SimpleLoopUnswitch.cpp 126 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069
///===- SimpleLoopUnswitch.cpp - Hoist loop-invariant control flow ---------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Sequence.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/CFG.h"
#include "llvm/Analysis/CodeMetrics.h"
#include "llvm/Analysis/GuardUtils.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/LoopAnalysisManager.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopIterator.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/MemorySSA.h"
#include "llvm/Analysis/MemorySSAUpdater.h"
#include "llvm/Analysis/MustExecute.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/Value.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/GenericDomTree.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/LoopUtils.h"
#include "llvm/Transforms/Utils/ValueMapper.h"
#include <algorithm>
#include <cassert>
#include <iterator>
#include <numeric>
#include <utility>

#define DEBUG_TYPE "simple-loop-unswitch"

using namespace llvm;

STATISTIC(NumBranches, "Number of branches unswitched");
STATISTIC(NumSwitches, "Number of switches unswitched");
STATISTIC(NumGuards, "Number of guards turned into branches for unswitching");
STATISTIC(NumTrivial, "Number of unswitches that are trivial");
STATISTIC(
    NumCostMultiplierSkipped,
    "Number of unswitch candidates that had their cost multiplier skipped");

static cl::opt<bool> EnableNonTrivialUnswitch(
    "enable-nontrivial-unswitch", cl::init(false), cl::Hidden,
    cl::desc("Forcibly enables non-trivial loop unswitching rather than "
             "following the configuration passed into the pass."));

static cl::opt<int>
    UnswitchThreshold("unswitch-threshold", cl::init(50), cl::Hidden,
                      cl::desc("The cost threshold for unswitching a loop."));

static cl::opt<bool> EnableUnswitchCostMultiplier(
    "enable-unswitch-cost-multiplier", cl::init(true), cl::Hidden,
    cl::desc("Enable unswitch cost multiplier that prohibits exponential "
             "explosion in nontrivial unswitch."));
static cl::opt<int> UnswitchSiblingsToplevelDiv(
    "unswitch-siblings-toplevel-div", cl::init(2), cl::Hidden,
    cl::desc("Toplevel siblings divisor for cost multiplier."));
static cl::opt<int> UnswitchNumInitialUnscaledCandidates(
    "unswitch-num-initial-unscaled-candidates", cl::init(8), cl::Hidden,
    cl::desc("Number of unswitch candidates that are ignored when calculating "
             "cost multiplier."));
static cl::opt<bool> UnswitchGuards(
    "simple-loop-unswitch-guards", cl::init(true), cl::Hidden,
    cl::desc("If enabled, simple loop unswitching will also consider "
             "llvm.experimental.guard intrinsics as unswitch candidates."));
static cl::opt<bool> DropNonTrivialImplicitNullChecks(
    "simple-loop-unswitch-drop-non-trivial-implicit-null-checks",
    cl::init(false), cl::Hidden,
    cl::desc("If enabled, drop make.implicit metadata in unswitched implicit "
             "null checks to save time analyzing if we can keep it."));

/// Collect all of the loop invariant input values transitively used by the
/// homogeneous instruction graph from a given root.
///
/// This essentially walks from a root recursively through loop variant operands
/// which have the exact same opcode and finds all inputs which are loop
/// invariant. For some operations these can be re-associated and unswitched out
/// of the loop entirely.
static TinyPtrVector<Value *>
collectHomogenousInstGraphLoopInvariants(Loop &L, Instruction &Root,
                                         LoopInfo &LI) {
  assert(!L.isLoopInvariant(&Root) &&
         "Only need to walk the graph if root itself is not invariant.");
  TinyPtrVector<Value *> Invariants;

  // Build a worklist and recurse through operators collecting invariants.
  SmallVector<Instruction *, 4> Worklist;
  SmallPtrSet<Instruction *, 8> Visited;
  Worklist.push_back(&Root);
  Visited.insert(&Root);
  do {
    Instruction &I = *Worklist.pop_back_val();
    for (Value *OpV : I.operand_values()) {
      // Skip constants as unswitching isn't interesting for them.
      if (isa<Constant>(OpV))
        continue;

      // Add it to our result if loop invariant.
      if (L.isLoopInvariant(OpV)) {
        Invariants.push_back(OpV);
        continue;
      }

      // If not an instruction with the same opcode, nothing we can do.
      Instruction *OpI = dyn_cast<Instruction>(OpV);
      if (!OpI || OpI->getOpcode() != Root.getOpcode())
        continue;

      // Visit this operand.
      if (Visited.insert(OpI).second)
        Worklist.push_back(OpI);
    }
  } while (!Worklist.empty());

  return Invariants;
}

static void replaceLoopInvariantUses(Loop &L, Value *Invariant,
                                     Constant &Replacement) {
  assert(!isa<Constant>(Invariant) && "Why are we unswitching on a constant?");

  // Replace uses of LIC in the loop with the given constant.
  for (auto UI = Invariant->use_begin(), UE = Invariant->use_end(); UI != UE;) {
    // Grab the use and walk past it so we can clobber it in the use list.
    Use *U = &*UI++;
    Instruction *UserI = dyn_cast<Instruction>(U->getUser());

    // Replace this use within the loop body.
    if (UserI && L.contains(UserI))
      U->set(&Replacement);
  }
}

/// Check that all the LCSSA PHI nodes in the loop exit block have trivial
/// incoming values along this edge.
static bool areLoopExitPHIsLoopInvariant(Loop &L, BasicBlock &ExitingBB,
                                         BasicBlock &ExitBB) {
  for (Instruction &I : ExitBB) {
    auto *PN = dyn_cast<PHINode>(&I);
    if (!PN)
      // No more PHIs to check.
      return true;

    // If the incoming value for this edge isn't loop invariant the unswitch
    // won't be trivial.
    if (!L.isLoopInvariant(PN->getIncomingValueForBlock(&ExitingBB)))
      return false;
  }
  llvm_unreachable("Basic blocks should never be empty!");
}

/// Insert code to test a set of loop invariant values, and conditionally branch
/// on them.
static void buildPartialUnswitchConditionalBranch(BasicBlock &BB,
                                                  ArrayRef<Value *> Invariants,
                                                  bool Direction,
                                                  BasicBlock &UnswitchedSucc,
                                                  BasicBlock &NormalSucc) {
  IRBuilder<> IRB(&BB);

  Value *Cond = Direction ? IRB.CreateOr(Invariants) :
    IRB.CreateAnd(Invariants);
  IRB.CreateCondBr(Cond, Direction ? &UnswitchedSucc : &NormalSucc,
                   Direction ? &NormalSucc : &UnswitchedSucc);
}

/// Rewrite the PHI nodes in an unswitched loop exit basic block.
///
/// Requires that the loop exit and unswitched basic block are the same, and
/// that the exiting block was a unique predecessor of that block. Rewrites the
/// PHI nodes in that block such that what were LCSSA PHI nodes become trivial
/// PHI nodes from the old preheader that now contains the unswitched
/// terminator.
static void rewritePHINodesForUnswitchedExitBlock(BasicBlock &UnswitchedBB,
                                                  BasicBlock &OldExitingBB,
                                                  BasicBlock &OldPH) {
  for (PHINode &PN : UnswitchedBB.phis()) {
    // When the loop exit is directly unswitched we just need to update the
    // incoming basic block. We loop to handle weird cases with repeated
    // incoming blocks, but expect to typically only have one operand here.
    for (auto i : seq<int>(0, PN.getNumOperands())) {
      assert(PN.getIncomingBlock(i) == &OldExitingBB &&
             "Found incoming block different from unique predecessor!");
      PN.setIncomingBlock(i, &OldPH);
    }
  }
}

/// Rewrite the PHI nodes in the loop exit basic block and the split off
/// unswitched block.
///
/// Because the exit block remains an exit from the loop, this rewrites the
/// LCSSA PHI nodes in it to remove the unswitched edge and introduces PHI
/// nodes into the unswitched basic block to select between the value in the
/// old preheader and the loop exit.
static void rewritePHINodesForExitAndUnswitchedBlocks(BasicBlock &ExitBB,
                                                      BasicBlock &UnswitchedBB,
                                                      BasicBlock &OldExitingBB,
                                                      BasicBlock &OldPH,
                                                      bool FullUnswitch) {
  assert(&ExitBB != &UnswitchedBB &&
         "Must have different loop exit and unswitched blocks!");
  Instruction *InsertPt = &*UnswitchedBB.begin();
  for (PHINode &PN : ExitBB.phis()) {
    auto *NewPN = PHINode::Create(PN.getType(), /*NumReservedValues*/ 2,
                                  PN.getName() + ".split", InsertPt);

    // Walk backwards over the old PHI node's inputs to minimize the cost of
    // removing each one. We have to do this weird loop manually so that we
    // create the same number of new incoming edges in the new PHI as we expect
    // each case-based edge to be included in the unswitched switch in some
    // cases.
    // FIXME: This is really, really gross. It would be much cleaner if LLVM
    // allowed us to create a single entry for a predecessor block without
    // having separate entries for each "edge" even though these edges are
    // required to produce identical results.
    for (int i = PN.getNumIncomingValues() - 1; i >= 0; --i) {
      if (PN.getIncomingBlock(i) != &OldExitingBB)
        continue;

      Value *Incoming = PN.getIncomingValue(i);
      if (FullUnswitch)
        // No more edge from the old exiting block to the exit block.
        PN.removeIncomingValue(i);

      NewPN->addIncoming(Incoming, &OldPH);
    }

    // Now replace the old PHI with the new one and wire the old one in as an
    // input to the new one.
    PN.replaceAllUsesWith(NewPN);
    NewPN->addIncoming(&PN, &ExitBB);
  }
}

/// Hoist the current loop up to the innermost loop containing a remaining exit.
///
/// Because we've removed an exit from the loop, we may have changed the set of
/// loops reachable and need to move the current loop up the loop nest or even
/// to an entirely separate nest.
static void hoistLoopToNewParent(Loop &L, BasicBlock &Preheader,
                                 DominatorTree &DT, LoopInfo &LI,
                                 MemorySSAUpdater *MSSAU, ScalarEvolution *SE) {
  // If the loop is already at the top level, we can't hoist it anywhere.
  Loop *OldParentL = L.getParentLoop();
  if (!OldParentL)
    return;

  SmallVector<BasicBlock *, 4> Exits;
  L.getExitBlocks(Exits);
  Loop *NewParentL = nullptr;
  for (auto *ExitBB : Exits)
    if (Loop *ExitL = LI.getLoopFor(ExitBB))
      if (!NewParentL || NewParentL->contains(ExitL))
        NewParentL = ExitL;

  if (NewParentL == OldParentL)
    return;

  // The new parent loop (if different) should always contain the old one.
  if (NewParentL)
    assert(NewParentL->contains(OldParentL) &&
           "Can only hoist this loop up the nest!");

  // The preheader will need to move with the body of this loop. However,
  // because it isn't in this loop we also need to update the primary loop map.
  assert(OldParentL == LI.getLoopFor(&Preheader) &&
         "Parent loop of this loop should contain this loop's preheader!");
  LI.changeLoopFor(&Preheader, NewParentL);

  // Remove this loop from its old parent.
  OldParentL->removeChildLoop(&L);

  // Add the loop either to the new parent or as a top-level loop.
  if (NewParentL)
    NewParentL->addChildLoop(&L);
  else
    LI.addTopLevelLoop(&L);

  // Remove this loops blocks from the old parent and every other loop up the
  // nest until reaching the new parent. Also update all of these
  // no-longer-containing loops to reflect the nesting change.
  for (Loop *OldContainingL = OldParentL; OldContainingL != NewParentL;
       OldContainingL = OldContainingL->getParentLoop()) {
    llvm::erase_if(OldContainingL->getBlocksVector(),
                   [&](const BasicBlock *BB) {
                     return BB == &Preheader || L.contains(BB);
                   });

    OldContainingL->getBlocksSet().erase(&Preheader);
    for (BasicBlock *BB : L.blocks())
      OldContainingL->getBlocksSet().erase(BB);

    // Because we just hoisted a loop out of this one, we have essentially
    // created new exit paths from it. That means we need to form LCSSA PHI
    // nodes for values used in the no-longer-nested loop.
    formLCSSA(*OldContainingL, DT, &LI, SE);

    // We shouldn't need to form dedicated exits because the exit introduced
    // here is the (just split by unswitching) preheader. However, after trivial
    // unswitching it is possible to get new non-dedicated exits out of parent
    // loop so let's conservatively form dedicated exit blocks and figure out
    // if we can optimize later.
    formDedicatedExitBlocks(OldContainingL, &DT, &LI, MSSAU,
                            /*PreserveLCSSA*/ true);
  }
}

// Return the top-most loop containing ExitBB and having ExitBB as exiting block
// or the loop containing ExitBB, if there is no parent loop containing ExitBB
// as exiting block.
static Loop *getTopMostExitingLoop(BasicBlock *ExitBB, LoopInfo &LI) {
  Loop *TopMost = LI.getLoopFor(ExitBB);
  Loop *Current = TopMost;
  while (Current) {
    if (Current->isLoopExiting(ExitBB))
      TopMost = Current;
    Current = Current->getParentLoop();
  }
  return TopMost;
}

/// Unswitch a trivial branch if the condition is loop invariant.
///
/// This routine should only be called when loop code leading to the branch has
/// been validated as trivial (no side effects). This routine checks if the
/// condition is invariant and one of the successors is a loop exit. This
/// allows us to unswitch without duplicating the loop, making it trivial.
///
/// If this routine fails to unswitch the branch it returns false.
///
/// If the branch can be unswitched, this routine splits the preheader and
/// hoists the branch above that split. Preserves loop simplified form
/// (splitting the exit block as necessary). It simplifies the branch within
/// the loop to an unconditional branch but doesn't remove it entirely. Further
/// cleanup can be done with some simplify-cfg like pass.
///
/// If `SE` is not null, it will be updated based on the potential loop SCEVs
/// invalidated by this.
static bool unswitchTrivialBranch(Loop &L, BranchInst &BI, DominatorTree &DT,
                                  LoopInfo &LI, ScalarEvolution *SE,
                                  MemorySSAUpdater *MSSAU) {
  assert(BI.isConditional() && "Can only unswitch a conditional branch!");
  LLVM_DEBUG(dbgs() << "  Trying to unswitch branch: " << BI << "\n");

  // The loop invariant values that we want to unswitch.
  TinyPtrVector<Value *> Invariants;

  // When true, we're fully unswitching the branch rather than just unswitching
  // some input conditions to the branch.
  bool FullUnswitch = false;

  if (L.isLoopInvariant(BI.getCondition())) {
    Invariants.push_back(BI.getCondition());
    FullUnswitch = true;
  } else {
    if (auto *CondInst = dyn_cast<Instruction>(BI.getCondition()))
      Invariants = collectHomogenousInstGraphLoopInvariants(L, *CondInst, LI);
    if (Invariants.empty())
      // Couldn't find invariant inputs!
      return false;
  }

  // Check that one of the branch's successors exits, and which one.
  bool ExitDirection = true;
  int LoopExitSuccIdx = 0;
  auto *LoopExitBB = BI.getSuccessor(0);
  if (L.contains(LoopExitBB)) {
    ExitDirection = false;
    LoopExitSuccIdx = 1;
    LoopExitBB = BI.getSuccessor(1);
    if (L.contains(LoopExitBB))
      return false;
  }
  auto *ContinueBB = BI.getSuccessor(1 - LoopExitSuccIdx);
  auto *ParentBB = BI.getParent();
  if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, *LoopExitBB))
    return false;

  // When unswitching only part of the branch's condition, we need the exit
  // block to be reached directly from the partially unswitched input. This can
  // be done when the exit block is along the true edge and the branch condition
  // is a graph of `or` operations, or the exit block is along the false edge
  // and the condition is a graph of `and` operations.
  if (!FullUnswitch) {
    if (ExitDirection) {
      if (cast<Instruction>(BI.getCondition())->getOpcode() != Instruction::Or)
        return false;
    } else {
      if (cast<Instruction>(BI.getCondition())->getOpcode() != Instruction::And)
        return false;
    }
  }

  LLVM_DEBUG({
    dbgs() << "    unswitching trivial invariant conditions for: " << BI
           << "\n";
    for (Value *Invariant : Invariants) {
      dbgs() << "      " << *Invariant << " == true";
      if (Invariant != Invariants.back())
        dbgs() << " ||";
      dbgs() << "\n";
    }
  });

  // If we have scalar evolutions, we need to invalidate them including this
  // loop, the loop containing the exit block and the topmost parent loop
  // exiting via LoopExitBB.
  if (SE) {
    if (Loop *ExitL = getTopMostExitingLoop(LoopExitBB, LI))
      SE->forgetLoop(ExitL);
    else
      // Forget the entire nest as this exits the entire nest.
      SE->forgetTopmostLoop(&L);
  }

  if (MSSAU && VerifyMemorySSA)
    MSSAU->getMemorySSA()->verifyMemorySSA();

  // Split the preheader, so that we know that there is a safe place to insert
  // the conditional branch. We will change the preheader to have a conditional
  // branch on LoopCond.
  BasicBlock *OldPH = L.getLoopPreheader();
  BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU);

  // Now that we have a place to insert the conditional branch, create a place
  // to branch to: this is the exit block out of the loop that we are
  // unswitching. We need to split this if there are other loop predecessors.
  // Because the loop is in simplified form, *any* other predecessor is enough.
  BasicBlock *UnswitchedBB;
  if (FullUnswitch && LoopExitBB->getUniquePredecessor()) {
    assert(LoopExitBB->getUniquePredecessor() == BI.getParent() &&
           "A branch's parent isn't a predecessor!");
    UnswitchedBB = LoopExitBB;
  } else {
    UnswitchedBB =
        SplitBlock(LoopExitBB, &LoopExitBB->front(), &DT, &LI, MSSAU);
  }

  if (MSSAU && VerifyMemorySSA)
    MSSAU->getMemorySSA()->verifyMemorySSA();

  // Actually move the invariant uses into the unswitched position. If possible,
  // we do this by moving the instructions, but when doing partial unswitching
  // we do it by building a new merge of the values in the unswitched position.
  OldPH->getTerminator()->eraseFromParent();
  if (FullUnswitch) {
    // If fully unswitching, we can use the existing branch instruction.
    // Splice it into the old PH to gate reaching the new preheader and re-point
    // its successors.
    OldPH->getInstList().splice(OldPH->end(), BI.getParent()->getInstList(),
                                BI);
    if (MSSAU) {
      // Temporarily clone the terminator, to make MSSA update cheaper by
      // separating "insert edge" updates from "remove edge" ones.
      ParentBB->getInstList().push_back(BI.clone());
    } else {
      // Create a new unconditional branch that will continue the loop as a new
      // terminator.
      BranchInst::Create(ContinueBB, ParentBB);
    }
    BI.setSuccessor(LoopExitSuccIdx, UnswitchedBB);
    BI.setSuccessor(1 - LoopExitSuccIdx, NewPH);
  } else {
    // Only unswitching a subset of inputs to the condition, so we will need to
    // build a new branch that merges the invariant inputs.
    if (ExitDirection)
      assert(cast<Instruction>(BI.getCondition())->getOpcode() ==
                 Instruction::Or &&
             "Must have an `or` of `i1`s for the condition!");
    else
      assert(cast<Instruction>(BI.getCondition())->getOpcode() ==
                 Instruction::And &&
             "Must have an `and` of `i1`s for the condition!");
    buildPartialUnswitchConditionalBranch(*OldPH, Invariants, ExitDirection,
                                          *UnswitchedBB, *NewPH);
  }

  // Update the dominator tree with the added edge.
  DT.insertEdge(OldPH, UnswitchedBB);

  // After the dominator tree was updated with the added edge, update MemorySSA
  // if available.
  if (MSSAU) {
    SmallVector<CFGUpdate, 1> Updates;
    Updates.push_back({cfg::UpdateKind::Insert, OldPH, UnswitchedBB});
    MSSAU->applyInsertUpdates(Updates, DT);
  }

  // Finish updating dominator tree and memory ssa for full unswitch.
  if (FullUnswitch) {
    if (MSSAU) {
      // Remove the cloned branch instruction.
      ParentBB->getTerminator()->eraseFromParent();
      // Create unconditional branch now.
      BranchInst::Create(ContinueBB, ParentBB);
      MSSAU->removeEdge(ParentBB, LoopExitBB);
    }
    DT.deleteEdge(ParentBB, LoopExitBB);
  }

  if (MSSAU && VerifyMemorySSA)
    MSSAU->getMemorySSA()->verifyMemorySSA();

  // Rewrite the relevant PHI nodes.
  if (UnswitchedBB == LoopExitBB)
    rewritePHINodesForUnswitchedExitBlock(*UnswitchedBB, *ParentBB, *OldPH);
  else
    rewritePHINodesForExitAndUnswitchedBlocks(*LoopExitBB, *UnswitchedBB,
                                              *ParentBB, *OldPH, FullUnswitch);

  // The constant we can replace all of our invariants with inside the loop
  // body. If any of the invariants have a value other than this the loop won't
  // be entered.
  ConstantInt *Replacement = ExitDirection
                                 ? ConstantInt::getFalse(BI.getContext())
                                 : ConstantInt::getTrue(BI.getContext());

  // Since this is an i1 condition we can also trivially replace uses of it
  // within the loop with a constant.
  for (Value *Invariant : Invariants)
    replaceLoopInvariantUses(L, Invariant, *Replacement);

  // If this was full unswitching, we may have changed the nesting relationship
  // for this loop so hoist it to its correct parent if needed.
  if (FullUnswitch)
    hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU, SE);

  if (MSSAU && VerifyMemorySSA)
    MSSAU->getMemorySSA()->verifyMemorySSA();

  LLVM_DEBUG(dbgs() << "    done: unswitching trivial branch...\n");
  ++NumTrivial;
  ++NumBranches;
  return true;
}

/// Unswitch a trivial switch if the condition is loop invariant.
///
/// This routine should only be called when loop code leading to the switch has
/// been validated as trivial (no side effects). This routine checks if the
/// condition is invariant and that at least one of the successors is a loop
/// exit. This allows us to unswitch without duplicating the loop, making it
/// trivial.
///
/// If this routine fails to unswitch the switch it returns false.
///
/// If the switch can be unswitched, this routine splits the preheader and
/// copies the switch above that split. If the default case is one of the
/// exiting cases, it copies the non-exiting cases and points them at the new
/// preheader. If the default case is not exiting, it copies the exiting cases
/// and points the default at the preheader. It preserves loop simplified form
/// (splitting the exit blocks as necessary). It simplifies the switch within
/// the loop by removing now-dead cases. If the default case is one of those
/// unswitched, it replaces its destination with a new basic block containing
/// only unreachable. Such basic blocks, while technically loop exits, are not
/// considered for unswitching so this is a stable transform and the same
/// switch will not be revisited. If after unswitching there is only a single
/// in-loop successor, the switch is further simplified to an unconditional
/// branch. Still more cleanup can be done with some simplify-cfg like pass.
///
/// If `SE` is not null, it will be updated based on the potential loop SCEVs
/// invalidated by this.
static bool unswitchTrivialSwitch(Loop &L, SwitchInst &SI, DominatorTree &DT,
                                  LoopInfo &LI, ScalarEvolution *SE,
                                  MemorySSAUpdater *MSSAU) {
  LLVM_DEBUG(dbgs() << "  Trying to unswitch switch: " << SI << "\n");
  Value *LoopCond = SI.getCondition();

  // If this isn't switching on an invariant condition, we can't unswitch it.
  if (!L.isLoopInvariant(LoopCond))
    return false;

  auto *ParentBB = SI.getParent();

  // The same check must be used both for the default and the exit cases. We
  // should never leave edges from the switch instruction to a basic block that
  // we are unswitching, hence the condition used to determine the default case
  // needs to also be used to populate ExitCaseIndices, which is then used to
  // remove cases from the switch.
  auto IsTriviallyUnswitchableExitBlock = [&](BasicBlock &BBToCheck) {
    // BBToCheck is not an exit block if it is inside loop L.
    if (L.contains(&BBToCheck))
      return false;
    // BBToCheck is not trivial to unswitch if its phis aren't loop invariant.
    if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, BBToCheck))
      return false;
    // We do not unswitch a block that only has an unreachable statement, as
    // it's possible this is a previously unswitched block. Only unswitch if
    // either the terminator is not unreachable, or, if it is, it's not the only
    // instruction in the block.
    auto *TI = BBToCheck.getTerminator();
    bool isUnreachable = isa<UnreachableInst>(TI);
    return !isUnreachable ||
           (isUnreachable && (BBToCheck.getFirstNonPHIOrDbg() != TI));
  };

  SmallVector<int, 4> ExitCaseIndices;
  for (auto Case : SI.cases())
    if (IsTriviallyUnswitchableExitBlock(*Case.getCaseSuccessor()))
      ExitCaseIndices.push_back(Case.getCaseIndex());
  BasicBlock *DefaultExitBB = nullptr;
  SwitchInstProfUpdateWrapper::CaseWeightOpt DefaultCaseWeight =
      SwitchInstProfUpdateWrapper::getSuccessorWeight(SI, 0);
  if (IsTriviallyUnswitchableExitBlock(*SI.getDefaultDest())) {
    DefaultExitBB = SI.getDefaultDest();
  } else if (ExitCaseIndices.empty())
    return false;

  LLVM_DEBUG(dbgs() << "    unswitching trivial switch...\n");

  if (MSSAU && VerifyMemorySSA)
    MSSAU->getMemorySSA()->verifyMemorySSA();

  // We may need to invalidate SCEVs for the outermost loop reached by any of
  // the exits.
  Loop *OuterL = &L;

  if (DefaultExitBB) {
    // Clear out the default destination temporarily to allow accurate
    // predecessor lists to be examined below.
    SI.setDefaultDest(nullptr);
    // Check the loop containing this exit.
    Loop *ExitL = LI.getLoopFor(DefaultExitBB);
    if (!ExitL || ExitL->contains(OuterL))
      OuterL = ExitL;
  }

  // Store the exit cases into a separate data structure and remove them from
  // the switch.
  SmallVector<std::tuple<ConstantInt *, BasicBlock *,
                         SwitchInstProfUpdateWrapper::CaseWeightOpt>,
              4> ExitCases;
  ExitCases.reserve(ExitCaseIndices.size());
  SwitchInstProfUpdateWrapper SIW(SI);
  // We walk the case indices backwards so that we remove the last case first
  // and don't disrupt the earlier indices.
  for (unsigned Index : reverse(ExitCaseIndices)) {
    auto CaseI = SI.case_begin() + Index;
    // Compute the outer loop from this exit.
    Loop *ExitL = LI.getLoopFor(CaseI->getCaseSuccessor());
    if (!ExitL || ExitL->contains(OuterL))
      OuterL = ExitL;
    // Save the value of this case.
    auto W = SIW.getSuccessorWeight(CaseI->getSuccessorIndex());
    ExitCases.emplace_back(CaseI->getCaseValue(), CaseI->getCaseSuccessor(), W);
    // Delete the unswitched cases.
    SIW.removeCase(CaseI);
  }

  if (SE) {
    if (OuterL)
      SE->forgetLoop(OuterL);
    else
      SE->forgetTopmostLoop(&L);
  }

  // Check if after this all of the remaining cases point at the same
  // successor.
  BasicBlock *CommonSuccBB = nullptr;
  if (SI.getNumCases() > 0 &&
      std::all_of(std::next(SI.case_begin()), SI.case_end(),
                  [&SI](const SwitchInst::CaseHandle &Case) {
                    return Case.getCaseSuccessor() ==
                           SI.case_begin()->getCaseSuccessor();
                  }))
    CommonSuccBB = SI.case_begin()->getCaseSuccessor();
  if (!DefaultExitBB) {
    // If we're not unswitching the default, we need it to match any cases to
    // have a common successor or if we have no cases it is the common
    // successor.
    if (SI.getNumCases() == 0)
      CommonSuccBB = SI.getDefaultDest();
    else if (SI.getDefaultDest() != CommonSuccBB)
      CommonSuccBB = nullptr;
  }

  // Split the preheader, so that we know that there is a safe place to insert
  // the switch.
  BasicBlock *OldPH = L.getLoopPreheader();
  BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU);
  OldPH->getTerminator()->eraseFromParent();

  // Now add the unswitched switch.
  auto *NewSI = SwitchInst::Create(LoopCond, NewPH, ExitCases.size(), OldPH);
  SwitchInstProfUpdateWrapper NewSIW(*NewSI);

  // Rewrite the IR for the unswitched basic blocks. This requires two steps.
  // First, we split any exit blocks with remaining in-loop predecessors. Then
  // we update the PHIs in one of two ways depending on if there was a split.
  // We walk in reverse so that we split in the same order as the cases
  // appeared. This is purely for convenience of reading the resulting IR, but
  // it doesn't cost anything really.
  SmallPtrSet<BasicBlock *, 2> UnswitchedExitBBs;
  SmallDenseMap<BasicBlock *, BasicBlock *, 2> SplitExitBBMap;
  // Handle the default exit if necessary.
  // FIXME: It'd be great if we could merge this with the loop below but LLVM's
  // ranges aren't quite powerful enough yet.
  if (DefaultExitBB) {
    if (pred_empty(DefaultExitBB)) {
      UnswitchedExitBBs.insert(DefaultExitBB);
      rewritePHINodesForUnswitchedExitBlock(*DefaultExitBB, *ParentBB, *OldPH);
    } else {
      auto *SplitBB =
          SplitBlock(DefaultExitBB, &DefaultExitBB->front(), &DT, &LI, MSSAU);
      rewritePHINodesForExitAndUnswitchedBlocks(*DefaultExitBB, *SplitBB,
                                                *ParentBB, *OldPH,
                                                /*FullUnswitch*/ true);
      DefaultExitBB = SplitExitBBMap[DefaultExitBB] = SplitBB;
    }
  }
  // Note that we must use a reference in the for loop so that we update the
  // container.
  for (auto &ExitCase : reverse(ExitCases)) {
    // Grab a reference to the exit block in the pair so that we can update it.
    BasicBlock *ExitBB = std::get<1>(ExitCase);

    // If this case is the last edge into the exit block, we can simply reuse it
    // as it will no longer be a loop exit. No mapping necessary.
    if (pred_empty(ExitBB)) {
      // Only rewrite once.
      if (UnswitchedExitBBs.insert(ExitBB).second)
        rewritePHINodesForUnswitchedExitBlock(*ExitBB, *ParentBB, *OldPH);
      continue;
    }

    // Otherwise we need to split the exit block so that we retain an exit
    // block from the loop and a target for the unswitched condition.
    BasicBlock *&SplitExitBB = SplitExitBBMap[ExitBB];
    if (!SplitExitBB) {
      // If this is the first time we see this, do the split and remember it.
      SplitExitBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU);
      rewritePHINodesForExitAndUnswitchedBlocks(*ExitBB, *SplitExitBB,
                                                *ParentBB, *OldPH,
                                                /*FullUnswitch*/ true);
    }
    // Update the case pair to point to the split block.
    std::get<1>(ExitCase) = SplitExitBB;
  }

  // Now add the unswitched cases. We do this in reverse order as we built them
  // in reverse order.
  for (auto &ExitCase : reverse(ExitCases)) {
    ConstantInt *CaseVal = std::get<0>(ExitCase);
    BasicBlock *UnswitchedBB = std::get<1>(ExitCase);

    NewSIW.addCase(CaseVal, UnswitchedBB, std::get<2>(ExitCase));
  }

  // If the default was unswitched, re-point it and add explicit cases for
  // entering the loop.
  if (DefaultExitBB) {
    NewSIW->setDefaultDest(DefaultExitBB);
    NewSIW.setSuccessorWeight(0, DefaultCaseWeight);

    // We removed all the exit cases, so we just copy the cases to the
    // unswitched switch.
    for (const auto &Case : SI.cases())
      NewSIW.addCase(Case.getCaseValue(), NewPH,
                     SIW.getSuccessorWeight(Case.getSuccessorIndex()));
  } else if (DefaultCaseWeight) {
    // We have to set branch weight of the default case.
    uint64_t SW = *DefaultCaseWeight;
    for (const auto &Case : SI.cases()) {
      auto W = SIW.getSuccessorWeight(Case.getSuccessorIndex());
      assert(W &&
             "case weight must be defined as default case weight is defined");
      SW += *W;
    }
    NewSIW.setSuccessorWeight(0, SW);
  }

  // If we ended up with a common successor for every path through the switch
  // after unswitching, rewrite it to an unconditional branch to make it easy
  // to recognize. Otherwise we potentially have to recognize the default case
  // pointing at unreachable and other complexity.
  if (CommonSuccBB) {
    BasicBlock *BB = SI.getParent();
    // We may have had multiple edges to this common successor block, so remove
    // them as predecessors. We skip the first one, either the default or the
    // actual first case.
    bool SkippedFirst = DefaultExitBB == nullptr;
    for (auto Case : SI.cases()) {
      assert(Case.getCaseSuccessor() == CommonSuccBB &&
             "Non-common successor!");
      (void)Case;
      if (!SkippedFirst) {
        SkippedFirst = true;
        continue;
      }
      CommonSuccBB->removePredecessor(BB,
                                      /*KeepOneInputPHIs*/ true);
    }
    // Now nuke the switch and replace it with a direct branch.
    SIW.eraseFromParent();
    BranchInst::Create(CommonSuccBB, BB);
  } else if (DefaultExitBB) {
    assert(SI.getNumCases() > 0 &&
           "If we had no cases we'd have a common successor!");
    // Move the last case to the default successor. This is valid as if the
    // default got unswitched it cannot be reached. This has the advantage of
    // being simple and keeping the number of edges from this switch to
    // successors the same, and avoiding any PHI update complexity.
    auto LastCaseI = std::prev(SI.case_end());

    SI.setDefaultDest(LastCaseI->getCaseSuccessor());
    SIW.setSuccessorWeight(
        0, SIW.getSuccessorWeight(LastCaseI->getSuccessorIndex()));
    SIW.removeCase(LastCaseI);
  }

  // Walk the unswitched exit blocks and the unswitched split blocks and update
  // the dominator tree based on the CFG edits. While we are walking unordered
  // containers here, the API for applyUpdates takes an unordered list of
  // updates and requires them to not contain duplicates.
  SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
  for (auto *UnswitchedExitBB : UnswitchedExitBBs) {
    DTUpdates.push_back({DT.Delete, ParentBB, UnswitchedExitBB});
    DTUpdates.push_back({DT.Insert, OldPH, UnswitchedExitBB});
  }
  for (auto SplitUnswitchedPair : SplitExitBBMap) {
    DTUpdates.push_back({DT.Delete, ParentBB, SplitUnswitchedPair.first});
    DTUpdates.push_back({DT.Insert, OldPH, SplitUnswitchedPair.second});
  }
  DT.applyUpdates(DTUpdates);

  if (MSSAU) {
    MSSAU->applyUpdates(DTUpdates, DT);
    if (VerifyMemorySSA)
      MSSAU->getMemorySSA()->verifyMemorySSA();
  }

  assert(DT.verify(DominatorTree::VerificationLevel::Fast));

  // We may have changed the nesting relationship for this loop so hoist it to
  // its correct parent if needed.
  hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU, SE);

  if (MSSAU && VerifyMemorySSA)
    MSSAU->getMemorySSA()->verifyMemorySSA();

  ++NumTrivial;
  ++NumSwitches;
  LLVM_DEBUG(dbgs() << "    done: unswitching trivial switch...\n");
  return true;
}

/// This routine scans the loop to find a branch or switch which occurs before
/// any side effects occur. These can potentially be unswitched without
/// duplicating the loop. If a branch or switch is successfully unswitched the
/// scanning continues to see if subsequent branches or switches have become
/// trivial. Once all trivial candidates have been unswitched, this routine
/// returns.
///
/// The return value indicates whether anything was unswitched (and therefore
/// changed).
///
/// If `SE` is not null, it will be updated based on the potential loop SCEVs
/// invalidated by this.
static bool unswitchAllTrivialConditions(Loop &L, DominatorTree &DT,
                                         LoopInfo &LI, ScalarEvolution *SE,
                                         MemorySSAUpdater *MSSAU) {
  bool Changed = false;

  // If loop header has only one reachable successor we should keep looking for
  // trivial condition candidates in the successor as well. An alternative is
  // to constant fold conditions and merge successors into loop header (then we
  // only need to check header's terminator). The reason for not doing this in
  // LoopUnswitch pass is that it could potentially break LoopPassManager's
  // invariants. Folding dead branches could either eliminate the current loop
  // or make other loops unreachable. LCSSA form might also not be preserved
  // after deleting branches. The following code keeps traversing loop header's
  // successors until it finds the trivial condition candidate (condition that
  // is not a constant). Since unswitching generates branches with constant
  // conditions, this scenario could be very common in practice.
  BasicBlock *CurrentBB = L.getHeader();
  SmallPtrSet<BasicBlock *, 8> Visited;
  Visited.insert(CurrentBB);
  do {
    // Check if there are any side-effecting instructions (e.g. stores, calls,
    // volatile loads) in the part of the loop that the code *would* execute
    // without unswitching.
    if (MSSAU) // Possible early exit with MSSA
      if (auto *Defs = MSSAU->getMemorySSA()->getBlockDefs(CurrentBB))
        if (!isa<MemoryPhi>(*Defs->begin()) || (++Defs->begin() != Defs->end()))
          return Changed;
    if (llvm::any_of(*CurrentBB,
                     [](Instruction &I) { return I.mayHaveSideEffects(); }))
      return Changed;

    Instruction *CurrentTerm = CurrentBB->getTerminator();

    if (auto *SI = dyn_cast<SwitchInst>(CurrentTerm)) {
      // Don't bother trying to unswitch past a switch with a constant
      // condition. This should be removed prior to running this pass by
      // simplify-cfg.
      if (isa<Constant>(SI->getCondition()))
        return Changed;

      if (!unswitchTrivialSwitch(L, *SI, DT, LI, SE, MSSAU))
        // Couldn't unswitch this one so we're done.
        return Changed;

      // Mark that we managed to unswitch something.
      Changed = true;

      // If unswitching turned the terminator into an unconditional branch then
      // we can continue. The unswitching logic specifically works to fold any
      // cases it can into an unconditional branch to make it easier to
      // recognize here.
      auto *BI = dyn_cast<BranchInst>(CurrentBB->getTerminator());
      if (!BI || BI->isConditional())
        return Changed;

      CurrentBB = BI->getSuccessor(0);
      continue;
    }

    auto *BI = dyn_cast<BranchInst>(CurrentTerm);
    if (!BI)
      // We do not understand other terminator instructions.
      return Changed;

    // Don't bother trying to unswitch past an unconditional branch or a branch
    // with a constant value. These should be removed by simplify-cfg prior to
    // running this pass.
    if (!BI->isConditional() || isa<Constant>(BI->getCondition()))
      return Changed;

    // Found a trivial condition candidate: non-foldable conditional branch. If
    // we fail to unswitch this, we can't do anything else that is trivial.
    if (!unswitchTrivialBranch(L, *BI, DT, LI, SE, MSSAU))
      return Changed;

    // Mark that we managed to unswitch something.
    Changed = true;

    // If we only unswitched some of the conditions feeding the branch, we won't
    // have collapsed it to a single successor.
    BI = cast<BranchInst>(CurrentBB->getTerminator());
    if (BI->isConditional())
      return Changed;

    // Follow the newly unconditional branch into its successor.
    CurrentBB = BI->getSuccessor(0);

    // When continuing, if we exit the loop or reach a previous visited block,
    // then we can not reach any trivial condition candidates (unfoldable
    // branch instructions or switch instructions) and no unswitch can happen.
  } while (L.contains(CurrentBB) && Visited.insert(CurrentBB).second);

  return Changed;
}

/// Build the cloned blocks for an unswitched copy of the given loop.
///
/// The cloned blocks are inserted before the loop preheader (`LoopPH`) and
/// after the split block (`SplitBB`) that will be used to select between the
/// cloned and original loop.
///
/// This routine handles cloning all of the necessary loop blocks and exit
/// blocks including rewriting their instructions and the relevant PHI nodes.
/// Any loop blocks or exit blocks which are dominated by a different successor
/// than the one for this clone of the loop blocks can be trivially skipped. We
/// use the `DominatingSucc` map to determine whether a block satisfies that
/// property with a simple map lookup.
///
/// It also correctly creates the unconditional branch in the cloned
/// unswitched parent block to only point at the unswitched successor.
///
/// This does not handle most of the necessary updates to `LoopInfo`. Only exit
/// block splitting is correctly reflected in `LoopInfo`, essentially all of
/// the cloned blocks (and their loops) are left without full `LoopInfo`
/// updates. This also doesn't fully update `DominatorTree`. It adds the cloned
/// blocks to them but doesn't create the cloned `DominatorTree` structure and
/// instead the caller must recompute an accurate DT. It *does* correctly
/// update the `AssumptionCache` provided in `AC`.
static BasicBlock *buildClonedLoopBlocks(
    Loop &L, BasicBlock *LoopPH, BasicBlock *SplitBB,
    ArrayRef<BasicBlock *> ExitBlocks, BasicBlock *ParentBB,
    BasicBlock *UnswitchedSuccBB, BasicBlock *ContinueSuccBB,
    const SmallDenseMap<BasicBlock *, BasicBlock *, 16> &DominatingSucc,
    ValueToValueMapTy &VMap,
    SmallVectorImpl<DominatorTree::UpdateType> &DTUpdates, AssumptionCache &AC,
    DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU) {
  SmallVector<BasicBlock *, 4> NewBlocks;
  NewBlocks.reserve(L.getNumBlocks() + ExitBlocks.size());

  // We will need to clone a bunch of blocks, wrap up the clone operation in
  // a helper.
  auto CloneBlock = [&](BasicBlock *OldBB) {
    // Clone the basic block and insert it before the new preheader.
    BasicBlock *NewBB = CloneBasicBlock(OldBB, VMap, ".us", OldBB->getParent());
    NewBB->moveBefore(LoopPH);

    // Record this block and the mapping.
    NewBlocks.push_back(NewBB);
    VMap[OldBB] = NewBB;

    return NewBB;
  };

  // We skip cloning blocks when they have a dominating succ that is not the
  // succ we are cloning for.
  auto SkipBlock = [&](BasicBlock *BB) {
    auto It = DominatingSucc.find(BB);
    return It != DominatingSucc.end() && It->second != UnswitchedSuccBB;
  };

  // First, clone the preheader.
  auto *ClonedPH = CloneBlock(LoopPH);

  // Then clone all the loop blocks, skipping the ones that aren't necessary.
  for (auto *LoopBB : L.blocks())
    if (!SkipBlock(LoopBB))
      CloneBlock(LoopBB);

  // Split all the loop exit edges so that when we clone the exit blocks, if
  // any of the exit blocks are *also* a preheader for some other loop, we
  // don't create multiple predecessors entering the loop header.
  for (auto *ExitBB : ExitBlocks) {
    if (SkipBlock(ExitBB))
      continue;

    // When we are going to clone an exit, we don't need to clone all the
    // instructions in the exit block and we want to ensure we have an easy
    // place to merge the CFG, so split the exit first. This is always safe to
    // do because there cannot be any non-loop predecessors of a loop exit in
    // loop simplified form.
    auto *MergeBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU);

    // Rearrange the names to make it easier to write test cases by having the
    // exit block carry the suffix rather than the merge block carrying the
    // suffix.
    MergeBB->takeName(ExitBB);
    ExitBB->setName(Twine(MergeBB->getName()) + ".split");

    // Now clone the original exit block.
    auto *ClonedExitBB = CloneBlock(ExitBB);
    assert(ClonedExitBB->getTerminator()->getNumSuccessors() == 1 &&
           "Exit block should have been split to have one successor!");
    assert(ClonedExitBB->getTerminator()->getSuccessor(0) == MergeBB &&
           "Cloned exit block has the wrong successor!");

    // Remap any cloned instructions and create a merge phi node for them.
    for (auto ZippedInsts : llvm::zip_first(
             llvm::make_range(ExitBB->begin(), std::prev(ExitBB->end())),
             llvm::make_range(ClonedExitBB->begin(),
                              std::prev(ClonedExitBB->end())))) {
      Instruction &I = std::get<0>(ZippedInsts);
      Instruction &ClonedI = std::get<1>(ZippedInsts);

      // The only instructions in the exit block should be PHI nodes and
      // potentially a landing pad.
      assert(
          (isa<PHINode>(I) || isa<LandingPadInst>(I) || isa<CatchPadInst>(I)) &&
          "Bad instruction in exit block!");
      // We should have a value map between the instruction and its clone.
      assert(VMap.lookup(&I) == &ClonedI && "Mismatch in the value map!");

      auto *MergePN =
          PHINode::Create(I.getType(), /*NumReservedValues*/ 2, ".us-phi",
                          &*MergeBB->getFirstInsertionPt());
      I.replaceAllUsesWith(MergePN);
      MergePN->addIncoming(&I, ExitBB);
      MergePN->addIncoming(&ClonedI, ClonedExitBB);
    }
  }

  // Rewrite the instructions in the cloned blocks to refer to the instructions
  // in the cloned blocks. We have to do this as a second pass so that we have
  // everything available. Also, we have inserted new instructions which may
  // include assume intrinsics, so we update the assumption cache while
  // processing this.
  for (auto *ClonedBB : NewBlocks)
    for (Instruction &I : *ClonedBB) {
      RemapInstruction(&I, VMap,
                       RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
      if (auto *II = dyn_cast<IntrinsicInst>(&I))
        if (II->getIntrinsicID() == Intrinsic::assume)
          AC.registerAssumption(II);
    }

  // Update any PHI nodes in the cloned successors of the skipped blocks to not
  // have spurious incoming values.
  for (auto *LoopBB : L.blocks())
    if (SkipBlock(LoopBB))
      for (auto *SuccBB : successors(LoopBB))
        if (auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB)))
          for (PHINode &PN : ClonedSuccBB->phis())
            PN.removeIncomingValue(LoopBB, /*DeletePHIIfEmpty*/ false);

  // Remove the cloned parent as a predecessor of any successor we ended up
  // cloning other than the unswitched one.
  auto *ClonedParentBB = cast<BasicBlock>(VMap.lookup(ParentBB));
  for (auto *SuccBB : successors(ParentBB)) {
    if (SuccBB == UnswitchedSuccBB)
      continue;

    auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB));
    if (!ClonedSuccBB)
      continue;

    ClonedSuccBB->removePredecessor(ClonedParentBB,
                                    /*KeepOneInputPHIs*/ true);
  }

  // Replace the cloned branch with an unconditional branch to the cloned
  // unswitched successor.
  auto *ClonedSuccBB = cast<BasicBlock>(VMap.lookup(UnswitchedSuccBB));
  Instruction *ClonedTerminator = ClonedParentBB->getTerminator();
  // Trivial Simplification. If Terminator is a conditional branch and
  // condition becomes dead - erase it.
  Value *ClonedConditionToErase = nullptr;
  if (auto *BI = dyn_cast<BranchInst>(ClonedTerminator))
    ClonedConditionToErase = BI->getCondition();
  else if (auto *SI = dyn_cast<SwitchInst>(ClonedTerminator))
    ClonedConditionToErase = SI->getCondition();

  ClonedTerminator->eraseFromParent();
  BranchInst::Create(ClonedSuccBB, ClonedParentBB);

  if (ClonedConditionToErase)
    RecursivelyDeleteTriviallyDeadInstructions(ClonedConditionToErase, nullptr,
                                               MSSAU);

  // If there are duplicate entries in the PHI nodes because of multiple edges
  // to the unswitched successor, we need to nuke all but one as we replaced it
  // with a direct branch.
  for (PHINode &PN : ClonedSuccBB->phis()) {
    bool Found = false;
    // Loop over the incoming operands backwards so we can easily delete as we
    // go without invalidating the index.
    for (int i = PN.getNumOperands() - 1; i >= 0; --i) {
      if (PN.getIncomingBlock(i) != ClonedParentBB)
        continue;
      if (!Found) {
        Found = true;
        continue;
      }
      PN.removeIncomingValue(i, /*DeletePHIIfEmpty*/ false);
    }
  }

  // Record the domtree updates for the new blocks.
  SmallPtrSet<BasicBlock *, 4> SuccSet;
  for (auto *ClonedBB : NewBlocks) {
    for (auto *SuccBB : successors(ClonedBB))
      if (SuccSet.insert(SuccBB).second)
        DTUpdates.push_back({DominatorTree::Insert, ClonedBB, SuccBB});
    SuccSet.clear();
  }

  return ClonedPH;
}

/// Recursively clone the specified loop and all of its children.
///
/// The target parent loop for the clone should be provided, or can be null if
/// the clone is a top-level loop. While cloning, all the blocks are mapped
/// with the provided value map. The entire original loop must be present in
/// the value map. The cloned loop is returned.
static Loop *cloneLoopNest(Loop &OrigRootL, Loop *RootParentL,
                           const ValueToValueMapTy &VMap, LoopInfo &LI) {
  auto AddClonedBlocksToLoop = [&](Loop &OrigL, Loop &ClonedL) {
    assert(ClonedL.getBlocks().empty() && "Must start with an empty loop!");
    ClonedL.reserveBlocks(OrigL.getNumBlocks());
    for (auto *BB : OrigL.blocks()) {
      auto *ClonedBB = cast<BasicBlock>(VMap.lookup(BB));
      ClonedL.addBlockEntry(ClonedBB);
      if (LI.getLoopFor(BB) == &OrigL)
        LI.changeLoopFor(ClonedBB, &ClonedL);
    }
  };

  // We specially handle the first loop because it may get cloned into
  // a different parent and because we most commonly are cloning leaf loops.
  Loop *ClonedRootL = LI.AllocateLoop();
  if (RootParentL)
    RootParentL->addChildLoop(ClonedRootL);
  else
    LI.addTopLevelLoop(ClonedRootL);
  AddClonedBlocksToLoop(OrigRootL, *ClonedRootL);

  if (OrigRootL.isInnermost())
    return ClonedRootL;

  // If we have a nest, we can quickly clone the entire loop nest using an
  // iterative approach because it is a tree. We keep the cloned parent in the
  // data structure to avoid repeatedly querying through a map to find it.
  SmallVector<std::pair<Loop *, Loop *>, 16> LoopsToClone;
  // Build up the loops to clone in reverse order as we'll clone them from the
  // back.
  for (Loop *ChildL : llvm::reverse(OrigRootL))
    LoopsToClone.push_back({ClonedRootL, ChildL});
  do {
    Loop *ClonedParentL, *L;
    std::tie(ClonedParentL, L) = LoopsToClone.pop_back_val();
    Loop *ClonedL = LI.AllocateLoop();
    ClonedParentL->addChildLoop(ClonedL);
    AddClonedBlocksToLoop(*L, *ClonedL);
    for (Loop *ChildL : llvm::reverse(*L))
      LoopsToClone.push_back({ClonedL, ChildL});
  } while (!LoopsToClone.empty());

  return ClonedRootL;
}

/// Build the cloned loops of an original loop from unswitching.
///
/// Because unswitching simplifies the CFG of the loop, this isn't a trivial
/// operation. We need to re-verify that there even is a loop (as the backedge
/// may not have been cloned), and even if there are remaining backedges the
/// backedge set may be different. However, we know that each child loop is
/// undisturbed, we only need to find where to place each child loop within
/// either any parent loop or within a cloned version of the original loop.
///
/// Because child loops may end up cloned outside of any cloned version of the
/// original loop, multiple cloned sibling loops may be created. All of them
/// are returned so that the newly introduced loop nest roots can be
/// identified.
static void buildClonedLoops(Loop &OrigL, ArrayRef<BasicBlock *> ExitBlocks,
                             const ValueToValueMapTy &VMap, LoopInfo &LI,
                             SmallVectorImpl<Loop *> &NonChildClonedLoops) {
  Loop *ClonedL = nullptr;

  auto *OrigPH = OrigL.getLoopPreheader();
  auto *OrigHeader = OrigL.getHeader();

  auto *ClonedPH = cast<BasicBlock>(VMap.lookup(OrigPH));
  auto *ClonedHeader = cast<BasicBlock>(VMap.lookup(OrigHeader));

  // We need to know the loops of the cloned exit blocks to even compute the
  // accurate parent loop. If we only clone exits to some parent of the
  // original parent, we want to clone into that outer loop. We also keep track
  // of the loops that our cloned exit blocks participate in.
  Loop *ParentL = nullptr;
  SmallVector<BasicBlock *, 4> ClonedExitsInLoops;
  SmallDenseMap<BasicBlock *, Loop *, 16> ExitLoopMap;
  ClonedExitsInLoops.reserve(ExitBlocks.size());
  for (auto *ExitBB : ExitBlocks)
    if (auto *ClonedExitBB = cast_or_null<BasicBlock>(VMap.lookup(ExitBB)))
      if (Loop *ExitL = LI.getLoopFor(ExitBB)) {
        ExitLoopMap[ClonedExitBB] = ExitL;
        ClonedExitsInLoops.push_back(ClonedExitBB);
        if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL)))
          ParentL = ExitL;
      }
  assert((!ParentL || ParentL == OrigL.getParentLoop() ||
          ParentL->contains(OrigL.getParentLoop())) &&
         "The computed parent loop should always contain (or be) the parent of "
         "the original loop.");

  // We build the set of blocks dominated by the cloned header from the set of
  // cloned blocks out of the original loop. While not all of these will
  // necessarily be in the cloned loop, it is enough to establish that they
  // aren't in unreachable cycles, etc.
  SmallSetVector<BasicBlock *, 16> ClonedLoopBlocks;
  for (auto *BB : OrigL.blocks())
    if (auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB)))
      ClonedLoopBlocks.insert(ClonedBB);

  // Rebuild the set of blocks that will end up in the cloned loop. We may have
  // skipped cloning some region of this loop which can in turn skip some of
  // the backedges so we have to rebuild the blocks in the loop based on the
  // backedges that remain after cloning.
  SmallVector<BasicBlock *, 16> Worklist;
  SmallPtrSet<BasicBlock *, 16> BlocksInClonedLoop;
  for (auto *Pred : predecessors(ClonedHeader)) {
    // The only possible non-loop header predecessor is the preheader because
    // we know we cloned the loop in simplified form.
    if (Pred == ClonedPH)
      continue;

    // Because the loop was in simplified form, the only non-loop predecessor
    // should be the preheader.
    assert(ClonedLoopBlocks.count(Pred) && "Found a predecessor of the loop "
                                           "header other than the preheader "
                                           "that is not part of the loop!");

    // Insert this block into the loop set and on the first visit (and if it
    // isn't the header we're currently walking) put it into the worklist to
    // recurse through.
    if (BlocksInClonedLoop.insert(Pred).second && Pred != ClonedHeader)
      Worklist.push_back(Pred);
  }

  // If we had any backedges then there *is* a cloned loop. Put the header into
  // the loop set and then walk the worklist backwards to find all the blocks
  // that remain within the loop after cloning.
  if (!BlocksInClonedLoop.empty()) {
    BlocksInClonedLoop.insert(ClonedHeader);

    while (!Worklist.empty()) {
      BasicBlock *BB = Worklist.pop_back_val();
      assert(BlocksInClonedLoop.count(BB) &&
             "Didn't put block into the loop set!");

      // Insert any predecessors that are in the possible set into the cloned
      // set, and if the insert is successful, add them to the worklist. Note
      // that we filter on the blocks that are definitely reachable via the
      // backedge to the loop header so we may prune out dead code within the
      // cloned loop.
      for (auto *Pred : predecessors(BB))
        if (ClonedLoopBlocks.count(Pred) &&
            BlocksInClonedLoop.insert(Pred).second)
          Worklist.push_back(Pred);
    }

    ClonedL = LI.AllocateLoop();
    if (ParentL) {
      ParentL->addBasicBlockToLoop(ClonedPH, LI);
      ParentL->addChildLoop(ClonedL);
    } else {
      LI.addTopLevelLoop(ClonedL);
    }
    NonChildClonedLoops.push_back(ClonedL);

    ClonedL->reserveBlocks(BlocksInClonedLoop.size());
    // We don't want to just add the cloned loop blocks based on how we
    // discovered them. The original order of blocks was carefully built in
    // a way that doesn't rely on predecessor ordering. Rather than re-invent
    // that logic, we just re-walk the original blocks (and those of the child
    // loops) and filter them as we add them into the cloned loop.
    for (auto *BB : OrigL.blocks()) {
      auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB));
      if (!ClonedBB || !BlocksInClonedLoop.count(ClonedBB))
        continue;

      // Directly add the blocks that are only in this loop.
      if (LI.getLoopFor(BB) == &OrigL) {
        ClonedL->addBasicBlockToLoop(ClonedBB, LI);
        continue;
      }

      // We want to manually add it to this loop and parents.
      // Registering it with LoopInfo will happen when we clone the top
      // loop for this block.
      for (Loop *PL = ClonedL; PL; PL = PL->getParentLoop())
        PL->addBlockEntry(ClonedBB);
    }

    // Now add each child loop whose header remains within the cloned loop. All
    // of the blocks within the loop must satisfy the same constraints as the
    // header so once we pass the header checks we can just clone the entire
    // child loop nest.
    for (Loop *ChildL : OrigL) {
      auto *ClonedChildHeader =
          cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader()));
      if (!ClonedChildHeader || !BlocksInClonedLoop.count(ClonedChildHeader))
        continue;

#ifndef NDEBUG
      // We should never have a cloned child loop header but fail to have
      // all of the blocks for that child loop.
      for (auto *ChildLoopBB : ChildL->blocks())
        assert(BlocksInClonedLoop.count(
                   cast<BasicBlock>(VMap.lookup(ChildLoopBB))) &&
               "Child cloned loop has a header within the cloned outer "
               "loop but not all of its blocks!");
#endif

      cloneLoopNest(*ChildL, ClonedL, VMap, LI);
    }
  }

  // Now that we've handled all the components of the original loop that were
  // cloned into a new loop, we still need to handle anything from the original
  // loop that wasn't in a cloned loop.

  // Figure out what blocks are left to place within any loop nest containing
  // the unswitched loop. If we never formed a loop, the cloned PH is one of
  // them.
  SmallPtrSet<BasicBlock *, 16> UnloopedBlockSet;
  if (BlocksInClonedLoop.empty())
    UnloopedBlockSet.insert(ClonedPH);
  for (auto *ClonedBB : ClonedLoopBlocks)
    if (!BlocksInClonedLoop.count(ClonedBB))
      UnloopedBlockSet.insert(ClonedBB);

  // Copy the cloned exits and sort them in ascending loop depth, we'll work
  // backwards across these to process them inside out. The order shouldn't
  // matter as we're just trying to build up the map from inside-out; we use
  // the map in a more stably ordered way below.
  auto OrderedClonedExitsInLoops = ClonedExitsInLoops;
  llvm::sort(OrderedClonedExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) {
    return ExitLoopMap.lookup(LHS)->getLoopDepth() <
           ExitLoopMap.lookup(RHS)->getLoopDepth();
  });

  // Populate the existing ExitLoopMap with everything reachable from each
  // exit, starting from the inner most exit.
  while (!UnloopedBlockSet.empty() && !OrderedClonedExitsInLoops.empty()) {
    assert(Worklist.empty() && "Didn't clear worklist!");

    BasicBlock *ExitBB = OrderedClonedExitsInLoops.pop_back_val();
    Loop *ExitL = ExitLoopMap.lookup(ExitBB);

    // Walk the CFG back until we hit the cloned PH adding everything reachable
    // and in the unlooped set to this exit block's loop.
    Worklist.push_back(ExitBB);
    do {
      BasicBlock *BB = Worklist.pop_back_val();
      // We can stop recursing at the cloned preheader (if we get there).
      if (BB == ClonedPH)
        continue;

      for (BasicBlock *PredBB : predecessors(BB)) {
        // If this pred has already been moved to our set or is part of some
        // (inner) loop, no update needed.
        if (!UnloopedBlockSet.erase(PredBB)) {
          assert(
              (BlocksInClonedLoop.count(PredBB) || ExitLoopMap.count(PredBB)) &&
              "Predecessor not mapped to a loop!");
          continue;
        }

        // We just insert into the loop set here. We'll add these blocks to the
        // exit loop after we build up the set in an order that doesn't rely on
        // predecessor order (which in turn relies on use list order).
        bool Inserted = ExitLoopMap.insert({PredBB, ExitL}).second;
        (void)Inserted;
        assert(Inserted && "Should only visit an unlooped block once!");

        // And recurse through to its predecessors.
        Worklist.push_back(PredBB);
      }
    } while (!Worklist.empty());
  }

  // Now that the ExitLoopMap gives as  mapping for all the non-looping cloned
  // blocks to their outer loops, walk the cloned blocks and the cloned exits
  // in their original order adding them to the correct loop.

  // We need a stable insertion order. We use the order of the original loop
  // order and map into the correct parent loop.
  for (auto *BB : llvm::concat<BasicBlock *const>(
           makeArrayRef(ClonedPH), ClonedLoopBlocks, ClonedExitsInLoops))
    if (Loop *OuterL = ExitLoopMap.lookup(BB))
      OuterL->addBasicBlockToLoop(BB, LI);

#ifndef NDEBUG
  for (auto &BBAndL : ExitLoopMap) {
    auto *BB = BBAndL.first;
    auto *OuterL = BBAndL.second;
    assert(LI.getLoopFor(BB) == OuterL &&
           "Failed to put all blocks into outer loops!");
  }
#endif

  // Now that all the blocks are placed into the correct containing loop in the
  // absence of child loops, find all the potentially cloned child loops and
  // clone them into whatever outer loop we placed their header into.
  for (Loop *ChildL : OrigL) {
    auto *ClonedChildHeader =
        cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader()));
    if (!ClonedChildHeader || BlocksInClonedLoop.count(ClonedChildHeader))
      continue;

#ifndef NDEBUG
    for (auto *ChildLoopBB : ChildL->blocks())
      assert(VMap.count(ChildLoopBB) &&
             "Cloned a child loop header but not all of that loops blocks!");
#endif

    NonChildClonedLoops.push_back(cloneLoopNest(
        *ChildL, ExitLoopMap.lookup(ClonedChildHeader), VMap, LI));
  }
}

static void
deleteDeadClonedBlocks(Loop &L, ArrayRef<BasicBlock *> ExitBlocks,
                       ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps,
                       DominatorTree &DT, MemorySSAUpdater *MSSAU) {
  // Find all the dead clones, and remove them from their successors.
  SmallVector<BasicBlock *, 16> DeadBlocks;
  for (BasicBlock *BB : llvm::concat<BasicBlock *const>(L.blocks(), ExitBlocks))
    for (auto &VMap : VMaps)
      if (BasicBlock *ClonedBB = cast_or_null<BasicBlock>(VMap->lookup(BB)))
        if (!DT.isReachableFromEntry(ClonedBB)) {
          for (BasicBlock *SuccBB : successors(ClonedBB))
            SuccBB->removePredecessor(ClonedBB);
          DeadBlocks.push_back(ClonedBB);
        }

  // Remove all MemorySSA in the dead blocks
  if (MSSAU) {
    SmallSetVector<BasicBlock *, 8> DeadBlockSet(DeadBlocks.begin(),
                                                 DeadBlocks.end());
    MSSAU->removeBlocks(DeadBlockSet);
  }

  // Drop any remaining references to break cycles.
  for (BasicBlock *BB : DeadBlocks)
    BB->dropAllReferences();
  // Erase them from the IR.
  for (BasicBlock *BB : DeadBlocks)
    BB->eraseFromParent();
}

static void deleteDeadBlocksFromLoop(Loop &L,
                                     SmallVectorImpl<BasicBlock *> &ExitBlocks,
                                     DominatorTree &DT, LoopInfo &LI,
                                     MemorySSAUpdater *MSSAU) {
  // Find all the dead blocks tied to this loop, and remove them from their
  // successors.
  SmallSetVector<BasicBlock *, 8> DeadBlockSet;

  // Start with loop/exit blocks and get a transitive closure of reachable dead
  // blocks.
  SmallVector<BasicBlock *, 16> DeathCandidates(ExitBlocks.begin(),
                                                ExitBlocks.end());
  DeathCandidates.append(L.blocks().begin(), L.blocks().end());
  while (!DeathCandidates.empty()) {
    auto *BB = DeathCandidates.pop_back_val();
    if (!DeadBlockSet.count(BB) && !DT.isReachableFromEntry(BB)) {
      for (BasicBlock *SuccBB : successors(BB)) {
        SuccBB->removePredecessor(BB);
        DeathCandidates.push_back(SuccBB);
      }
      DeadBlockSet.insert(BB);
    }
  }

  // Remove all MemorySSA in the dead blocks
  if (MSSAU)
    MSSAU->removeBlocks(DeadBlockSet);

  // Filter out the dead blocks from the exit blocks list so that it can be
  // used in the caller.
  llvm::erase_if(ExitBlocks,
                 [&](BasicBlock *BB) { return DeadBlockSet.count(BB); });

  // Walk from this loop up through its parents removing all of the dead blocks.
  for (Loop *ParentL = &L; ParentL; ParentL = ParentL->getParentLoop()) {
    for (auto *BB : DeadBlockSet)
      ParentL->getBlocksSet().erase(BB);
    llvm::erase_if(ParentL->getBlocksVector(),
                   [&](BasicBlock *BB) { return DeadBlockSet.count(BB); });
  }

  // Now delete the dead child loops. This raw delete will clear them
  // recursively.
  llvm::erase_if(L.getSubLoopsVector(), [&](Loop *ChildL) {
    if (!DeadBlockSet.count(ChildL->getHeader()))
      return false;

    assert(llvm::all_of(ChildL->blocks(),
                        [&](BasicBlock *ChildBB) {
                          return DeadBlockSet.count(ChildBB);
                        }) &&
           "If the child loop header is dead all blocks in the child loop must "
           "be dead as well!");
    LI.destroy(ChildL);
    return true;
  });

  // Remove the loop mappings for the dead blocks and drop all the references
  // from these blocks to others to handle cyclic references as we start
  // deleting the blocks themselves.
  for (auto *BB : DeadBlockSet) {
    // Check that the dominator tree has already been updated.
    assert(!DT.getNode(BB) && "Should already have cleared domtree!");
    LI.changeLoopFor(BB, nullptr);
    // Drop all uses of the instructions to make sure we won't have dangling
    // uses in other blocks.
    for (auto &I : *BB)
      if (!I.use_empty())
        I.replaceAllUsesWith(UndefValue::get(I.getType()));
    BB->dropAllReferences();
  }

  // Actually delete the blocks now that they've been fully unhooked from the
  // IR.
  for (auto *BB : DeadBlockSet)
    BB->eraseFromParent();
}

/// Recompute the set of blocks in a loop after unswitching.
///
/// This walks from the original headers predecessors to rebuild the loop. We
/// take advantage of the fact that new blocks can't have been added, and so we
/// filter by the original loop's blocks. This also handles potentially
/// unreachable code that we don't want to explore but might be found examining
/// the predecessors of the header.
///
/// If the original loop is no longer a loop, this will return an empty set. If
/// it remains a loop, all the blocks within it will be added to the set
/// (including those blocks in inner loops).
static SmallPtrSet<const BasicBlock *, 16> recomputeLoopBlockSet(Loop &L,
                                                                 LoopInfo &LI) {
  SmallPtrSet<const BasicBlock *, 16> LoopBlockSet;

  auto *PH = L.getLoopPreheader();
  auto *Header = L.getHeader();

  // A worklist to use while walking backwards from the header.
  SmallVector<BasicBlock *, 16> Worklist;

  // First walk the predecessors of the header to find the backedges. This will
  // form the basis of our walk.
  for (auto *Pred : predecessors(Header)) {
    // Skip the preheader.
    if (Pred == PH)
      continue;

    // Because the loop was in simplified form, the only non-loop predecessor
    // is the preheader.
    assert(L.contains(Pred) && "Found a predecessor of the loop header other "
                               "than the preheader that is not part of the "
                               "loop!");

    // Insert this block into the loop set and on the first visit and, if it
    // isn't the header we're currently walking, put it into the worklist to
    // recurse through.
    if (LoopBlockSet.insert(Pred).second && Pred != Header)
      Worklist.push_back(Pred);
  }

  // If no backedges were found, we're done.
  if (LoopBlockSet.empty())
    return LoopBlockSet;

  // We found backedges, recurse through them to identify the loop blocks.
  while (!Worklist.empty()) {
    BasicBlock *BB = Worklist.pop_back_val();
    assert(LoopBlockSet.count(BB) && "Didn't put block into the loop set!");

    // No need to walk past the header.
    if (BB == Header)
      continue;

    // Because we know the inner loop structure remains valid we can use the
    // loop structure to jump immediately across the entire nested loop.
    // Further, because it is in loop simplified form, we can directly jump
    // to its preheader afterward.
    if (Loop *InnerL = LI.getLoopFor(BB))
      if (InnerL != &L) {
        assert(L.contains(InnerL) &&
               "Should not reach a loop *outside* this loop!");
        // The preheader is the only possible predecessor of the loop so
        // insert it into the set and check whether it was already handled.
        auto *InnerPH = InnerL->getLoopPreheader();
        assert(L.contains(InnerPH) && "Cannot contain an inner loop block "
                                      "but not contain the inner loop "
                                      "preheader!");
        if (!LoopBlockSet.insert(InnerPH).second)
          // The only way to reach the preheader is through the loop body
          // itself so if it has been visited the loop is already handled.
          continue;

        // Insert all of the blocks (other than those already present) into
        // the loop set. We expect at least the block that led us to find the
        // inner loop to be in the block set, but we may also have other loop
        // blocks if they were already enqueued as predecessors of some other
        // outer loop block.
        for (auto *InnerBB : InnerL->blocks()) {
          if (InnerBB == BB) {
            assert(LoopBlockSet.count(InnerBB) &&
                   "Block should already be in the set!");
            continue;
          }

          LoopBlockSet.insert(InnerBB);
        }

        // Add the preheader to the worklist so we will continue past the
        // loop body.
        Worklist.push_back(InnerPH);
        continue;
      }

    // Insert any predecessors that were in the original loop into the new
    // set, and if the insert is successful, add them to the worklist.
    for (auto *Pred : predecessors(BB))
      if (L.contains(Pred) && LoopBlockSet.insert(Pred).second)
        Worklist.push_back(Pred);
  }

  assert(LoopBlockSet.count(Header) && "Cannot fail to add the header!");

  // We've found all the blocks participating in the loop, return our completed
  // set.
  return LoopBlockSet;
}

/// Rebuild a loop after unswitching removes some subset of blocks and edges.
///
/// The removal may have removed some child loops entirely but cannot have
/// disturbed any remaining child loops. However, they may need to be hoisted
/// to the parent loop (or to be top-level loops). The original loop may be
/// completely removed.
///
/// The sibling loops resulting from this update are returned. If the original
/// loop remains a valid loop, it will be the first entry in this list with all
/// of the newly sibling loops following it.
///
/// Returns true if the loop remains a loop after unswitching, and false if it
/// is no longer a loop after unswitching (and should not continue to be
/// referenced).
static bool rebuildLoopAfterUnswitch(Loop &L, ArrayRef<BasicBlock *> ExitBlocks,
                                     LoopInfo &LI,
                                     SmallVectorImpl<Loop *> &HoistedLoops) {
  auto *PH = L.getLoopPreheader();

  // Compute the actual parent loop from the exit blocks. Because we may have
  // pruned some exits the loop may be different from the original parent.
  Loop *ParentL = nullptr;
  SmallVector<Loop *, 4> ExitLoops;
  SmallVector<BasicBlock *, 4> ExitsInLoops;
  ExitsInLoops.reserve(ExitBlocks.size());
  for (auto *ExitBB : ExitBlocks)
    if (Loop *ExitL = LI.getLoopFor(ExitBB)) {
      ExitLoops.push_back(ExitL);
      ExitsInLoops.push_back(ExitBB);
      if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL)))
        ParentL = ExitL;
    }

  // Recompute the blocks participating in this loop. This may be empty if it
  // is no longer a loop.
  auto LoopBlockSet = recomputeLoopBlockSet(L, LI);

  // If we still have a loop, we need to re-set the loop's parent as the exit
  // block set changing may have moved it within the loop nest. Note that this
  // can only happen when this loop has a parent as it can only hoist the loop
  // *up* the nest.
  if (!LoopBlockSet.empty() && L.getParentLoop() != ParentL) {
    // Remove this loop's (original) blocks from all of the intervening loops.
    for (Loop *IL = L.getParentLoop(); IL != ParentL;
         IL = IL->getParentLoop()) {
      IL->getBlocksSet().erase(PH);
      for (auto *BB : L.blocks())
        IL->getBlocksSet().erase(BB);
      llvm::erase_if(IL->getBlocksVector(), [&](BasicBlock *BB) {
        return BB == PH || L.contains(BB);
      });
    }

    LI.changeLoopFor(PH, ParentL);
    L.getParentLoop()->removeChildLoop(&L);
    if (ParentL)
      ParentL->addChildLoop(&L);
    else
      LI.addTopLevelLoop(&L);
  }

  // Now we update all the blocks which are no longer within the loop.
  auto &Blocks = L.getBlocksVector();
  auto BlocksSplitI =
      LoopBlockSet.empty()
          ? Blocks.begin()
          : std::stable_partition(
                Blocks.begin(), Blocks.end(),
                [&](BasicBlock *BB) { return LoopBlockSet.count(BB); });

  // Before we erase the list of unlooped blocks, build a set of them.
  SmallPtrSet<BasicBlock *, 16> UnloopedBlocks(BlocksSplitI, Blocks.end());
  if (LoopBlockSet.empty())
    UnloopedBlocks.insert(PH);

  // Now erase these blocks from the loop.
  for (auto *BB : make_range(BlocksSplitI, Blocks.end()))
    L.getBlocksSet().erase(BB);
  Blocks.erase(BlocksSplitI, Blocks.end());

  // Sort the exits in ascending loop depth, we'll work backwards across these
  // to process them inside out.
  llvm::stable_sort(ExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) {
    return LI.getLoopDepth(LHS) < LI.getLoopDepth(RHS);
  });

  // We'll build up a set for each exit loop.
  SmallPtrSet<BasicBlock *, 16> NewExitLoopBlocks;
  Loop *PrevExitL = L.getParentLoop(); // The deepest possible exit loop.

  auto RemoveUnloopedBlocksFromLoop =
      [](Loop &L, SmallPtrSetImpl<BasicBlock *> &UnloopedBlocks) {
        for (auto *BB : UnloopedBlocks)
          L.getBlocksSet().erase(BB);
        llvm::erase_if(L.getBlocksVector(), [&](BasicBlock *BB) {
          return UnloopedBlocks.count(BB);
        });
      };

  SmallVector<BasicBlock *, 16> Worklist;
  while (!UnloopedBlocks.empty() && !ExitsInLoops.empty()) {
    assert(Worklist.empty() && "Didn't clear worklist!");
    assert(NewExitLoopBlocks.empty() && "Didn't clear loop set!");

    // Grab the next exit block, in decreasing loop depth order.
    BasicBlock *ExitBB = ExitsInLoops.pop_back_val();
    Loop &ExitL = *LI.getLoopFor(ExitBB);
    assert(ExitL.contains(&L) && "Exit loop must contain the inner loop!");

    // Erase all of the unlooped blocks from the loops between the previous
    // exit loop and this exit loop. This works because the ExitInLoops list is
    // sorted in increasing order of loop depth and thus we visit loops in
    // decreasing order of loop depth.
    for (; PrevExitL != &ExitL; PrevExitL = PrevExitL->getParentLoop())
      RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks);

    // Walk the CFG back until we hit the cloned PH adding everything reachable
    // and in the unlooped set to this exit block's loop.
    Worklist.push_back(ExitBB);
    do {
      BasicBlock *BB = Worklist.pop_back_val();
      // We can stop recursing at the cloned preheader (if we get there).
      if (BB == PH)
        continue;

      for (BasicBlock *PredBB : predecessors(BB)) {
        // If this pred has already been moved to our set or is part of some
        // (inner) loop, no update needed.
        if (!UnloopedBlocks.erase(PredBB)) {
          assert((NewExitLoopBlocks.count(PredBB) ||
                  ExitL.contains(LI.getLoopFor(PredBB))) &&
                 "Predecessor not in a nested loop (or already visited)!");
          continue;
        }

        // We just insert into the loop set here. We'll add these blocks to the
        // exit loop after we build up the set in a deterministic order rather
        // than the predecessor-influenced visit order.
        bool Inserted = NewExitLoopBlocks.insert(PredBB).second;
        (void)Inserted;
        assert(Inserted && "Should only visit an unlooped block once!");

        // And recurse through to its predecessors.
        Worklist.push_back(PredBB);
      }
    } while (!Worklist.empty());

    // If blocks in this exit loop were directly part of the original loop (as
    // opposed to a child loop) update the map to point to this exit loop. This
    // just updates a map and so the fact that the order is unstable is fine.
    for (auto *BB : NewExitLoopBlocks)
      if (Loop *BBL = LI.getLoopFor(BB))
        if (BBL == &L || !L.contains(BBL))
          LI.changeLoopFor(BB, &ExitL);

    // We will remove the remaining unlooped blocks from this loop in the next
    // iteration or below.
    NewExitLoopBlocks.clear();
  }

  // Any remaining unlooped blocks are no longer part of any loop unless they
  // are part of some child loop.
  for (; PrevExitL; PrevExitL = PrevExitL->getParentLoop())
    RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks);
  for (auto *BB : UnloopedBlocks)
    if (Loop *BBL = LI.getLoopFor(BB))
      if (BBL == &L || !L.contains(BBL))
        LI.changeLoopFor(BB, nullptr);

  // Sink all the child loops whose headers are no longer in the loop set to
  // the parent (or to be top level loops). We reach into the loop and directly
  // update its subloop vector to make this batch update efficient.
  auto &SubLoops = L.getSubLoopsVector();
  auto SubLoopsSplitI =
      LoopBlockSet.empty()
          ? SubLoops.begin()
          : std::stable_partition(
                SubLoops.begin(), SubLoops.end(), [&](Loop *SubL) {
                  return LoopBlockSet.count(SubL->getHeader());
                });
  for (auto *HoistedL : make_range(SubLoopsSplitI, SubLoops.end())) {
    HoistedLoops.push_back(HoistedL);
    HoistedL->setParentLoop(nullptr);

    // To compute the new parent of this hoisted loop we look at where we
    // placed the preheader above. We can't lookup the header itself because we
    // retained the mapping from the header to the hoisted loop. But the
    // preheader and header should have the exact same new parent computed
    // based on the set of exit blocks from the original loop as the preheader
    // is a predecessor of the header and so reached in the reverse walk. And
    // because the loops were all in simplified form the preheader of the
    // hoisted loop can't be part of some *other* loop.
    if (auto *NewParentL = LI.getLoopFor(HoistedL->getLoopPreheader()))
      NewParentL->addChildLoop(HoistedL);
    else
      LI.addTopLevelLoop(HoistedL);
  }
  SubLoops.erase(SubLoopsSplitI, SubLoops.end());

  // Actually delete the loop if nothing remained within it.
  if (Blocks.empty()) {
    assert(SubLoops.empty() &&
           "Failed to remove all subloops from the original loop!");
    if (Loop *ParentL = L.getParentLoop())
      ParentL->removeChildLoop(llvm::find(*ParentL, &L));
    else
      LI.removeLoop(llvm::find(LI, &L));
    LI.destroy(&L);
    return false;
  }

  return true;
}

/// Helper to visit a dominator subtree, invoking a callable on each node.
///
/// Returning false at any point will stop walking past that node of the tree.
template <typename CallableT>
void visitDomSubTree(DominatorTree &DT, BasicBlock *BB, CallableT Callable) {
  SmallVector<DomTreeNode *, 4> DomWorklist;
  DomWorklist.push_back(DT[BB]);
#ifndef NDEBUG
  SmallPtrSet<DomTreeNode *, 4> Visited;
  Visited.insert(DT[BB]);
#endif
  do {
    DomTreeNode *N = DomWorklist.pop_back_val();

    // Visit this node.
    if (!Callable(N->getBlock()))
      continue;

    // Accumulate the child nodes.
    for (DomTreeNode *ChildN : *N) {
      assert(Visited.insert(ChildN).second &&
             "Cannot visit a node twice when walking a tree!");
      DomWorklist.push_back(ChildN);
    }
  } while (!DomWorklist.empty());
}

static void unswitchNontrivialInvariants(
    Loop &L, Instruction &TI, ArrayRef<Value *> Invariants,
    SmallVectorImpl<BasicBlock *> &ExitBlocks, DominatorTree &DT, LoopInfo &LI,
    AssumptionCache &AC, function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB,
    ScalarEvolution *SE, MemorySSAUpdater *MSSAU) {
  auto *ParentBB = TI.getParent();
  BranchInst *BI = dyn_cast<BranchInst>(&TI);
  SwitchInst *SI = BI ? nullptr : cast<SwitchInst>(&TI);

  // We can only unswitch switches, conditional branches with an invariant
  // condition, or combining invariant conditions with an instruction.
  assert((SI || (BI && BI->isConditional())) &&
         "Can only unswitch switches and conditional branch!");
  bool FullUnswitch = SI || BI->getCondition() == Invariants[0];
  if (FullUnswitch)
    assert(Invariants.size() == 1 &&
           "Cannot have other invariants with full unswitching!");
  else
    assert(isa<Instruction>(BI->getCondition()) &&
           "Partial unswitching requires an instruction as the condition!");

  if (MSSAU && VerifyMemorySSA)
    MSSAU->getMemorySSA()->verifyMemorySSA();

  // Constant and BBs tracking the cloned and continuing successor. When we are
  // unswitching the entire condition, this can just be trivially chosen to
  // unswitch towards `true`. However, when we are unswitching a set of
  // invariants combined with `and` or `or`, the combining operation determines
  // the best direction to unswitch: we want to unswitch the direction that will
  // collapse the branch.
  bool Direction = true;
  int ClonedSucc = 0;
  if (!FullUnswitch) {
    if (cast<Instruction>(BI->getCondition())->getOpcode() != Instruction::Or) {
      assert(cast<Instruction>(BI->getCondition())->getOpcode() ==
                 Instruction::And &&
             "Only `or` and `and` instructions can combine invariants being "
             "unswitched.");
      Direction = false;
      ClonedSucc = 1;
    }
  }

  BasicBlock *RetainedSuccBB =
      BI ? BI->getSuccessor(1 - ClonedSucc) : SI->getDefaultDest();
  SmallSetVector<BasicBlock *, 4> UnswitchedSuccBBs;
  if (BI)
    UnswitchedSuccBBs.insert(BI->getSuccessor(ClonedSucc));
  else
    for (auto Case : SI->cases())
      if (Case.getCaseSuccessor() != RetainedSuccBB)
        UnswitchedSuccBBs.insert(Case.getCaseSuccessor());

  assert(!UnswitchedSuccBBs.count(RetainedSuccBB) &&
         "Should not unswitch the same successor we are retaining!");

  // The branch should be in this exact loop. Any inner loop's invariant branch
  // should be handled by unswitching that inner loop. The caller of this
  // routine should filter out any candidates that remain (but were skipped for
  // whatever reason).
  assert(LI.getLoopFor(ParentBB) == &L && "Branch in an inner loop!");

  // Compute the parent loop now before we start hacking on things.
  Loop *ParentL = L.getParentLoop();
  // Get blocks in RPO order for MSSA update, before changing the CFG.
  LoopBlocksRPO LBRPO(&L);
  if (MSSAU)
    LBRPO.perform(&LI);

  // Compute the outer-most loop containing one of our exit blocks. This is the
  // furthest up our loopnest which can be mutated, which we will use below to
  // update things.
  Loop *OuterExitL = &L;
  for (auto *ExitBB : ExitBlocks) {
    Loop *NewOuterExitL = LI.getLoopFor(ExitBB);
    if (!NewOuterExitL) {
      // We exited the entire nest with this block, so we're done.
      OuterExitL = nullptr;
      break;
    }
    if (NewOuterExitL != OuterExitL && NewOuterExitL->contains(OuterExitL))
      OuterExitL = NewOuterExitL;
  }

  // At this point, we're definitely going to unswitch something so invalidate
  // any cached information in ScalarEvolution for the outer most loop
  // containing an exit block and all nested loops.
  if (SE) {
    if (OuterExitL)
      SE->forgetLoop(OuterExitL);
    else
      SE->forgetTopmostLoop(&L);
  }

  // If the edge from this terminator to a successor dominates that successor,
  // store a map from each block in its dominator subtree to it. This lets us
  // tell when cloning for a particular successor if a block is dominated by
  // some *other* successor with a single data structure. We use this to
  // significantly reduce cloning.
  SmallDenseMap<BasicBlock *, BasicBlock *, 16> DominatingSucc;
  for (auto *SuccBB : llvm::concat<BasicBlock *const>(
           makeArrayRef(RetainedSuccBB), UnswitchedSuccBBs))
    if (SuccBB->getUniquePredecessor() ||
        llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) {
          return PredBB == ParentBB || DT.dominates(SuccBB, PredBB);
        }))
      visitDomSubTree(DT, SuccBB, [&](BasicBlock *BB) {
        DominatingSucc[BB] = SuccBB;
        return true;
      });

  // Split the preheader, so that we know that there is a safe place to insert
  // the conditional branch. We will change the preheader to have a conditional
  // branch on LoopCond. The original preheader will become the split point
  // between the unswitched versions, and we will have a new preheader for the
  // original loop.
  BasicBlock *SplitBB = L.getLoopPreheader();
  BasicBlock *LoopPH = SplitEdge(SplitBB, L.getHeader(), &DT, &LI, MSSAU);

  // Keep track of the dominator tree updates needed.
  SmallVector<DominatorTree::UpdateType, 4> DTUpdates;

  // Clone the loop for each unswitched successor.
  SmallVector<std::unique_ptr<ValueToValueMapTy>, 4> VMaps;
  VMaps.reserve(UnswitchedSuccBBs.size());
  SmallDenseMap<BasicBlock *, BasicBlock *, 4> ClonedPHs;
  for (auto *SuccBB : UnswitchedSuccBBs) {
    VMaps.emplace_back(new ValueToValueMapTy());
    ClonedPHs[SuccBB] = buildClonedLoopBlocks(
        L, LoopPH, SplitBB, ExitBlocks, ParentBB, SuccBB, RetainedSuccBB,
        DominatingSucc, *VMaps.back(), DTUpdates, AC, DT, LI, MSSAU);
  }

  // Drop metadata if we may break its semantics by moving this instr into the
  // split block.
  if (TI.getMetadata(LLVMContext::MD_make_implicit)) {
    if (DropNonTrivialImplicitNullChecks)
      // Do not spend time trying to understand if we can keep it, just drop it
      // to save compile time.
      TI.setMetadata(LLVMContext::MD_make_implicit, nullptr);
    else {
      // It is only legal to preserve make.implicit metadata if we are
      // guaranteed no reach implicit null check after following this branch.
      ICFLoopSafetyInfo SafetyInfo;
      SafetyInfo.computeLoopSafetyInfo(&L);
      if (!SafetyInfo.isGuaranteedToExecute(TI, &DT, &L))
        TI.setMetadata(LLVMContext::MD_make_implicit, nullptr);
    }
  }

  // The stitching of the branched code back together depends on whether we're
  // doing full unswitching or not with the exception that we always want to
  // nuke the initial terminator placed in the split block.
  SplitBB->getTerminator()->eraseFromParent();
  if (FullUnswitch) {
    // Splice the terminator from the original loop and rewrite its
    // successors.
    SplitBB->getInstList().splice(SplitBB->end(), ParentBB->getInstList(), TI);

    // Keep a clone of the terminator for MSSA updates.
    Instruction *NewTI = TI.clone();
    ParentBB->getInstList().push_back(NewTI);

    // First wire up the moved terminator to the preheaders.
    if (BI) {
      BasicBlock *ClonedPH = ClonedPHs.begin()->second;
      BI->setSuccessor(ClonedSucc, ClonedPH);
      BI->setSuccessor(1 - ClonedSucc, LoopPH);
      DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH});
    } else {
      assert(SI && "Must either be a branch or switch!");

      // Walk the cases and directly update their successors.
      assert(SI->getDefaultDest() == RetainedSuccBB &&
             "Not retaining default successor!");
      SI->setDefaultDest(LoopPH);
      for (auto &Case : SI->cases())
        if (Case.getCaseSuccessor() == RetainedSuccBB)
          Case.setSuccessor(LoopPH);
        else
          Case.setSuccessor(ClonedPHs.find(Case.getCaseSuccessor())->second);

      // We need to use the set to populate domtree updates as even when there
      // are multiple cases pointing at the same successor we only want to
      // remove and insert one edge in the domtree.
      for (BasicBlock *SuccBB : UnswitchedSuccBBs)
        DTUpdates.push_back(
            {DominatorTree::Insert, SplitBB, ClonedPHs.find(SuccBB)->second});
    }

    if (MSSAU) {
      DT.applyUpdates(DTUpdates);
      DTUpdates.clear();

      // Remove all but one edge to the retained block and all unswitched
      // blocks. This is to avoid having duplicate entries in the cloned Phis,
      // when we know we only keep a single edge for each case.
      MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, RetainedSuccBB);
      for (BasicBlock *SuccBB : UnswitchedSuccBBs)
        MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, SuccBB);

      for (auto &VMap : VMaps)
        MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap,
                                   /*IgnoreIncomingWithNoClones=*/true);
      MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT);

      // Remove all edges to unswitched blocks.
      for (BasicBlock *SuccBB : UnswitchedSuccBBs)
        MSSAU->removeEdge(ParentBB, SuccBB);
    }

    // Now unhook the successor relationship as we'll be replacing
    // the terminator with a direct branch. This is much simpler for branches
    // than switches so we handle those first.
    if (BI) {
      // Remove the parent as a predecessor of the unswitched successor.
      assert(UnswitchedSuccBBs.size() == 1 &&
             "Only one possible unswitched block for a branch!");
      BasicBlock *UnswitchedSuccBB = *UnswitchedSuccBBs.begin();
      UnswitchedSuccBB->removePredecessor(ParentBB,
                                          /*KeepOneInputPHIs*/ true);
      DTUpdates.push_back({DominatorTree::Delete, ParentBB, UnswitchedSuccBB});
    } else {
      // Note that we actually want to remove the parent block as a predecessor
      // of *every* case successor. The case successor is either unswitched,
      // completely eliminating an edge from the parent to that successor, or it
      // is a duplicate edge to the retained successor as the retained successor
      // is always the default successor and as we'll replace this with a direct
      // branch we no longer need the duplicate entries in the PHI nodes.
      SwitchInst *NewSI = cast<SwitchInst>(NewTI);
      assert(NewSI->getDefaultDest() == RetainedSuccBB &&
             "Not retaining default successor!");
      for (auto &Case : NewSI->cases())
        Case.getCaseSuccessor()->removePredecessor(
            ParentBB,
            /*KeepOneInputPHIs*/ true);

      // We need to use the set to populate domtree updates as even when there
      // are multiple cases pointing at the same successor we only want to
      // remove and insert one edge in the domtree.
      for (BasicBlock *SuccBB : UnswitchedSuccBBs)
        DTUpdates.push_back({DominatorTree::Delete, ParentBB, SuccBB});
    }

    // After MSSAU update, remove the cloned terminator instruction NewTI.
    ParentBB->getTerminator()->eraseFromParent();

    // Create a new unconditional branch to the continuing block (as opposed to
    // the one cloned).
    BranchInst::Create(RetainedSuccBB, ParentBB);
  } else {
    assert(BI && "Only branches have partial unswitching.");
    assert(UnswitchedSuccBBs.size() == 1 &&
           "Only one possible unswitched block for a branch!");
    BasicBlock *ClonedPH = ClonedPHs.begin()->second;
    // When doing a partial unswitch, we have to do a bit more work to build up
    // the branch in the split block.
    buildPartialUnswitchConditionalBranch(*SplitBB, Invariants, Direction,
                                          *ClonedPH, *LoopPH);
    DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH});

    if (MSSAU) {
      DT.applyUpdates(DTUpdates);
      DTUpdates.clear();

      // Perform MSSA cloning updates.
      for (auto &VMap : VMaps)
        MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap,
                                   /*IgnoreIncomingWithNoClones=*/true);
      MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT);
    }
  }

  // Apply the updates accumulated above to get an up-to-date dominator tree.
  DT.applyUpdates(DTUpdates);

  // Now that we have an accurate dominator tree, first delete the dead cloned
  // blocks so that we can accurately build any cloned loops. It is important to
  // not delete the blocks from the original loop yet because we still want to
  // reference the original loop to understand the cloned loop's structure.
  deleteDeadClonedBlocks(L, ExitBlocks, VMaps, DT, MSSAU);

  // Build the cloned loop structure itself. This may be substantially
  // different from the original structure due to the simplified CFG. This also
  // handles inserting all the cloned blocks into the correct loops.
  SmallVector<Loop *, 4> NonChildClonedLoops;
  for (std::unique_ptr<ValueToValueMapTy> &VMap : VMaps)
    buildClonedLoops(L, ExitBlocks, *VMap, LI, NonChildClonedLoops);

  // Now that our cloned loops have been built, we can update the original loop.
  // First we delete the dead blocks from it and then we rebuild the loop
  // structure taking these deletions into account.
  deleteDeadBlocksFromLoop(L, ExitBlocks, DT, LI, MSSAU);

  if (MSSAU && VerifyMemorySSA)
    MSSAU->getMemorySSA()->verifyMemorySSA();

  SmallVector<Loop *, 4> HoistedLoops;
  bool IsStillLoop = rebuildLoopAfterUnswitch(L, ExitBlocks, LI, HoistedLoops);

  if (MSSAU && VerifyMemorySSA)
    MSSAU->getMemorySSA()->verifyMemorySSA();

  // This transformation has a high risk of corrupting the dominator tree, and
  // the below steps to rebuild loop structures will result in hard to debug
  // errors in that case so verify that the dominator tree is sane first.
  // FIXME: Remove this when the bugs stop showing up and rely on existing
  // verification steps.
  assert(DT.verify(DominatorTree::VerificationLevel::Fast));

  if (BI) {
    // If we unswitched a branch which collapses the condition to a known
    // constant we want to replace all the uses of the invariants within both
    // the original and cloned blocks. We do this here so that we can use the
    // now updated dominator tree to identify which side the users are on.
    assert(UnswitchedSuccBBs.size() == 1 &&
           "Only one possible unswitched block for a branch!");
    BasicBlock *ClonedPH = ClonedPHs.begin()->second;

    // When considering multiple partially-unswitched invariants
    // we cant just go replace them with constants in both branches.
    //
    // For 'AND' we infer that true branch ("continue") means true
    // for each invariant operand.
    // For 'OR' we can infer that false branch ("continue") means false
    // for each invariant operand.
    // So it happens that for multiple-partial case we dont replace
    // in the unswitched branch.
    bool ReplaceUnswitched = FullUnswitch || (Invariants.size() == 1);

    ConstantInt *UnswitchedReplacement =
        Direction ? ConstantInt::getTrue(BI->getContext())
                  : ConstantInt::getFalse(BI->getContext());
    ConstantInt *ContinueReplacement =
        Direction ? ConstantInt::getFalse(BI->getContext())
                  : ConstantInt::getTrue(BI->getContext());
    for (Value *Invariant : Invariants)
      for (auto UI = Invariant->use_begin(), UE = Invariant->use_end();
           UI != UE;) {
        // Grab the use and walk past it so we can clobber it in the use list.
        Use *U = &*UI++;
        Instruction *UserI = dyn_cast<Instruction>(U->getUser());
        if (!UserI)
          continue;

        // Replace it with the 'continue' side if in the main loop body, and the
        // unswitched if in the cloned blocks.
        if (DT.dominates(LoopPH, UserI->getParent()))
          U->set(ContinueReplacement);
        else if (ReplaceUnswitched &&
                 DT.dominates(ClonedPH, UserI->getParent()))
          U->set(UnswitchedReplacement);
      }
  }

  // We can change which blocks are exit blocks of all the cloned sibling
  // loops, the current loop, and any parent loops which shared exit blocks
  // with the current loop. As a consequence, we need to re-form LCSSA for
  // them. But we shouldn't need to re-form LCSSA for any child loops.
  // FIXME: This could be made more efficient by tracking which exit blocks are
  // new, and focusing on them, but that isn't likely to be necessary.
  //
  // In order to reasonably rebuild LCSSA we need to walk inside-out across the
  // loop nest and update every loop that could have had its exits changed. We
  // also need to cover any intervening loops. We add all of these loops to
  // a list and sort them by loop depth to achieve this without updating
  // unnecessary loops.
  auto UpdateLoop = [&](Loop &UpdateL) {
#ifndef NDEBUG
    UpdateL.verifyLoop();
    for (Loop *ChildL : UpdateL) {
      ChildL->verifyLoop();
      assert(ChildL->isRecursivelyLCSSAForm(DT, LI) &&
             "Perturbed a child loop's LCSSA form!");
    }
#endif
    // First build LCSSA for this loop so that we can preserve it when
    // forming dedicated exits. We don't want to perturb some other loop's
    // LCSSA while doing that CFG edit.
    formLCSSA(UpdateL, DT, &LI, SE);

    // For loops reached by this loop's original exit blocks we may
    // introduced new, non-dedicated exits. At least try to re-form dedicated
    // exits for these loops. This may fail if they couldn't have dedicated
    // exits to start with.
    formDedicatedExitBlocks(&UpdateL, &DT, &LI, MSSAU, /*PreserveLCSSA*/ true);
  };

  // For non-child cloned loops and hoisted loops, we just need to update LCSSA
  // and we can do it in any order as they don't nest relative to each other.
  //
  // Also check if any of the loops we have updated have become top-level loops
  // as that will necessitate widening the outer loop scope.
  for (Loop *UpdatedL :
       llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) {
    UpdateLoop(*UpdatedL);
    if (UpdatedL->isOutermost())
      OuterExitL = nullptr;
  }
  if (IsStillLoop) {
    UpdateLoop(L);
    if (L.isOutermost())
      OuterExitL = nullptr;
  }

  // If the original loop had exit blocks, walk up through the outer most loop
  // of those exit blocks to update LCSSA and form updated dedicated exits.
  if (OuterExitL != &L)
    for (Loop *OuterL = ParentL; OuterL != OuterExitL;
         OuterL = OuterL->getParentLoop())
      UpdateLoop(*OuterL);

#ifndef NDEBUG
  // Verify the entire loop structure to catch any incorrect updates before we
  // progress in the pass pipeline.
  LI.verify(DT);
#endif

  // Now that we've unswitched something, make callbacks to report the changes.
  // For that we need to merge together the updated loops and the cloned loops
  // and check whether the original loop survived.
  SmallVector<Loop *, 4> SibLoops;
  for (Loop *UpdatedL : llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops))
    if (UpdatedL->getParentLoop() == ParentL)
      SibLoops.push_back(UpdatedL);
  UnswitchCB(IsStillLoop, SibLoops);

  if (MSSAU && VerifyMemorySSA)
    MSSAU->getMemorySSA()->verifyMemorySSA();

  if (BI)
    ++NumBranches;
  else
    ++NumSwitches;
}

/// Recursively compute the cost of a dominator subtree based on the per-block
/// cost map provided.
///
/// The recursive computation is memozied into the provided DT-indexed cost map
/// to allow querying it for most nodes in the domtree without it becoming
/// quadratic.
static int
computeDomSubtreeCost(DomTreeNode &N,
                      const SmallDenseMap<BasicBlock *, int, 4> &BBCostMap,
                      SmallDenseMap<DomTreeNode *, int, 4> &DTCostMap) {
  // Don't accumulate cost (or recurse through) blocks not in our block cost
  // map and thus not part of the duplication cost being considered.
  auto BBCostIt = BBCostMap.find(N.getBlock());
  if (BBCostIt == BBCostMap.end())
    return 0;

  // Lookup this node to see if we already computed its cost.
  auto DTCostIt = DTCostMap.find(&N);
  if (DTCostIt != DTCostMap.end())
    return DTCostIt->second;

  // If not, we have to compute it. We can't use insert above and update
  // because computing the cost may insert more things into the map.
  int Cost = std::accumulate(
      N.begin(), N.end(), BBCostIt->second, [&](int Sum, DomTreeNode *ChildN) {
        return Sum + computeDomSubtreeCost(*ChildN, BBCostMap, DTCostMap);
      });
  bool Inserted = DTCostMap.insert({&N, Cost}).second;
  (void)Inserted;
  assert(Inserted && "Should not insert a node while visiting children!");
  return Cost;
}

/// Turns a llvm.experimental.guard intrinsic into implicit control flow branch,
/// making the following replacement:
///
///   --code before guard--
///   call void (i1, ...) @llvm.experimental.guard(i1 %cond) [ "deopt"() ]
///   --code after guard--
///
/// into
///
///   --code before guard--
///   br i1 %cond, label %guarded, label %deopt
///
/// guarded:
///   --code after guard--
///
/// deopt:
///   call void (i1, ...) @llvm.experimental.guard(i1 false) [ "deopt"() ]
///   unreachable
///
/// It also makes all relevant DT and LI updates, so that all structures are in
/// valid state after this transform.
static BranchInst *
turnGuardIntoBranch(IntrinsicInst *GI, Loop &L,
                    SmallVectorImpl<BasicBlock *> &ExitBlocks,
                    DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU) {
  SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
  LLVM_DEBUG(dbgs() << "Turning " << *GI << " into a branch.\n");
  BasicBlock *CheckBB = GI->getParent();

  if (MSSAU && VerifyMemorySSA)
     MSSAU->getMemorySSA()->verifyMemorySSA();

  // Remove all CheckBB's successors from DomTree. A block can be seen among
  // successors more than once, but for DomTree it should be added only once.
  SmallPtrSet<BasicBlock *, 4> Successors;
  for (auto *Succ : successors(CheckBB))
    if (Successors.insert(Succ).second)
      DTUpdates.push_back({DominatorTree::Delete, CheckBB, Succ});

  Instruction *DeoptBlockTerm =
      SplitBlockAndInsertIfThen(GI->getArgOperand(0), GI, true);
  BranchInst *CheckBI = cast<BranchInst>(CheckBB->getTerminator());
  // SplitBlockAndInsertIfThen inserts control flow that branches to
  // DeoptBlockTerm if the condition is true.  We want the opposite.
  CheckBI->swapSuccessors();

  BasicBlock *GuardedBlock = CheckBI->getSuccessor(0);
  GuardedBlock->setName("guarded");
  CheckBI->getSuccessor(1)->setName("deopt");
  BasicBlock *DeoptBlock = CheckBI->getSuccessor(1);

  // We now have a new exit block.
  ExitBlocks.push_back(CheckBI->getSuccessor(1));

  if (MSSAU)
    MSSAU->moveAllAfterSpliceBlocks(CheckBB, GuardedBlock, GI);

  GI->moveBefore(DeoptBlockTerm);
  GI->setArgOperand(0, ConstantInt::getFalse(GI->getContext()));

  // Add new successors of CheckBB into DomTree.
  for (auto *Succ : successors(CheckBB))
    DTUpdates.push_back({DominatorTree::Insert, CheckBB, Succ});

  // Now the blocks that used to be CheckBB's successors are GuardedBlock's
  // successors.
  for (auto *Succ : Successors)
    DTUpdates.push_back({DominatorTree::Insert, GuardedBlock, Succ});

  // Make proper changes to DT.
  DT.applyUpdates(DTUpdates);
  // Inform LI of a new loop block.
  L.addBasicBlockToLoop(GuardedBlock, LI);

  if (MSSAU) {
    MemoryDef *MD = cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(GI));
    MSSAU->moveToPlace(MD, DeoptBlock, MemorySSA::BeforeTerminator);
    if (VerifyMemorySSA)
      MSSAU->getMemorySSA()->verifyMemorySSA();
  }

  ++NumGuards;
  return CheckBI;
}

/// Cost multiplier is a way to limit potentially exponential behavior
/// of loop-unswitch. Cost is multipied in proportion of 2^number of unswitch
/// candidates available. Also accounting for the number of "sibling" loops with
/// the idea to account for previous unswitches that already happened on this
/// cluster of loops. There was an attempt to keep this formula simple,
/// just enough to limit the worst case behavior. Even if it is not that simple
/// now it is still not an attempt to provide a detailed heuristic size
/// prediction.
///
/// TODO: Make a proper accounting of "explosion" effect for all kinds of
/// unswitch candidates, making adequate predictions instead of wild guesses.
/// That requires knowing not just the number of "remaining" candidates but
/// also costs of unswitching for each of these candidates.
static int CalculateUnswitchCostMultiplier(
    Instruction &TI, Loop &L, LoopInfo &LI, DominatorTree &DT,
    ArrayRef<std::pair<Instruction *, TinyPtrVector<Value *>>>
        UnswitchCandidates) {

  // Guards and other exiting conditions do not contribute to exponential
  // explosion as soon as they dominate the latch (otherwise there might be
  // another path to the latch remaining that does not allow to eliminate the
  // loop copy on unswitch).
  BasicBlock *Latch = L.getLoopLatch();
  BasicBlock *CondBlock = TI.getParent();
  if (DT.dominates(CondBlock, Latch) &&
      (isGuard(&TI) ||
       llvm::count_if(successors(&TI), [&L](BasicBlock *SuccBB) {
         return L.contains(SuccBB);
       }) <= 1)) {
    NumCostMultiplierSkipped++;
    return 1;
  }

  auto *ParentL = L.getParentLoop();
  int SiblingsCount = (ParentL ? ParentL->getSubLoopsVector().size()
                               : std::distance(LI.begin(), LI.end()));
  // Count amount of clones that all the candidates might cause during
  // unswitching. Branch/guard counts as 1, switch counts as log2 of its cases.
  int UnswitchedClones = 0;
  for (auto Candidate : UnswitchCandidates) {
    Instruction *CI = Candidate.first;
    BasicBlock *CondBlock = CI->getParent();
    bool SkipExitingSuccessors = DT.dominates(CondBlock, Latch);
    if (isGuard(CI)) {
      if (!SkipExitingSuccessors)
        UnswitchedClones++;
      continue;
    }
    int NonExitingSuccessors = llvm::count_if(
        successors(CondBlock), [SkipExitingSuccessors, &L](BasicBlock *SuccBB) {
          return !SkipExitingSuccessors || L.contains(SuccBB);
        });
    UnswitchedClones += Log2_32(NonExitingSuccessors);
  }

  // Ignore up to the "unscaled candidates" number of unswitch candidates
  // when calculating the power-of-two scaling of the cost. The main idea
  // with this control is to allow a small number of unswitches to happen
  // and rely more on siblings multiplier (see below) when the number
  // of candidates is small.
  unsigned ClonesPower =
      std::max(UnswitchedClones - (int)UnswitchNumInitialUnscaledCandidates, 0);

  // Allowing top-level loops to spread a bit more than nested ones.
  int SiblingsMultiplier =
      std::max((ParentL ? SiblingsCount
                        : SiblingsCount / (int)UnswitchSiblingsToplevelDiv),
               1);
  // Compute the cost multiplier in a way that won't overflow by saturating
  // at an upper bound.
  int CostMultiplier;
  if (ClonesPower > Log2_32(UnswitchThreshold) ||
      SiblingsMultiplier > UnswitchThreshold)
    CostMultiplier = UnswitchThreshold;
  else
    CostMultiplier = std::min(SiblingsMultiplier * (1 << ClonesPower),
                              (int)UnswitchThreshold);

  LLVM_DEBUG(dbgs() << "  Computed multiplier  " << CostMultiplier
                    << " (siblings " << SiblingsMultiplier << " * clones "
                    << (1 << ClonesPower) << ")"
                    << " for unswitch candidate: " << TI << "\n");
  return CostMultiplier;
}

static bool
unswitchBestCondition(Loop &L, DominatorTree &DT, LoopInfo &LI,
                      AssumptionCache &AC, TargetTransformInfo &TTI,
                      function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB,
                      ScalarEvolution *SE, MemorySSAUpdater *MSSAU) {
  // Collect all invariant conditions within this loop (as opposed to an inner
  // loop which would be handled when visiting that inner loop).
  SmallVector<std::pair<Instruction *, TinyPtrVector<Value *>>, 4>
      UnswitchCandidates;

  // Whether or not we should also collect guards in the loop.
  bool CollectGuards = false;
  if (UnswitchGuards) {
    auto *GuardDecl = L.getHeader()->getParent()->getParent()->getFunction(
        Intrinsic::getName(Intrinsic::experimental_guard));
    if (GuardDecl && !GuardDecl->use_empty())
      CollectGuards = true;
  }

  for (auto *BB : L.blocks()) {
    if (LI.getLoopFor(BB) != &L)
      continue;

    if (CollectGuards)
      for (auto &I : *BB)
        if (isGuard(&I)) {
          auto *Cond = cast<IntrinsicInst>(&I)->getArgOperand(0);
          // TODO: Support AND, OR conditions and partial unswitching.
          if (!isa<Constant>(Cond) && L.isLoopInvariant(Cond))
            UnswitchCandidates.push_back({&I, {Cond}});
        }

    if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
      // We can only consider fully loop-invariant switch conditions as we need
      // to completely eliminate the switch after unswitching.
      if (!isa<Constant>(SI->getCondition()) &&
          L.isLoopInvariant(SI->getCondition()) && !BB->getUniqueSuccessor())
        UnswitchCandidates.push_back({SI, {SI->getCondition()}});
      continue;
    }

    auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
    if (!BI || !BI->isConditional() || isa<Constant>(BI->getCondition()) ||
        BI->getSuccessor(0) == BI->getSuccessor(1))
      continue;

    if (L.isLoopInvariant(BI->getCondition())) {
      UnswitchCandidates.push_back({BI, {BI->getCondition()}});
      continue;
    }

    Instruction &CondI = *cast<Instruction>(BI->getCondition());
    if (CondI.getOpcode() != Instruction::And &&
      CondI.getOpcode() != Instruction::Or)
      continue;

    TinyPtrVector<Value *> Invariants =
        collectHomogenousInstGraphLoopInvariants(L, CondI, LI);
    if (Invariants.empty())
      continue;

    UnswitchCandidates.push_back({BI, std::move(Invariants)});
  }

  // If we didn't find any candidates, we're done.
  if (UnswitchCandidates.empty())
    return false;

  // Check if there are irreducible CFG cycles in this loop. If so, we cannot
  // easily unswitch non-trivial edges out of the loop. Doing so might turn the
  // irreducible control flow into reducible control flow and introduce new
  // loops "out of thin air". If we ever discover important use cases for doing
  // this, we can add support to loop unswitch, but it is a lot of complexity
  // for what seems little or no real world benefit.
  LoopBlocksRPO RPOT(&L);
  RPOT.perform(&LI);
  if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI))
    return false;

  SmallVector<BasicBlock *, 4> ExitBlocks;
  L.getUniqueExitBlocks(ExitBlocks);

  // We cannot unswitch if exit blocks contain a cleanuppad instruction as we
  // don't know how to split those exit blocks.
  // FIXME: We should teach SplitBlock to handle this and remove this
  // restriction.
  for (auto *ExitBB : ExitBlocks)
    if (isa<CleanupPadInst>(ExitBB->getFirstNonPHI())) {
      dbgs() << "Cannot unswitch because of cleanuppad in exit block\n";
      return false;
    }

  LLVM_DEBUG(
      dbgs() << "Considering " << UnswitchCandidates.size()
             << " non-trivial loop invariant conditions for unswitching.\n");

  // Given that unswitching these terminators will require duplicating parts of
  // the loop, so we need to be able to model that cost. Compute the ephemeral
  // values and set up a data structure to hold per-BB costs. We cache each
  // block's cost so that we don't recompute this when considering different
  // subsets of the loop for duplication during unswitching.
  SmallPtrSet<const Value *, 4> EphValues;
  CodeMetrics::collectEphemeralValues(&L, &AC, EphValues);
  SmallDenseMap<BasicBlock *, int, 4> BBCostMap;

  // Compute the cost of each block, as well as the total loop cost. Also, bail
  // out if we see instructions which are incompatible with loop unswitching
  // (convergent, noduplicate, or cross-basic-block tokens).
  // FIXME: We might be able to safely handle some of these in non-duplicated
  // regions.
  TargetTransformInfo::TargetCostKind CostKind =
      L.getHeader()->getParent()->hasMinSize()
      ? TargetTransformInfo::TCK_CodeSize
      : TargetTransformInfo::TCK_SizeAndLatency;
  int LoopCost = 0;
  for (auto *BB : L.blocks()) {
    int Cost = 0;
    for (auto &I : *BB) {
      if (EphValues.count(&I))
        continue;

      if (I.getType()->isTokenTy() && I.isUsedOutsideOfBlock(BB))
        return false;
      if (auto *CB = dyn_cast<CallBase>(&I))
        if (CB->isConvergent() || CB->cannotDuplicate())
          return false;

      Cost += TTI.getUserCost(&I, CostKind);
    }
    assert(Cost >= 0 && "Must not have negative costs!");
    LoopCost += Cost;
    assert(LoopCost >= 0 && "Must not have negative loop costs!");
    BBCostMap[BB] = Cost;
  }
  LLVM_DEBUG(dbgs() << "  Total loop cost: " << LoopCost << "\n");

  // Now we find the best candidate by searching for the one with the following
  // properties in order:
  //
  // 1) An unswitching cost below the threshold
  // 2) The smallest number of duplicated unswitch candidates (to avoid
  //    creating redundant subsequent unswitching)
  // 3) The smallest cost after unswitching.
  //
  // We prioritize reducing fanout of unswitch candidates provided the cost
  // remains below the threshold because this has a multiplicative effect.
  //
  // This requires memoizing each dominator subtree to avoid redundant work.
  //
  // FIXME: Need to actually do the number of candidates part above.
  SmallDenseMap<DomTreeNode *, int, 4> DTCostMap;
  // Given a terminator which might be unswitched, computes the non-duplicated
  // cost for that terminator.
  auto ComputeUnswitchedCost = [&](Instruction &TI, bool FullUnswitch) {
    BasicBlock &BB = *TI.getParent();
    SmallPtrSet<BasicBlock *, 4> Visited;

    int Cost = LoopCost;
    for (BasicBlock *SuccBB : successors(&BB)) {
      // Don't count successors more than once.
      if (!Visited.insert(SuccBB).second)
        continue;

      // If this is a partial unswitch candidate, then it must be a conditional
      // branch with a condition of either `or` or `and`. In that case, one of
      // the successors is necessarily duplicated, so don't even try to remove
      // its cost.
      if (!FullUnswitch) {
        auto &BI = cast<BranchInst>(TI);
        if (cast<Instruction>(BI.getCondition())->getOpcode() ==
            Instruction::And) {
          if (SuccBB == BI.getSuccessor(1))
            continue;
        } else {
          assert(cast<Instruction>(BI.getCondition())->getOpcode() ==
                     Instruction::Or &&
                 "Only `and` and `or` conditions can result in a partial "
                 "unswitch!");
          if (SuccBB == BI.getSuccessor(0))
            continue;
        }
      }

      // This successor's domtree will not need to be duplicated after
      // unswitching if the edge to the successor dominates it (and thus the
      // entire tree). This essentially means there is no other path into this
      // subtree and so it will end up live in only one clone of the loop.
      if (SuccBB->getUniquePredecessor() ||
          llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) {
            return PredBB == &BB || DT.dominates(SuccBB, PredBB);
          })) {
        Cost -= computeDomSubtreeCost(*DT[SuccBB], BBCostMap, DTCostMap);
        assert(Cost >= 0 &&
               "Non-duplicated cost should never exceed total loop cost!");
      }
    }

    // Now scale the cost by the number of unique successors minus one. We
    // subtract one because there is already at least one copy of the entire
    // loop. This is computing the new cost of unswitching a condition.
    // Note that guards always have 2 unique successors that are implicit and
    // will be materialized if we decide to unswitch it.
    int SuccessorsCount = isGuard(&TI) ? 2 : Visited.size();
    assert(SuccessorsCount > 1 &&
           "Cannot unswitch a condition without multiple distinct successors!");
    return Cost * (SuccessorsCount - 1);
  };
  Instruction *BestUnswitchTI = nullptr;
  int BestUnswitchCost = 0;
  ArrayRef<Value *> BestUnswitchInvariants;
  for (auto &TerminatorAndInvariants : UnswitchCandidates) {
    Instruction &TI = *TerminatorAndInvariants.first;
    ArrayRef<Value *> Invariants = TerminatorAndInvariants.second;
    BranchInst *BI = dyn_cast<BranchInst>(&TI);
    int CandidateCost = ComputeUnswitchedCost(
        TI, /*FullUnswitch*/ !BI || (Invariants.size() == 1 &&
                                     Invariants[0] == BI->getCondition()));
    // Calculate cost multiplier which is a tool to limit potentially
    // exponential behavior of loop-unswitch.
    if (EnableUnswitchCostMultiplier) {
      int CostMultiplier =
          CalculateUnswitchCostMultiplier(TI, L, LI, DT, UnswitchCandidates);
      assert(
          (CostMultiplier > 0 && CostMultiplier <= UnswitchThreshold) &&
          "cost multiplier needs to be in the range of 1..UnswitchThreshold");
      CandidateCost *= CostMultiplier;
      LLVM_DEBUG(dbgs() << "  Computed cost of " << CandidateCost
                        << " (multiplier: " << CostMultiplier << ")"
                        << " for unswitch candidate: " << TI << "\n");
    } else {
      LLVM_DEBUG(dbgs() << "  Computed cost of " << CandidateCost
                        << " for unswitch candidate: " << TI << "\n");
    }

    if (!BestUnswitchTI || CandidateCost < BestUnswitchCost) {
      BestUnswitchTI = &TI;
      BestUnswitchCost = CandidateCost;
      BestUnswitchInvariants = Invariants;
    }
  }
  assert(BestUnswitchTI && "Failed to find loop unswitch candidate");

  if (BestUnswitchCost >= UnswitchThreshold) {
    LLVM_DEBUG(dbgs() << "Cannot unswitch, lowest cost found: "
                      << BestUnswitchCost << "\n");
    return false;
  }

  // If the best candidate is a guard, turn it into a branch.
  if (isGuard(BestUnswitchTI))
    BestUnswitchTI = turnGuardIntoBranch(cast<IntrinsicInst>(BestUnswitchTI), L,
                                         ExitBlocks, DT, LI, MSSAU);

  LLVM_DEBUG(dbgs() << "  Unswitching non-trivial (cost = "
                    << BestUnswitchCost << ") terminator: " << *BestUnswitchTI
                    << "\n");
  unswitchNontrivialInvariants(L, *BestUnswitchTI, BestUnswitchInvariants,
                               ExitBlocks, DT, LI, AC, UnswitchCB, SE, MSSAU);
  return true;
}

/// Unswitch control flow predicated on loop invariant conditions.
///
/// This first hoists all branches or switches which are trivial (IE, do not
/// require duplicating any part of the loop) out of the loop body. It then
/// looks at other loop invariant control flows and tries to unswitch those as
/// well by cloning the loop if the result is small enough.
///
/// The `DT`, `LI`, `AC`, `TTI` parameters are required analyses that are also
/// updated based on the unswitch.
/// The `MSSA` analysis is also updated if valid (i.e. its use is enabled).
///
/// If either `NonTrivial` is true or the flag `EnableNonTrivialUnswitch` is
/// true, we will attempt to do non-trivial unswitching as well as trivial
/// unswitching.
///
/// The `UnswitchCB` callback provided will be run after unswitching is
/// complete, with the first parameter set to `true` if the provided loop
/// remains a loop, and a list of new sibling loops created.
///
/// If `SE` is non-null, we will update that analysis based on the unswitching
/// done.
static bool unswitchLoop(Loop &L, DominatorTree &DT, LoopInfo &LI,
                         AssumptionCache &AC, TargetTransformInfo &TTI,
                         bool NonTrivial,
                         function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB,
                         ScalarEvolution *SE, MemorySSAUpdater *MSSAU) {
  assert(L.isRecursivelyLCSSAForm(DT, LI) &&
         "Loops must be in LCSSA form before unswitching.");

  // Must be in loop simplified form: we need a preheader and dedicated exits.
  if (!L.isLoopSimplifyForm())
    return false;

  // Try trivial unswitch first before loop over other basic blocks in the loop.
  if (unswitchAllTrivialConditions(L, DT, LI, SE, MSSAU)) {
    // If we unswitched successfully we will want to clean up the loop before
    // processing it further so just mark it as unswitched and return.
    UnswitchCB(/*CurrentLoopValid*/ true, {});
    return true;
  }

  // If we're not doing non-trivial unswitching, we're done. We both accept
  // a parameter but also check a local flag that can be used for testing
  // a debugging.
  if (!NonTrivial && !EnableNonTrivialUnswitch)
    return false;

  // For non-trivial unswitching, because it often creates new loops, we rely on
  // the pass manager to iterate on the loops rather than trying to immediately
  // reach a fixed point. There is no substantial advantage to iterating
  // internally, and if any of the new loops are simplified enough to contain
  // trivial unswitching we want to prefer those.

  // Try to unswitch the best invariant condition. We prefer this full unswitch to
  // a partial unswitch when possible below the threshold.
  if (unswitchBestCondition(L, DT, LI, AC, TTI, UnswitchCB, SE, MSSAU))
    return true;

  // No other opportunities to unswitch.
  return false;
}

PreservedAnalyses SimpleLoopUnswitchPass::run(Loop &L, LoopAnalysisManager &AM,
                                              LoopStandardAnalysisResults &AR,
                                              LPMUpdater &U) {
  Function &F = *L.getHeader()->getParent();
  (void)F;

  LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << L
                    << "\n");

  // Save the current loop name in a variable so that we can report it even
  // after it has been deleted.
  std::string LoopName = std::string(L.getName());

  auto UnswitchCB = [&L, &U, &LoopName](bool CurrentLoopValid,
                                        ArrayRef<Loop *> NewLoops) {
    // If we did a non-trivial unswitch, we have added new (cloned) loops.
    if (!NewLoops.empty())
      U.addSiblingLoops(NewLoops);

    // If the current loop remains valid, we should revisit it to catch any
    // other unswitch opportunities. Otherwise, we need to mark it as deleted.
    if (CurrentLoopValid)
      U.revisitCurrentLoop();
    else
      U.markLoopAsDeleted(L, LoopName);
  };

  Optional<MemorySSAUpdater> MSSAU;
  if (AR.MSSA) {
    MSSAU = MemorySSAUpdater(AR.MSSA);
    if (VerifyMemorySSA)
      AR.MSSA->verifyMemorySSA();
  }
  if (!unswitchLoop(L, AR.DT, AR.LI, AR.AC, AR.TTI, NonTrivial, UnswitchCB,
                    &AR.SE, MSSAU.hasValue() ? MSSAU.getPointer() : nullptr))
    return PreservedAnalyses::all();

  if (AR.MSSA && VerifyMemorySSA)
    AR.MSSA->verifyMemorySSA();

  // Historically this pass has had issues with the dominator tree so verify it
  // in asserts builds.
  assert(AR.DT.verify(DominatorTree::VerificationLevel::Fast));

  auto PA = getLoopPassPreservedAnalyses();
  if (AR.MSSA)
    PA.preserve<MemorySSAAnalysis>();
  return PA;
}

namespace {

class SimpleLoopUnswitchLegacyPass : public LoopPass {
  bool NonTrivial;

public:
  static char ID; // Pass ID, replacement for typeid

  explicit SimpleLoopUnswitchLegacyPass(bool NonTrivial = false)
      : LoopPass(ID), NonTrivial(NonTrivial) {
    initializeSimpleLoopUnswitchLegacyPassPass(
        *PassRegistry::getPassRegistry());
  }

  bool runOnLoop(Loop *L, LPPassManager &LPM) override;

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<AssumptionCacheTracker>();
    AU.addRequired<TargetTransformInfoWrapperPass>();
    if (EnableMSSALoopDependency) {
      AU.addRequired<MemorySSAWrapperPass>();
      AU.addPreserved<MemorySSAWrapperPass>();
    }
    getLoopAnalysisUsage(AU);
  }
};

} // end anonymous namespace

bool SimpleLoopUnswitchLegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) {
  if (skipLoop(L))
    return false;

  Function &F = *L->getHeader()->getParent();

  LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << *L
                    << "\n");

  auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
  auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
  auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
  auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
  MemorySSA *MSSA = nullptr;
  Optional<MemorySSAUpdater> MSSAU;
  if (EnableMSSALoopDependency) {
    MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA();
    MSSAU = MemorySSAUpdater(MSSA);
  }

  auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
  auto *SE = SEWP ? &SEWP->getSE() : nullptr;

  auto UnswitchCB = [&L, &LPM](bool CurrentLoopValid,
                               ArrayRef<Loop *> NewLoops) {
    // If we did a non-trivial unswitch, we have added new (cloned) loops.
    for (auto *NewL : NewLoops)
      LPM.addLoop(*NewL);

    // If the current loop remains valid, re-add it to the queue. This is
    // a little wasteful as we'll finish processing the current loop as well,
    // but it is the best we can do in the old PM.
    if (CurrentLoopValid)
      LPM.addLoop(*L);
    else
      LPM.markLoopAsDeleted(*L);
  };

  if (MSSA && VerifyMemorySSA)
    MSSA->verifyMemorySSA();

  bool Changed = unswitchLoop(*L, DT, LI, AC, TTI, NonTrivial, UnswitchCB, SE,
                              MSSAU.hasValue() ? MSSAU.getPointer() : nullptr);

  if (MSSA && VerifyMemorySSA)
    MSSA->verifyMemorySSA();

  // Historically this pass has had issues with the dominator tree so verify it
  // in asserts builds.
  assert(DT.verify(DominatorTree::VerificationLevel::Fast));

  return Changed;
}

char SimpleLoopUnswitchLegacyPass::ID = 0;
INITIALIZE_PASS_BEGIN(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch",
                      "Simple unswitch loops", false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopPass)
INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
INITIALIZE_PASS_END(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch",
                    "Simple unswitch loops", false, false)

Pass *llvm::createSimpleLoopUnswitchLegacyPass(bool NonTrivial) {
  return new SimpleLoopUnswitchLegacyPass(NonTrivial);
}