StructurizeCFG.cpp
32.5 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
//===- StructurizeCFG.cpp -------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/SCCIterator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/LegacyDivergenceAnalysis.h"
#include "llvm/Analysis/RegionInfo.h"
#include "llvm/Analysis/RegionIterator.h"
#include "llvm/Analysis/RegionPass.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/SSAUpdater.h"
#include <algorithm>
#include <cassert>
#include <utility>
using namespace llvm;
using namespace llvm::PatternMatch;
#define DEBUG_TYPE "structurizecfg"
// The name for newly created blocks.
static const char *const FlowBlockName = "Flow";
namespace {
static cl::opt<bool> ForceSkipUniformRegions(
"structurizecfg-skip-uniform-regions",
cl::Hidden,
cl::desc("Force whether the StructurizeCFG pass skips uniform regions"),
cl::init(false));
static cl::opt<bool>
RelaxedUniformRegions("structurizecfg-relaxed-uniform-regions", cl::Hidden,
cl::desc("Allow relaxed uniform region checks"),
cl::init(true));
// Definition of the complex types used in this pass.
using BBValuePair = std::pair<BasicBlock *, Value *>;
using RNVector = SmallVector<RegionNode *, 8>;
using BBVector = SmallVector<BasicBlock *, 8>;
using BranchVector = SmallVector<BranchInst *, 8>;
using BBValueVector = SmallVector<BBValuePair, 2>;
using BBSet = SmallPtrSet<BasicBlock *, 8>;
using PhiMap = MapVector<PHINode *, BBValueVector>;
using BB2BBVecMap = MapVector<BasicBlock *, BBVector>;
using BBPhiMap = DenseMap<BasicBlock *, PhiMap>;
using BBPredicates = DenseMap<BasicBlock *, Value *>;
using PredMap = DenseMap<BasicBlock *, BBPredicates>;
using BB2BBMap = DenseMap<BasicBlock *, BasicBlock *>;
// A traits type that is intended to be used in graph algorithms. The graph
// traits starts at an entry node, and traverses the RegionNodes that are in
// the Nodes set.
struct SubGraphTraits {
using NodeRef = std::pair<RegionNode *, SmallDenseSet<RegionNode *> *>;
using BaseSuccIterator = GraphTraits<RegionNode *>::ChildIteratorType;
// This wraps a set of Nodes into the iterator, so we know which edges to
// filter out.
class WrappedSuccIterator
: public iterator_adaptor_base<
WrappedSuccIterator, BaseSuccIterator,
typename std::iterator_traits<BaseSuccIterator>::iterator_category,
NodeRef, std::ptrdiff_t, NodeRef *, NodeRef> {
SmallDenseSet<RegionNode *> *Nodes;
public:
WrappedSuccIterator(BaseSuccIterator It, SmallDenseSet<RegionNode *> *Nodes)
: iterator_adaptor_base(It), Nodes(Nodes) {}
NodeRef operator*() const { return {*I, Nodes}; }
};
static bool filterAll(const NodeRef &N) { return true; }
static bool filterSet(const NodeRef &N) { return N.second->count(N.first); }
using ChildIteratorType =
filter_iterator<WrappedSuccIterator, bool (*)(const NodeRef &)>;
static NodeRef getEntryNode(Region *R) {
return {GraphTraits<Region *>::getEntryNode(R), nullptr};
}
static NodeRef getEntryNode(NodeRef N) { return N; }
static iterator_range<ChildIteratorType> children(const NodeRef &N) {
auto *filter = N.second ? &filterSet : &filterAll;
return make_filter_range(
make_range<WrappedSuccIterator>(
{GraphTraits<RegionNode *>::child_begin(N.first), N.second},
{GraphTraits<RegionNode *>::child_end(N.first), N.second}),
filter);
}
static ChildIteratorType child_begin(const NodeRef &N) {
return children(N).begin();
}
static ChildIteratorType child_end(const NodeRef &N) {
return children(N).end();
}
};
/// Finds the nearest common dominator of a set of BasicBlocks.
///
/// For every BB you add to the set, you can specify whether we "remember" the
/// block. When you get the common dominator, you can also ask whether it's one
/// of the blocks we remembered.
class NearestCommonDominator {
DominatorTree *DT;
BasicBlock *Result = nullptr;
bool ResultIsRemembered = false;
/// Add BB to the resulting dominator.
void addBlock(BasicBlock *BB, bool Remember) {
if (!Result) {
Result = BB;
ResultIsRemembered = Remember;
return;
}
BasicBlock *NewResult = DT->findNearestCommonDominator(Result, BB);
if (NewResult != Result)
ResultIsRemembered = false;
if (NewResult == BB)
ResultIsRemembered |= Remember;
Result = NewResult;
}
public:
explicit NearestCommonDominator(DominatorTree *DomTree) : DT(DomTree) {}
void addBlock(BasicBlock *BB) {
addBlock(BB, /* Remember = */ false);
}
void addAndRememberBlock(BasicBlock *BB) {
addBlock(BB, /* Remember = */ true);
}
/// Get the nearest common dominator of all the BBs added via addBlock() and
/// addAndRememberBlock().
BasicBlock *result() { return Result; }
/// Is the BB returned by getResult() one of the blocks we added to the set
/// with addAndRememberBlock()?
bool resultIsRememberedBlock() { return ResultIsRemembered; }
};
/// Transforms the control flow graph on one single entry/exit region
/// at a time.
///
/// After the transform all "If"/"Then"/"Else" style control flow looks like
/// this:
///
/// \verbatim
/// 1
/// ||
/// | |
/// 2 |
/// | /
/// |/
/// 3
/// || Where:
/// | | 1 = "If" block, calculates the condition
/// 4 | 2 = "Then" subregion, runs if the condition is true
/// | / 3 = "Flow" blocks, newly inserted flow blocks, rejoins the flow
/// |/ 4 = "Else" optional subregion, runs if the condition is false
/// 5 5 = "End" block, also rejoins the control flow
/// \endverbatim
///
/// Control flow is expressed as a branch where the true exit goes into the
/// "Then"/"Else" region, while the false exit skips the region
/// The condition for the optional "Else" region is expressed as a PHI node.
/// The incoming values of the PHI node are true for the "If" edge and false
/// for the "Then" edge.
///
/// Additionally to that even complicated loops look like this:
///
/// \verbatim
/// 1
/// ||
/// | |
/// 2 ^ Where:
/// | / 1 = "Entry" block
/// |/ 2 = "Loop" optional subregion, with all exits at "Flow" block
/// 3 3 = "Flow" block, with back edge to entry block
/// |
/// \endverbatim
///
/// The back edge of the "Flow" block is always on the false side of the branch
/// while the true side continues the general flow. So the loop condition
/// consist of a network of PHI nodes where the true incoming values expresses
/// breaks and the false values expresses continue states.
class StructurizeCFG : public RegionPass {
bool SkipUniformRegions;
Type *Boolean;
ConstantInt *BoolTrue;
ConstantInt *BoolFalse;
UndefValue *BoolUndef;
Function *Func;
Region *ParentRegion;
LegacyDivergenceAnalysis *DA;
DominatorTree *DT;
SmallVector<RegionNode *, 8> Order;
BBSet Visited;
SmallVector<WeakVH, 8> AffectedPhis;
BBPhiMap DeletedPhis;
BB2BBVecMap AddedPhis;
PredMap Predicates;
BranchVector Conditions;
BB2BBMap Loops;
PredMap LoopPreds;
BranchVector LoopConds;
RegionNode *PrevNode;
void orderNodes();
void analyzeLoops(RegionNode *N);
Value *buildCondition(BranchInst *Term, unsigned Idx, bool Invert);
void gatherPredicates(RegionNode *N);
void collectInfos();
void insertConditions(bool Loops);
void delPhiValues(BasicBlock *From, BasicBlock *To);
void addPhiValues(BasicBlock *From, BasicBlock *To);
void setPhiValues();
void simplifyAffectedPhis();
void killTerminator(BasicBlock *BB);
void changeExit(RegionNode *Node, BasicBlock *NewExit,
bool IncludeDominator);
BasicBlock *getNextFlow(BasicBlock *Dominator);
BasicBlock *needPrefix(bool NeedEmpty);
BasicBlock *needPostfix(BasicBlock *Flow, bool ExitUseAllowed);
void setPrevNode(BasicBlock *BB);
bool dominatesPredicates(BasicBlock *BB, RegionNode *Node);
bool isPredictableTrue(RegionNode *Node);
void wireFlow(bool ExitUseAllowed, BasicBlock *LoopEnd);
void handleLoops(bool ExitUseAllowed, BasicBlock *LoopEnd);
void createFlow();
void rebuildSSA();
public:
static char ID;
explicit StructurizeCFG(bool SkipUniformRegions_ = false)
: RegionPass(ID),
SkipUniformRegions(SkipUniformRegions_) {
if (ForceSkipUniformRegions.getNumOccurrences())
SkipUniformRegions = ForceSkipUniformRegions.getValue();
initializeStructurizeCFGPass(*PassRegistry::getPassRegistry());
}
bool doInitialization(Region *R, RGPassManager &RGM) override;
bool runOnRegion(Region *R, RGPassManager &RGM) override;
StringRef getPassName() const override { return "Structurize control flow"; }
void getAnalysisUsage(AnalysisUsage &AU) const override {
if (SkipUniformRegions)
AU.addRequired<LegacyDivergenceAnalysis>();
AU.addRequiredID(LowerSwitchID);
AU.addRequired<DominatorTreeWrapperPass>();
AU.addPreserved<DominatorTreeWrapperPass>();
RegionPass::getAnalysisUsage(AU);
}
};
} // end anonymous namespace
char StructurizeCFG::ID = 0;
INITIALIZE_PASS_BEGIN(StructurizeCFG, "structurizecfg", "Structurize the CFG",
false, false)
INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis)
INITIALIZE_PASS_DEPENDENCY(LowerSwitchLegacyPass)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(RegionInfoPass)
INITIALIZE_PASS_END(StructurizeCFG, "structurizecfg", "Structurize the CFG",
false, false)
/// Initialize the types and constants used in the pass
bool StructurizeCFG::doInitialization(Region *R, RGPassManager &RGM) {
LLVMContext &Context = R->getEntry()->getContext();
Boolean = Type::getInt1Ty(Context);
BoolTrue = ConstantInt::getTrue(Context);
BoolFalse = ConstantInt::getFalse(Context);
BoolUndef = UndefValue::get(Boolean);
return false;
}
/// Build up the general order of nodes, by performing a topological sort of the
/// parent region's nodes, while ensuring that there is no outer cycle node
/// between any two inner cycle nodes.
void StructurizeCFG::orderNodes() {
Order.resize(std::distance(GraphTraits<Region *>::nodes_begin(ParentRegion),
GraphTraits<Region *>::nodes_end(ParentRegion)));
if (Order.empty())
return;
SmallDenseSet<RegionNode *> Nodes;
auto EntryNode = SubGraphTraits::getEntryNode(ParentRegion);
// A list of range indices of SCCs in Order, to be processed.
SmallVector<std::pair<unsigned, unsigned>, 8> WorkList;
unsigned I = 0, E = Order.size();
while (true) {
// Run through all the SCCs in the subgraph starting with Entry.
for (auto SCCI =
scc_iterator<SubGraphTraits::NodeRef, SubGraphTraits>::begin(
EntryNode);
!SCCI.isAtEnd(); ++SCCI) {
auto &SCC = *SCCI;
// An SCC up to the size of 2, can be reduced to an entry (the last node),
// and a possible additional node. Therefore, it is already in order, and
// there is no need to add it to the work-list.
unsigned Size = SCC.size();
if (Size > 2)
WorkList.emplace_back(I, I + Size);
// Add the SCC nodes to the Order array.
for (auto &N : SCC) {
assert(I < E && "SCC size mismatch!");
Order[I++] = N.first;
}
}
assert(I == E && "SCC size mismatch!");
// If there are no more SCCs to order, then we are done.
if (WorkList.empty())
break;
std::tie(I, E) = WorkList.pop_back_val();
// Collect the set of nodes in the SCC's subgraph. These are only the
// possible child nodes; we do not add the entry (last node) otherwise we
// will have the same exact SCC all over again.
Nodes.clear();
Nodes.insert(Order.begin() + I, Order.begin() + E - 1);
// Update the entry node.
EntryNode.first = Order[E - 1];
EntryNode.second = &Nodes;
}
}
/// Determine the end of the loops
void StructurizeCFG::analyzeLoops(RegionNode *N) {
if (N->isSubRegion()) {
// Test for exit as back edge
BasicBlock *Exit = N->getNodeAs<Region>()->getExit();
if (Visited.count(Exit))
Loops[Exit] = N->getEntry();
} else {
// Test for successors as back edge
BasicBlock *BB = N->getNodeAs<BasicBlock>();
BranchInst *Term = cast<BranchInst>(BB->getTerminator());
for (BasicBlock *Succ : Term->successors())
if (Visited.count(Succ))
Loops[Succ] = BB;
}
}
/// Build the condition for one edge
Value *StructurizeCFG::buildCondition(BranchInst *Term, unsigned Idx,
bool Invert) {
Value *Cond = Invert ? BoolFalse : BoolTrue;
if (Term->isConditional()) {
Cond = Term->getCondition();
if (Idx != (unsigned)Invert)
Cond = invertCondition(Cond);
}
return Cond;
}
/// Analyze the predecessors of each block and build up predicates
void StructurizeCFG::gatherPredicates(RegionNode *N) {
RegionInfo *RI = ParentRegion->getRegionInfo();
BasicBlock *BB = N->getEntry();
BBPredicates &Pred = Predicates[BB];
BBPredicates &LPred = LoopPreds[BB];
for (BasicBlock *P : predecessors(BB)) {
// Ignore it if it's a branch from outside into our region entry
if (!ParentRegion->contains(P))
continue;
Region *R = RI->getRegionFor(P);
if (R == ParentRegion) {
// It's a top level block in our region
BranchInst *Term = cast<BranchInst>(P->getTerminator());
for (unsigned i = 0, e = Term->getNumSuccessors(); i != e; ++i) {
BasicBlock *Succ = Term->getSuccessor(i);
if (Succ != BB)
continue;
if (Visited.count(P)) {
// Normal forward edge
if (Term->isConditional()) {
// Try to treat it like an ELSE block
BasicBlock *Other = Term->getSuccessor(!i);
if (Visited.count(Other) && !Loops.count(Other) &&
!Pred.count(Other) && !Pred.count(P)) {
Pred[Other] = BoolFalse;
Pred[P] = BoolTrue;
continue;
}
}
Pred[P] = buildCondition(Term, i, false);
} else {
// Back edge
LPred[P] = buildCondition(Term, i, true);
}
}
} else {
// It's an exit from a sub region
while (R->getParent() != ParentRegion)
R = R->getParent();
// Edge from inside a subregion to its entry, ignore it
if (*R == *N)
continue;
BasicBlock *Entry = R->getEntry();
if (Visited.count(Entry))
Pred[Entry] = BoolTrue;
else
LPred[Entry] = BoolFalse;
}
}
}
/// Collect various loop and predicate infos
void StructurizeCFG::collectInfos() {
// Reset predicate
Predicates.clear();
// and loop infos
Loops.clear();
LoopPreds.clear();
// Reset the visited nodes
Visited.clear();
for (RegionNode *RN : reverse(Order)) {
LLVM_DEBUG(dbgs() << "Visiting: "
<< (RN->isSubRegion() ? "SubRegion with entry: " : "")
<< RN->getEntry()->getName() << "\n");
// Analyze all the conditions leading to a node
gatherPredicates(RN);
// Remember that we've seen this node
Visited.insert(RN->getEntry());
// Find the last back edges
analyzeLoops(RN);
}
}
/// Insert the missing branch conditions
void StructurizeCFG::insertConditions(bool Loops) {
BranchVector &Conds = Loops ? LoopConds : Conditions;
Value *Default = Loops ? BoolTrue : BoolFalse;
SSAUpdater PhiInserter;
for (BranchInst *Term : Conds) {
assert(Term->isConditional());
BasicBlock *Parent = Term->getParent();
BasicBlock *SuccTrue = Term->getSuccessor(0);
BasicBlock *SuccFalse = Term->getSuccessor(1);
PhiInserter.Initialize(Boolean, "");
PhiInserter.AddAvailableValue(&Func->getEntryBlock(), Default);
PhiInserter.AddAvailableValue(Loops ? SuccFalse : Parent, Default);
BBPredicates &Preds = Loops ? LoopPreds[SuccFalse] : Predicates[SuccTrue];
NearestCommonDominator Dominator(DT);
Dominator.addBlock(Parent);
Value *ParentValue = nullptr;
for (std::pair<BasicBlock *, Value *> BBAndPred : Preds) {
BasicBlock *BB = BBAndPred.first;
Value *Pred = BBAndPred.second;
if (BB == Parent) {
ParentValue = Pred;
break;
}
PhiInserter.AddAvailableValue(BB, Pred);
Dominator.addAndRememberBlock(BB);
}
if (ParentValue) {
Term->setCondition(ParentValue);
} else {
if (!Dominator.resultIsRememberedBlock())
PhiInserter.AddAvailableValue(Dominator.result(), Default);
Term->setCondition(PhiInserter.GetValueInMiddleOfBlock(Parent));
}
}
}
/// Remove all PHI values coming from "From" into "To" and remember
/// them in DeletedPhis
void StructurizeCFG::delPhiValues(BasicBlock *From, BasicBlock *To) {
PhiMap &Map = DeletedPhis[To];
for (PHINode &Phi : To->phis()) {
bool Recorded = false;
while (Phi.getBasicBlockIndex(From) != -1) {
Value *Deleted = Phi.removeIncomingValue(From, false);
Map[&Phi].push_back(std::make_pair(From, Deleted));
if (!Recorded) {
AffectedPhis.push_back(&Phi);
Recorded = true;
}
}
}
}
/// Add a dummy PHI value as soon as we knew the new predecessor
void StructurizeCFG::addPhiValues(BasicBlock *From, BasicBlock *To) {
for (PHINode &Phi : To->phis()) {
Value *Undef = UndefValue::get(Phi.getType());
Phi.addIncoming(Undef, From);
}
AddedPhis[To].push_back(From);
}
/// Add the real PHI value as soon as everything is set up
void StructurizeCFG::setPhiValues() {
SmallVector<PHINode *, 8> InsertedPhis;
SSAUpdater Updater(&InsertedPhis);
for (const auto &AddedPhi : AddedPhis) {
BasicBlock *To = AddedPhi.first;
const BBVector &From = AddedPhi.second;
if (!DeletedPhis.count(To))
continue;
PhiMap &Map = DeletedPhis[To];
for (const auto &PI : Map) {
PHINode *Phi = PI.first;
Value *Undef = UndefValue::get(Phi->getType());
Updater.Initialize(Phi->getType(), "");
Updater.AddAvailableValue(&Func->getEntryBlock(), Undef);
Updater.AddAvailableValue(To, Undef);
NearestCommonDominator Dominator(DT);
Dominator.addBlock(To);
for (const auto &VI : PI.second) {
Updater.AddAvailableValue(VI.first, VI.second);
Dominator.addAndRememberBlock(VI.first);
}
if (!Dominator.resultIsRememberedBlock())
Updater.AddAvailableValue(Dominator.result(), Undef);
for (BasicBlock *FI : From)
Phi->setIncomingValueForBlock(FI, Updater.GetValueAtEndOfBlock(FI));
AffectedPhis.push_back(Phi);
}
DeletedPhis.erase(To);
}
assert(DeletedPhis.empty());
AffectedPhis.append(InsertedPhis.begin(), InsertedPhis.end());
}
void StructurizeCFG::simplifyAffectedPhis() {
bool Changed;
do {
Changed = false;
SimplifyQuery Q(Func->getParent()->getDataLayout());
Q.DT = DT;
for (WeakVH VH : AffectedPhis) {
if (auto Phi = dyn_cast_or_null<PHINode>(VH)) {
if (auto NewValue = SimplifyInstruction(Phi, Q)) {
Phi->replaceAllUsesWith(NewValue);
Phi->eraseFromParent();
Changed = true;
}
}
}
} while (Changed);
}
/// Remove phi values from all successors and then remove the terminator.
void StructurizeCFG::killTerminator(BasicBlock *BB) {
Instruction *Term = BB->getTerminator();
if (!Term)
return;
for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB);
SI != SE; ++SI)
delPhiValues(BB, *SI);
if (DA)
DA->removeValue(Term);
Term->eraseFromParent();
}
/// Let node exit(s) point to NewExit
void StructurizeCFG::changeExit(RegionNode *Node, BasicBlock *NewExit,
bool IncludeDominator) {
if (Node->isSubRegion()) {
Region *SubRegion = Node->getNodeAs<Region>();
BasicBlock *OldExit = SubRegion->getExit();
BasicBlock *Dominator = nullptr;
// Find all the edges from the sub region to the exit
for (auto BBI = pred_begin(OldExit), E = pred_end(OldExit); BBI != E;) {
// Incrememt BBI before mucking with BB's terminator.
BasicBlock *BB = *BBI++;
if (!SubRegion->contains(BB))
continue;
// Modify the edges to point to the new exit
delPhiValues(BB, OldExit);
BB->getTerminator()->replaceUsesOfWith(OldExit, NewExit);
addPhiValues(BB, NewExit);
// Find the new dominator (if requested)
if (IncludeDominator) {
if (!Dominator)
Dominator = BB;
else
Dominator = DT->findNearestCommonDominator(Dominator, BB);
}
}
// Change the dominator (if requested)
if (Dominator)
DT->changeImmediateDominator(NewExit, Dominator);
// Update the region info
SubRegion->replaceExit(NewExit);
} else {
BasicBlock *BB = Node->getNodeAs<BasicBlock>();
killTerminator(BB);
BranchInst::Create(NewExit, BB);
addPhiValues(BB, NewExit);
if (IncludeDominator)
DT->changeImmediateDominator(NewExit, BB);
}
}
/// Create a new flow node and update dominator tree and region info
BasicBlock *StructurizeCFG::getNextFlow(BasicBlock *Dominator) {
LLVMContext &Context = Func->getContext();
BasicBlock *Insert = Order.empty() ? ParentRegion->getExit() :
Order.back()->getEntry();
BasicBlock *Flow = BasicBlock::Create(Context, FlowBlockName,
Func, Insert);
DT->addNewBlock(Flow, Dominator);
ParentRegion->getRegionInfo()->setRegionFor(Flow, ParentRegion);
return Flow;
}
/// Create a new or reuse the previous node as flow node
BasicBlock *StructurizeCFG::needPrefix(bool NeedEmpty) {
BasicBlock *Entry = PrevNode->getEntry();
if (!PrevNode->isSubRegion()) {
killTerminator(Entry);
if (!NeedEmpty || Entry->getFirstInsertionPt() == Entry->end())
return Entry;
}
// create a new flow node
BasicBlock *Flow = getNextFlow(Entry);
// and wire it up
changeExit(PrevNode, Flow, true);
PrevNode = ParentRegion->getBBNode(Flow);
return Flow;
}
/// Returns the region exit if possible, otherwise just a new flow node
BasicBlock *StructurizeCFG::needPostfix(BasicBlock *Flow,
bool ExitUseAllowed) {
if (!Order.empty() || !ExitUseAllowed)
return getNextFlow(Flow);
BasicBlock *Exit = ParentRegion->getExit();
DT->changeImmediateDominator(Exit, Flow);
addPhiValues(Flow, Exit);
return Exit;
}
/// Set the previous node
void StructurizeCFG::setPrevNode(BasicBlock *BB) {
PrevNode = ParentRegion->contains(BB) ? ParentRegion->getBBNode(BB)
: nullptr;
}
/// Does BB dominate all the predicates of Node?
bool StructurizeCFG::dominatesPredicates(BasicBlock *BB, RegionNode *Node) {
BBPredicates &Preds = Predicates[Node->getEntry()];
return llvm::all_of(Preds, [&](std::pair<BasicBlock *, Value *> Pred) {
return DT->dominates(BB, Pred.first);
});
}
/// Can we predict that this node will always be called?
bool StructurizeCFG::isPredictableTrue(RegionNode *Node) {
BBPredicates &Preds = Predicates[Node->getEntry()];
bool Dominated = false;
// Regionentry is always true
if (!PrevNode)
return true;
for (std::pair<BasicBlock*, Value*> Pred : Preds) {
BasicBlock *BB = Pred.first;
Value *V = Pred.second;
if (V != BoolTrue)
return false;
if (!Dominated && DT->dominates(BB, PrevNode->getEntry()))
Dominated = true;
}
// TODO: The dominator check is too strict
return Dominated;
}
/// Take one node from the order vector and wire it up
void StructurizeCFG::wireFlow(bool ExitUseAllowed,
BasicBlock *LoopEnd) {
RegionNode *Node = Order.pop_back_val();
Visited.insert(Node->getEntry());
if (isPredictableTrue(Node)) {
// Just a linear flow
if (PrevNode) {
changeExit(PrevNode, Node->getEntry(), true);
}
PrevNode = Node;
} else {
// Insert extra prefix node (or reuse last one)
BasicBlock *Flow = needPrefix(false);
// Insert extra postfix node (or use exit instead)
BasicBlock *Entry = Node->getEntry();
BasicBlock *Next = needPostfix(Flow, ExitUseAllowed);
// let it point to entry and next block
Conditions.push_back(BranchInst::Create(Entry, Next, BoolUndef, Flow));
addPhiValues(Flow, Entry);
DT->changeImmediateDominator(Entry, Flow);
PrevNode = Node;
while (!Order.empty() && !Visited.count(LoopEnd) &&
dominatesPredicates(Entry, Order.back())) {
handleLoops(false, LoopEnd);
}
changeExit(PrevNode, Next, false);
setPrevNode(Next);
}
}
void StructurizeCFG::handleLoops(bool ExitUseAllowed,
BasicBlock *LoopEnd) {
RegionNode *Node = Order.back();
BasicBlock *LoopStart = Node->getEntry();
if (!Loops.count(LoopStart)) {
wireFlow(ExitUseAllowed, LoopEnd);
return;
}
if (!isPredictableTrue(Node))
LoopStart = needPrefix(true);
LoopEnd = Loops[Node->getEntry()];
wireFlow(false, LoopEnd);
while (!Visited.count(LoopEnd)) {
handleLoops(false, LoopEnd);
}
// If the start of the loop is the entry block, we can't branch to it so
// insert a new dummy entry block.
Function *LoopFunc = LoopStart->getParent();
if (LoopStart == &LoopFunc->getEntryBlock()) {
LoopStart->setName("entry.orig");
BasicBlock *NewEntry =
BasicBlock::Create(LoopStart->getContext(),
"entry",
LoopFunc,
LoopStart);
BranchInst::Create(LoopStart, NewEntry);
DT->setNewRoot(NewEntry);
}
// Create an extra loop end node
LoopEnd = needPrefix(false);
BasicBlock *Next = needPostfix(LoopEnd, ExitUseAllowed);
LoopConds.push_back(BranchInst::Create(Next, LoopStart,
BoolUndef, LoopEnd));
addPhiValues(LoopEnd, LoopStart);
setPrevNode(Next);
}
/// After this function control flow looks like it should be, but
/// branches and PHI nodes only have undefined conditions.
void StructurizeCFG::createFlow() {
BasicBlock *Exit = ParentRegion->getExit();
bool EntryDominatesExit = DT->dominates(ParentRegion->getEntry(), Exit);
AffectedPhis.clear();
DeletedPhis.clear();
AddedPhis.clear();
Conditions.clear();
LoopConds.clear();
PrevNode = nullptr;
Visited.clear();
while (!Order.empty()) {
handleLoops(EntryDominatesExit, nullptr);
}
if (PrevNode)
changeExit(PrevNode, Exit, EntryDominatesExit);
else
assert(EntryDominatesExit);
}
/// Handle a rare case where the disintegrated nodes instructions
/// no longer dominate all their uses. Not sure if this is really necessary
void StructurizeCFG::rebuildSSA() {
SSAUpdater Updater;
for (BasicBlock *BB : ParentRegion->blocks())
for (Instruction &I : *BB) {
bool Initialized = false;
// We may modify the use list as we iterate over it, so be careful to
// compute the next element in the use list at the top of the loop.
for (auto UI = I.use_begin(), E = I.use_end(); UI != E;) {
Use &U = *UI++;
Instruction *User = cast<Instruction>(U.getUser());
if (User->getParent() == BB) {
continue;
} else if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
if (UserPN->getIncomingBlock(U) == BB)
continue;
}
if (DT->dominates(&I, User))
continue;
if (!Initialized) {
Value *Undef = UndefValue::get(I.getType());
Updater.Initialize(I.getType(), "");
Updater.AddAvailableValue(&Func->getEntryBlock(), Undef);
Updater.AddAvailableValue(BB, &I);
Initialized = true;
}
Updater.RewriteUseAfterInsertions(U);
}
}
}
static bool hasOnlyUniformBranches(Region *R, unsigned UniformMDKindID,
const LegacyDivergenceAnalysis &DA) {
// Bool for if all sub-regions are uniform.
bool SubRegionsAreUniform = true;
// Count of how many direct children are conditional.
unsigned ConditionalDirectChildren = 0;
for (auto E : R->elements()) {
if (!E->isSubRegion()) {
auto Br = dyn_cast<BranchInst>(E->getEntry()->getTerminator());
if (!Br || !Br->isConditional())
continue;
if (!DA.isUniform(Br))
return false;
// One of our direct children is conditional.
ConditionalDirectChildren++;
LLVM_DEBUG(dbgs() << "BB: " << Br->getParent()->getName()
<< " has uniform terminator\n");
} else {
// Explicitly refuse to treat regions as uniform if they have non-uniform
// subregions. We cannot rely on DivergenceAnalysis for branches in
// subregions because those branches may have been removed and re-created,
// so we look for our metadata instead.
//
// Warning: It would be nice to treat regions as uniform based only on
// their direct child basic blocks' terminators, regardless of whether
// subregions are uniform or not. However, this requires a very careful
// look at SIAnnotateControlFlow to make sure nothing breaks there.
for (auto BB : E->getNodeAs<Region>()->blocks()) {
auto Br = dyn_cast<BranchInst>(BB->getTerminator());
if (!Br || !Br->isConditional())
continue;
if (!Br->getMetadata(UniformMDKindID)) {
// Early exit if we cannot have relaxed uniform regions.
if (!RelaxedUniformRegions)
return false;
SubRegionsAreUniform = false;
break;
}
}
}
}
// Our region is uniform if:
// 1. All conditional branches that are direct children are uniform (checked
// above).
// 2. And either:
// a. All sub-regions are uniform.
// b. There is one or less conditional branches among the direct children.
return SubRegionsAreUniform || (ConditionalDirectChildren <= 1);
}
/// Run the transformation for each region found
bool StructurizeCFG::runOnRegion(Region *R, RGPassManager &RGM) {
if (R->isTopLevelRegion())
return false;
DA = nullptr;
if (SkipUniformRegions) {
// TODO: We could probably be smarter here with how we handle sub-regions.
// We currently rely on the fact that metadata is set by earlier invocations
// of the pass on sub-regions, and that this metadata doesn't get lost --
// but we shouldn't rely on metadata for correctness!
unsigned UniformMDKindID =
R->getEntry()->getContext().getMDKindID("structurizecfg.uniform");
DA = &getAnalysis<LegacyDivergenceAnalysis>();
if (hasOnlyUniformBranches(R, UniformMDKindID, *DA)) {
LLVM_DEBUG(dbgs() << "Skipping region with uniform control flow: " << *R
<< '\n');
// Mark all direct child block terminators as having been treated as
// uniform. To account for a possible future in which non-uniform
// sub-regions are treated more cleverly, indirect children are not
// marked as uniform.
MDNode *MD = MDNode::get(R->getEntry()->getParent()->getContext(), {});
for (RegionNode *E : R->elements()) {
if (E->isSubRegion())
continue;
if (Instruction *Term = E->getEntry()->getTerminator())
Term->setMetadata(UniformMDKindID, MD);
}
return false;
}
}
Func = R->getEntry()->getParent();
ParentRegion = R;
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
orderNodes();
collectInfos();
createFlow();
insertConditions(false);
insertConditions(true);
setPhiValues();
simplifyAffectedPhis();
rebuildSSA();
// Cleanup
Order.clear();
Visited.clear();
DeletedPhis.clear();
AddedPhis.clear();
Predicates.clear();
Conditions.clear();
Loops.clear();
LoopPreds.clear();
LoopConds.clear();
return true;
}
Pass *llvm::createStructurizeCFGPass(bool SkipUniformRegions) {
return new StructurizeCFG(SkipUniformRegions);
}