             GraphTraits<Region *>::nodes_end(ParentRegion)));
  if (Order.empty())
    return;

  SmallDenseSet<RegionNode *> Nodes;
  auto EntryNode = SubGraphTraits::getEntryNode(ParentRegion);

  // A list of range indices of SCCs in Order, to be processed.
  SmallVector<std::pair<unsigned, unsigned>, 8> WorkList;
  unsigned I = 0, E = Order.size();
  while (true) {
    // Run through all the SCCs in the subgraph starting with Entry.
    for (auto SCCI =
             scc_iterator<SubGraphTraits::NodeRef, SubGraphTraits>::begin(
                 EntryNode);
         !SCCI.isAtEnd(); ++SCCI) {
      auto &SCC = *SCCI;

      // An SCC up to the size of 2, can be reduced to an entry (the last node),
      // and a possible additional node. Therefore, it is already in order, and
      // there is no need to add it to the work-list.
      unsigned Size = SCC.size();
      if (Size > 2)
        WorkList.emplace_back(I, I + Size);

      // Add the SCC nodes to the Order array.
      for (auto &N : SCC) {
        assert(I < E && "SCC size mismatch!");
        Order[I++] = N.first;
      }
    }
    assert(I == E && "SCC size mismatch!");

    // If there are no more SCCs to order, then we are done.
    if (WorkList.empty())
      break;

    std::tie(I, E) = WorkList.pop_back_val();

    // Collect the set of nodes in the SCC's subgraph. These are only the
    // possible child nodes; we do not add the entry (last node) otherwise we
    // will have the same exact SCC all over again.
    Nodes.clear();
    Nodes.insert(Order.begin() + I, Order.begin() + E - 1);

    // Update the entry node.
    EntryNode.first = Order[E - 1];
    EntryNode.second = &Nodes;
  }
}

/// Determine the end of the loops
void StructurizeCFG::analyzeLoops(RegionNode *N) {
  if (N->isSubRegion()) {
    // Test for exit as back edge
    BasicBlock *Exit = N->getNodeAs<Region>()->getExit();
    if (Visited.count(Exit))
      Loops[Exit] = N->getEntry();

  } else {
    // Test for successors as back edge
    BasicBlock *BB = N->getNodeAs<BasicBlock>();
    BranchInst *Term = cast<BranchInst>(BB->getTerminator());

    for (BasicBlock *Succ : Term->successors())
      if (Visited.count(Succ))
        Loops[Succ] = BB;
  }
}

/// Build the condition for one edge
Value *StructurizeCFG::buildCondition(BranchInst *Term, unsigned Idx,
                                      bool Invert) {
  Value *Cond = Invert ? BoolFalse : BoolTrue;
  if (Term->isConditional()) {
    Cond = Term->getCondition();

    if (Idx != (unsigned)Invert)
      Cond = invertCondition(Cond);
  }
  return Cond;
}

/// Analyze the predecessors of each block and build up predicates
void StructurizeCFG::gatherPredicates(RegionNode *N) {
  RegionInfo *RI = ParentRegion->getRegionInfo();
  BasicBlock *BB = N->getEntry();
  BBPredicates &Pred = Predicates[BB];
  BBPredicates &LPred = LoopPreds[BB];

  for (BasicBlock *P : predecessors(BB)) {
    // Ignore it if it's a branch from outside into our region entry
    if (!ParentRegion->contains(P))
      continue;

    Region *R = RI->getRegionFor(P);
    if (R == ParentRegion) {
      // It's a top level block in our region
      BranchInst *Term = cast<BranchInst>(P->getTerminator());
      for (unsigned i = 0, e = Term->getNumSuccessors(); i != e; ++i) {
        BasicBlock *Succ = Term->getSuccessor(i);
        if (Succ != BB)
          continue;

        if (Visited.count(P)) {
          // Normal forward edge
          if (Term->isConditional()) {
            // Try to treat it like an ELSE block
            BasicBlock *Other = Term->getSuccessor(!i);
            if (Visited.count(Other) && !Loops.count(Other) &&
                !Pred.count(Other) && !Pred.count(P)) {

              Pred[Other] = BoolFalse;
              Pred[P] = BoolTrue;
              continue;
            }
          }
          Pred[P] = buildCondition(Term, i, false);
        } else {
          // Back edge
          LPred[P] = buildCondition(Term, i, true);
        }
      }
    } else {
      // It's an exit from a sub region
      while (R->getParent() != ParentRegion)
        R = R->getParent();

      // Edge from inside a subregion to its entry, ignore it
      if (*R == *N)
        continue;

      BasicBlock *Entry = R->getEntry();
      if (Visited.count(Entry))
        Pred[Entry] = BoolTrue;
      else
        LPred[Entry] = BoolFalse;
    }
  }
}

/// Collect various loop and predicate infos
void StructurizeCFG::collectInfos() {
  // Reset predicate
  Predicates.clear();

  // and loop infos
  Loops.clear();
  LoopPreds.clear();

  // Reset the visited nodes
  Visited.clear();

  for (RegionNode *RN : reverse(Order)) {
    LLVM_DEBUG(dbgs() << "Visiting: "
                      << (RN->isSubRegion() ? "SubRegion with entry: " : "")
                      << RN->getEntry()->getName() << "\n");

    // Analyze all the conditions leading to a node
    gatherPredicates(RN);

    // Remember that we've seen this node
    Visited.insert(RN->getEntry());

    // Find the last back edges
    analyzeLoops(RN);
  }
}

/// Insert the missing branch conditions
void StructurizeCFG::insertConditions(bool Loops) {
  BranchVector &Conds = Loops ? LoopConds : Conditions;
  Value *Default = Loops ? BoolTrue : BoolFalse;
  SSAUpdater PhiInserter;

  for (BranchInst *Term : Conds) {
    assert(Term->isConditional());

    BasicBlock *Parent = Term->getParent();
    BasicBlock *SuccTrue = Term->getSuccessor(0);
    BasicBlock *SuccFalse = Term->getSuccessor(1);

    PhiInserter.Initialize(Boolean, "");
    PhiInserter.AddAvailableValue(&Func->getEntryBlock(), Default);
    PhiInserter.AddAvailableValue(Loops ? SuccFalse : Parent, Default);

    BBPredicates &Preds = Loops ? LoopPreds[SuccFalse] : Predicates[SuccTrue];

    NearestCommonDominator Dominator(DT);
    Dominator.addBlock(Parent);

    Value *ParentValue = nullptr;
    for (std::pair<BasicBlock *, Value *> BBAndPred : Preds) {
      BasicBlock *BB = BBAndPred.first;
      Value *Pred = BBAndPred.second;

      if (BB == Parent) {
        ParentValue = Pred;
        break;
      }
      PhiInserter.AddAvailableValue(BB, Pred);
      Dominator.addAndRememberBlock(BB);
    }

    if (ParentValue) {
      Term->setCondition(ParentValue);
    } else {
      if (!Dominator.resultIsRememberedBlock())
        PhiInserter.AddAvailableValue(Dominator.result(), Default);

      Term->setCondition(PhiInserter.GetValueInMiddleOfBlock(Parent));
    }
  }
}

/// Remove all PHI values coming from "From" into "To" and remember
/// them in DeletedPhis
void StructurizeCFG::delPhiValues(BasicBlock *From, BasicBlock *To) {
  PhiMap &Map = DeletedPhis[To];
  for (PHINode &Phi : To->phis()) {
    bool Recorded = false;
    while (Phi.getBasicBlockIndex(From) != -1) {
      Value *Deleted = Phi.removeIncomingValue(From, false);
      Map[&Phi].push_back(std::make_pair(From, Deleted));
      if (!Recorded) {
        AffectedPhis.push_back(&Phi);
        Recorded = true;
      }
    }
  }
}

/// Add a dummy PHI value as soon as we knew the new predecessor
void StructurizeCFG::addPhiValues(BasicBlock *From, BasicBlock *To) {
  for (PHINode &Phi : To->phis()) {
    Value *Undef = UndefValue::get(Phi.getType());
    Phi.addIncoming(Undef, From);
  }
  AddedPhis[To].push_back(From);
}

/// Add the real PHI value as soon as everything is set up
void StructurizeCFG::setPhiValues() {
  SmallVector<PHINode *, 8> InsertedPhis;
  SSAUpdater Updater(&InsertedPhis);
  for (const auto &AddedPhi : AddedPhis) {
    BasicBlock *To = AddedPhi.first;
    const BBVector &From = AddedPhi.second;

    if (!DeletedPhis.count(To))
      continue;

    PhiMap &Map = DeletedPhis[To];
    for (const auto &PI : Map) {
      PHINode *Phi = PI.first;
      Value *Undef = UndefValue::get(Phi->getType());
      Updater.Initialize(Phi->getType(), "");
      Updater.AddAvailableValue(&Func->getEntryBlock(), Undef);
      Updater.AddAvailableValue(To, Undef);

      NearestCommonDominator Dominator(DT);
      Dominator.addBlock(To);
      for (const auto &VI : PI.second) {
        Updater.AddAvailableValue(VI.first, VI.second);
        Dominator.addAndRememberBlock(VI.first);
      }

      if (!Dominator.resultIsRememberedBlock())
        Updater.AddAvailableValue(Dominator.result(), Undef);

      for (BasicBlock *FI : From)
        Phi->setIncomingValueForBlock(FI, Updater.GetValueAtEndOfBlock(FI));
      AffectedPhis.push_back(Phi);
    }

    DeletedPhis.erase(To);
  }
  assert(DeletedPhis.empty());

  AffectedPhis.append(InsertedPhis.begin(), InsertedPhis.end());
}

void StructurizeCFG::simplifyAffectedPhis() {
  bool Changed;
  do {
    Changed = false;
    SimplifyQuery Q(Func->getParent()->getDataLayout());
    Q.DT = DT;
    for (WeakVH VH : AffectedPhis) {
      if (auto Phi = dyn_cast_or_null<PHINode>(VH)) {
        if (auto NewValue = SimplifyInstruction(Phi, Q)) {
          Phi->replaceAllUsesWith(NewValue);
          Phi->eraseFromParent();
          Changed = true;
        }
      }
    }
  } while (Changed);
}

/// Remove phi values from all successors and then remove the terminator.
void StructurizeCFG::killTerminator(BasicBlock *BB) {
  Instruction *Term = BB->getTerminator();
  if (!Term)
    return;

  for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB);
       SI != SE; ++SI)
    delPhiValues(BB, *SI);

  if (DA)
    DA->removeValue(Term);
  Term->eraseFromParent();
}

/// Let node exit(s) point to NewExit
void StructurizeCFG::changeExit(RegionNode *Node, BasicBlock *NewExit,
                                bool IncludeDominator) {
  if (Node->isSubRegion()) {
    Region *SubRegion = Node->getNodeAs<Region>();
    BasicBlock *OldExit = SubRegion->getExit();
    BasicBlock *Dominator = nullptr;

    // Find all the edges from the sub region to the exit
    for (auto BBI = pred_begin(OldExit), E = pred_end(OldExit); BBI != E;) {
      // Incrememt BBI before mucking with BB's terminator.
      BasicBlock *BB = *BBI++;

      if (!SubRegion->contains(BB))
        continue;

      // Modify the edges to point to the new exit
      delPhiValues(BB, OldExit);
      BB->getTerminator()->replaceUsesOfWith(OldExit, NewExit);
      addPhiValues(BB, NewExit);

      // Find the new dominator (if requested)
      if (IncludeDominator) {
        if (!Dominator)
          Dominator = BB;
        else
          Dominator = DT->findNearestCommonDominator(Dominator, BB);
      }
    }

    // Change the dominator (if requested)
    if (Dominator)
      DT->changeImmediateDominator(NewExit, Dominator);

    // Update the region info
    SubRegion->replaceExit(NewExit);
  } else {
    BasicBlock *BB = Node->getNodeAs<BasicBlock>();
    killTerminator(BB);
    BranchInst::Create(NewExit, BB);
    addPhiValues(BB, NewExit);
    if (IncludeDominator)
      DT->changeImmediateDominator(NewExit, BB);
  }
}

/// Create a new flow node and update dominator tree and region info
BasicBlock *StructurizeCFG::getNextFlow(BasicBlock *Dominator) {
  LLVMContext &Context = Func->getContext();
  BasicBlock *Insert = Order.empty() ? ParentRegion->getExit() :
                       Order.back()->getEntry();
  BasicBlock *Flow = BasicBlock::Create(Context, FlowBlockName,
                                        Func, Insert);
  DT->addNewBlock(Flow, Dominator);
  ParentRegion->getRegionInfo()->setRegionFor(Flow, ParentRegion);
  return Flow;
}

/// Create a new or reuse the previous node as flow node
BasicBlock *StructurizeCFG::needPrefix(bool NeedEmpty) {
  BasicBlock *Entry = PrevNode->getEntry();

  if (!PrevNode->isSubRegion()) {
    killTerminator(Entry);
    if (!NeedEmpty || Entry->getFirstInsertionPt() == Entry->end())
      return Entry;
  }

  // create a new flow node
  BasicBlock *Flow = getNextFlow(Entry);

  // and wire it up
  changeExit(PrevNode, Flow, true);
  PrevNode = ParentRegion->getBBNode(Flow);
  return Flow;
}

/// Returns the region exit if possible, otherwise just a new flow node
BasicBlock *StructurizeCFG::needPostfix(BasicBlock *Flow,
                                        bool ExitUseAllowed) {
  if (!Order.empty() || !ExitUseAllowed)
    return getNextFlow(Flow);

  BasicBlock *Exit = ParentRegion->getExit();
  DT->changeImmediateDominator(Exit, Flow);
  addPhiValues(Flow, Exit);
  return Exit;
}

/// Set the previous node
void StructurizeCFG::setPrevNode(BasicBlock *BB) {
  PrevNode = ParentRegion->contains(BB) ? ParentRegion->getBBNode(BB)
                                        : nullptr;
}

/// Does BB dominate all the predicates of Node?
bool StructurizeCFG::dominatesPredicates(BasicBlock *BB, RegionNode *Node) {
  BBPredicates &Preds = Predicates[Node->getEntry()];
  return llvm::all_of(Preds, [&](std::pair<BasicBlock *, Value *> Pred) {
    return DT->dominates(BB, Pred.first);
  });
}

/// Can we predict that this node will always be called?
bool StructurizeCFG::isPredictableTrue(RegionNode *Node) {
  BBPredicates &Preds = Predicates[Node->getEntry()];
  bool Dominated = false;

  // Regionentry is always true
  if (!PrevNode)
    return true;

  for (std::pair<BasicBlock*, Value*> Pred : Preds) {
    BasicBlock *BB = Pred.first;
    Value *V = Pred.second;

    if (V != BoolTrue)
      return false;

    if (!Dominated && DT->dominates(BB, PrevNode->getEntry()))
      Dominated = true;
  }

  // TODO: The dominator check is too strict
  return Dominated;
}

/// Take one node from the order vector and wire it up
void StructurizeCFG::wireFlow(bool ExitUseAllowed,
                              BasicBlock *LoopEnd) {
  RegionNode *Node = Order.pop_back_val();
  Visited.insert(Node->getEntry());

  if (isPredictableTrue(Node)) {
    // Just a linear flow
    if (PrevNode) {
      changeExit(PrevNode, Node->getEntry(), true);
    }
    PrevNode = Node;
  } else {
    // Insert extra prefix node (or reuse last one)
    BasicBlock *Flow = needPrefix(false);

    // Insert extra postfix node (or use exit instead)
    BasicBlock *Entry = Node->getEntry();
    BasicBlock *Next = needPostfix(Flow, ExitUseAllowed);

    // let it point to entry and next block
    Conditions.push_back(BranchInst::Create(Entry, Next, BoolUndef, Flow));
    addPhiValues(Flow, Entry);
    DT->changeImmediateDominator(Entry, Flow);

    PrevNode = Node;
    while (!Order.empty() && !Visited.count(LoopEnd) &&
           dominatesPredicates(Entry, Order.back())) {
      handleLoops(false, LoopEnd);
    }

    changeExit(PrevNode, Next, false);
    setPrevNode(Next);
  }
}

void StructurizeCFG::handleLoops(bool ExitUseAllowed,
                                 BasicBlock *LoopEnd) {
  RegionNode *Node = Order.back();
  BasicBlock *LoopStart = Node->getEntry();

  if (!Loops.count(LoopStart)) {
    wireFlow(ExitUseAllowed, LoopEnd);
    return;
  }

  if (!isPredictableTrue(Node))
    LoopStart = needPrefix(true);

  LoopEnd = Loops[Node->getEntry()];
  wireFlow(false, LoopEnd);
  while (!Visited.count(LoopEnd)) {
    handleLoops(false, LoopEnd);
  }

  // If the start of the loop is the entry block, we can't branch to it so
  // insert a new dummy entry block.
  Function *LoopFunc = LoopStart->getParent();
  if (LoopStart == &LoopFunc->getEntryBlock()) {
    LoopStart->setName("entry.orig");

    BasicBlock *NewEntry =
      BasicBlock::Create(LoopStart->getContext(),
                         "entry",
                         LoopFunc,
                         LoopStart);
    BranchInst::Create(LoopStart, NewEntry);
    DT->setNewRoot(NewEntry);
  }

  // Create an extra loop end node
  LoopEnd = needPrefix(false);
  BasicBlock *Next = needPostfix(LoopEnd, ExitUseAllowed);
  LoopConds.push_back(BranchInst::Create(Next, LoopStart,
                                         BoolUndef, LoopEnd));
  addPhiValues(LoopEnd, LoopStart);
  setPrevNode(Next);
}

/// After this function control flow looks like it should be, but
/// branches and PHI nodes only have undefined conditions.
void StructurizeCFG::createFlow() {
  BasicBlock *Exit = ParentRegion->getExit();
  bool EntryDominatesExit = DT->dominates(ParentRegion->getEntry(), Exit);

  AffectedPhis.clear();
  DeletedPhis.clear();
  AddedPhis.clear();
  Conditions.clear();
  LoopConds.clear();

  PrevNode = nullptr;
  Visited.clear();

  while (!Order.empty()) {
    handleLoops(EntryDominatesExit, nullptr);
  }

  if (PrevNode)
    changeExit(PrevNode, Exit, EntryDominatesExit);
  else
    assert(EntryDominatesExit);
}

/// Handle a rare case where the disintegrated nodes instructions
/// no longer dominate all their uses. Not sure if this is really necessary
void StructurizeCFG::rebuildSSA() {
  SSAUpdater Updater;
  for (BasicBlock *BB : ParentRegion->blocks())
    for (Instruction &I : *BB) {
      bool Initialized = false;
      // We may modify the use list as we iterate over it, so be careful to
      // compute the next element in the use list at the top of the loop.
      for (auto UI = I.use_begin(), E = I.use_end(); UI != E;) {
        Use &U = *UI++;
        Instruction *User = cast<Instruction>(U.getUser());
        if (User->getParent() == BB) {
          continue;
        } else if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
          if (UserPN->getIncomingBlock(U) == BB)
            continue;
        }

        if (DT->dominates(&I, User))
          continue;

        if (!Initialized) {
          Value *Undef = UndefValue::get(I.getType());
          Updater.Initialize(I.getType(), "");
          Updater.AddAvailableValue(&Func->getEntryBlock(), Undef);
          Updater.AddAvailableValue(BB, &I);
          Initialized = true;
        }
        Updater.RewriteUseAfterInsertions(U);
      }
    }
}

static bool hasOnlyUniformBranches(Region *R, unsigned UniformMDKindID,
                                   const LegacyDivergenceAnalysis &DA) {
  // Bool for if all sub-regions are uniform.
  bool SubRegionsAreUniform = true;
  // Count of how many direct children are conditional.
  unsigned ConditionalDirectChildren = 0;

  for (auto E : R->elements()) {
    if (!E->isSubRegion()) {
      auto Br = dyn_cast<BranchInst>(E->getEntry()->getTerminator());
      if (!Br || !Br->isConditional())
        continue;

      if (!DA.isUniform(Br))
        return false;

      // One of our direct children is conditional.
      ConditionalDirectChildren++;

      LLVM_DEBUG(dbgs() << "BB: " << Br->getParent()->getName()
                        << " has uniform terminator\n");
    } else {
      // Explicitly refuse to treat regions as uniform if they have non-uniform
      // subregions. We cannot rely on DivergenceAnalysis for branches in
      // subregions because those branches may have been removed and re-created,
      // so we look for our metadata instead.
      //
      // Warning: It would be nice to treat regions as uniform based only on
      // their direct child basic blocks' terminators, regardless of whether
      // subregions are uniform or not. However, this requires a very careful
      // look at SIAnnotateControlFlow to make sure nothing breaks there.
      for (auto BB : E->getNodeAs<Region>()->blocks()) {
        auto Br = dyn_cast<BranchInst>(BB->getTerminator());
        if (!Br || !Br->isConditional())
          continue;

        if (!Br->getMetadata(UniformMDKindID)) {
          // Early exit if we cannot have relaxed uniform regions.
          if (!RelaxedUniformRegions)
            return false;

          SubRegionsAreUniform = false;
          break;
        }
      }
    }
  }

  // Our region is uniform if:
  // 1. All conditional branches that are direct children are uniform (checked
  // above).
  // 2. And either:
  //   a. All sub-regions are uniform.
  //   b. There is one or less conditional branches among the direct children.
  return SubRegionsAreUniform || (ConditionalDirectChildren <= 1);
}

/// Run the transformation for each region found
bool StructurizeCFG::runOnRegion(Region *R, RGPassManager &RGM) {
  if (R->isTopLevelRegion())
    return false;

  DA = nullptr;

  if (SkipUniformRegions) {
    // TODO: We could probably be smarter here with how we handle sub-regions.
    // We currently rely on the fact that metadata is set by earlier invocations
    // of the pass on sub-regions, and that this metadata doesn't get lost --
    // but we shouldn't rely on metadata for correctness!
    unsigned UniformMDKindID =
        R->getEntry()->getContext().getMDKindID("structurizecfg.uniform");
    DA = &getAnalysis<LegacyDivergenceAnalysis>();

    if (hasOnlyUniformBranches(R, UniformMDKindID, *DA)) {
      LLVM_DEBUG(dbgs() << "Skipping region with uniform control flow: " << *R
                        << '\n');

      // Mark all direct child block terminators as having been treated as
      // uniform. To account for a possible future in which non-uniform
      // sub-regions are treated more cleverly, indirect children are not
      // marked as uniform.
      MDNode *MD = MDNode::get(R->getEntry()->getParent()->getContext(), {});
      for (RegionNode *E : R->elements()) {
        if (E->isSubRegion())
          continue;

        if (Instruction *Term = E->getEntry()->getTerminator())
          Term->setMetadata(UniformMDKindID, MD);
      }

      return false;
    }
  }

  Func = R->getEntry()->getParent();
  ParentRegion = R;

  DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();

  orderNodes();
  collectInfos();
  createFlow();
  insertConditions(false);
  insertConditions(true);
  setPhiValues();
  simplifyAffectedPhis();
  rebuildSSA();

  // Cleanup
  Order.clear();
  Visited.clear();
  DeletedPhis.clear();
  AddedPhis.clear();
  Predicates.clear();
  Conditions.clear();
  Loops.clear();
  LoopPreds.clear();
  LoopConds.clear();

  return true;
}

Pass *llvm::createStructurizeCFGPass(bool SkipUniformRegions) {
  return new StructurizeCFG(SkipUniformRegions);
}