Scalarizer.cpp 33 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974
//===- Scalarizer.cpp - Scalarize vector operations -----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass converts vector operations into scalar operations, in order
// to expose optimization opportunities on the individual scalar operations.
// It is mainly intended for targets that do not have vector units, but it
// may also be useful for revectorizing code to different vector widths.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Scalar/Scalarizer.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Analysis/VectorUtils.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstVisitor.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/Local.h"
#include <cassert>
#include <cstdint>
#include <iterator>
#include <map>
#include <utility>

using namespace llvm;

#define DEBUG_TYPE "scalarizer"

static cl::opt<bool> ScalarizeVariableInsertExtract(
    "scalarize-variable-insert-extract", cl::init(true), cl::Hidden,
    cl::desc("Allow the scalarizer pass to scalarize "
             "insertelement/extractelement with variable index"));

// This is disabled by default because having separate loads and stores
// makes it more likely that the -combiner-alias-analysis limits will be
// reached.
static cl::opt<bool>
    ScalarizeLoadStore("scalarize-load-store", cl::init(false), cl::Hidden,
                       cl::desc("Allow the scalarizer pass to scalarize loads and store"));

namespace {

// Used to store the scattered form of a vector.
using ValueVector = SmallVector<Value *, 8>;

// Used to map a vector Value to its scattered form.  We use std::map
// because we want iterators to persist across insertion and because the
// values are relatively large.
using ScatterMap = std::map<Value *, ValueVector>;

// Lists Instructions that have been replaced with scalar implementations,
// along with a pointer to their scattered forms.
using GatherList = SmallVector<std::pair<Instruction *, ValueVector *>, 16>;

// Provides a very limited vector-like interface for lazily accessing one
// component of a scattered vector or vector pointer.
class Scatterer {
public:
  Scatterer() = default;

  // Scatter V into Size components.  If new instructions are needed,
  // insert them before BBI in BB.  If Cache is nonnull, use it to cache
  // the results.
  Scatterer(BasicBlock *bb, BasicBlock::iterator bbi, Value *v,
            ValueVector *cachePtr = nullptr);

  // Return component I, creating a new Value for it if necessary.
  Value *operator[](unsigned I);

  // Return the number of components.
  unsigned size() const { return Size; }

private:
  BasicBlock *BB;
  BasicBlock::iterator BBI;
  Value *V;
  ValueVector *CachePtr;
  PointerType *PtrTy;
  ValueVector Tmp;
  unsigned Size;
};

// FCmpSpliiter(FCI)(Builder, X, Y, Name) uses Builder to create an FCmp
// called Name that compares X and Y in the same way as FCI.
struct FCmpSplitter {
  FCmpSplitter(FCmpInst &fci) : FCI(fci) {}

  Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1,
                    const Twine &Name) const {
    return Builder.CreateFCmp(FCI.getPredicate(), Op0, Op1, Name);
  }

  FCmpInst &FCI;
};

// ICmpSpliiter(ICI)(Builder, X, Y, Name) uses Builder to create an ICmp
// called Name that compares X and Y in the same way as ICI.
struct ICmpSplitter {
  ICmpSplitter(ICmpInst &ici) : ICI(ici) {}

  Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1,
                    const Twine &Name) const {
    return Builder.CreateICmp(ICI.getPredicate(), Op0, Op1, Name);
  }

  ICmpInst &ICI;
};

// UnarySpliiter(UO)(Builder, X, Name) uses Builder to create
// a unary operator like UO called Name with operand X.
struct UnarySplitter {
  UnarySplitter(UnaryOperator &uo) : UO(uo) {}

  Value *operator()(IRBuilder<> &Builder, Value *Op, const Twine &Name) const {
    return Builder.CreateUnOp(UO.getOpcode(), Op, Name);
  }

  UnaryOperator &UO;
};

// BinarySpliiter(BO)(Builder, X, Y, Name) uses Builder to create
// a binary operator like BO called Name with operands X and Y.
struct BinarySplitter {
  BinarySplitter(BinaryOperator &bo) : BO(bo) {}

  Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1,
                    const Twine &Name) const {
    return Builder.CreateBinOp(BO.getOpcode(), Op0, Op1, Name);
  }

  BinaryOperator &BO;
};

// Information about a load or store that we're scalarizing.
struct VectorLayout {
  VectorLayout() = default;

  // Return the alignment of element I.
  Align getElemAlign(unsigned I) {
    return commonAlignment(VecAlign, I * ElemSize);
  }

  // The type of the vector.
  VectorType *VecTy = nullptr;

  // The type of each element.
  Type *ElemTy = nullptr;

  // The alignment of the vector.
  Align VecAlign;

  // The size of each element.
  uint64_t ElemSize = 0;
};

class ScalarizerVisitor : public InstVisitor<ScalarizerVisitor, bool> {
public:
  ScalarizerVisitor(unsigned ParallelLoopAccessMDKind, DominatorTree *DT)
    : ParallelLoopAccessMDKind(ParallelLoopAccessMDKind), DT(DT) {
  }

  bool visit(Function &F);

  // InstVisitor methods.  They return true if the instruction was scalarized,
  // false if nothing changed.
  bool visitInstruction(Instruction &I) { return false; }
  bool visitSelectInst(SelectInst &SI);
  bool visitICmpInst(ICmpInst &ICI);
  bool visitFCmpInst(FCmpInst &FCI);
  bool visitUnaryOperator(UnaryOperator &UO);
  bool visitBinaryOperator(BinaryOperator &BO);
  bool visitGetElementPtrInst(GetElementPtrInst &GEPI);
  bool visitCastInst(CastInst &CI);
  bool visitBitCastInst(BitCastInst &BCI);
  bool visitInsertElementInst(InsertElementInst &IEI);
  bool visitExtractElementInst(ExtractElementInst &EEI);
  bool visitShuffleVectorInst(ShuffleVectorInst &SVI);
  bool visitPHINode(PHINode &PHI);
  bool visitLoadInst(LoadInst &LI);
  bool visitStoreInst(StoreInst &SI);
  bool visitCallInst(CallInst &ICI);

private:
  Scatterer scatter(Instruction *Point, Value *V);
  void gather(Instruction *Op, const ValueVector &CV);
  bool canTransferMetadata(unsigned Kind);
  void transferMetadataAndIRFlags(Instruction *Op, const ValueVector &CV);
  Optional<VectorLayout> getVectorLayout(Type *Ty, Align Alignment,
                                         const DataLayout &DL);
  bool finish();

  template<typename T> bool splitUnary(Instruction &, const T &);
  template<typename T> bool splitBinary(Instruction &, const T &);

  bool splitCall(CallInst &CI);

  ScatterMap Scattered;
  GatherList Gathered;

  SmallVector<WeakTrackingVH, 32> PotentiallyDeadInstrs;

  unsigned ParallelLoopAccessMDKind;

  DominatorTree *DT;
};

class ScalarizerLegacyPass : public FunctionPass {
public:
  static char ID;

  ScalarizerLegacyPass() : FunctionPass(ID) {
    initializeScalarizerLegacyPassPass(*PassRegistry::getPassRegistry());
  }

  bool runOnFunction(Function &F) override;

  void getAnalysisUsage(AnalysisUsage& AU) const override {
    AU.addRequired<DominatorTreeWrapperPass>();
    AU.addPreserved<DominatorTreeWrapperPass>();
  }
};

} // end anonymous namespace

char ScalarizerLegacyPass::ID = 0;
INITIALIZE_PASS_BEGIN(ScalarizerLegacyPass, "scalarizer",
                      "Scalarize vector operations", false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_END(ScalarizerLegacyPass, "scalarizer",
                    "Scalarize vector operations", false, false)

Scatterer::Scatterer(BasicBlock *bb, BasicBlock::iterator bbi, Value *v,
                     ValueVector *cachePtr)
  : BB(bb), BBI(bbi), V(v), CachePtr(cachePtr) {
  Type *Ty = V->getType();
  PtrTy = dyn_cast<PointerType>(Ty);
  if (PtrTy)
    Ty = PtrTy->getElementType();
  Size = cast<FixedVectorType>(Ty)->getNumElements();
  if (!CachePtr)
    Tmp.resize(Size, nullptr);
  else if (CachePtr->empty())
    CachePtr->resize(Size, nullptr);
  else
    assert(Size == CachePtr->size() && "Inconsistent vector sizes");
}

// Return component I, creating a new Value for it if necessary.
Value *Scatterer::operator[](unsigned I) {
  ValueVector &CV = (CachePtr ? *CachePtr : Tmp);
  // Try to reuse a previous value.
  if (CV[I])
    return CV[I];
  IRBuilder<> Builder(BB, BBI);
  if (PtrTy) {
    Type *ElTy = cast<VectorType>(PtrTy->getElementType())->getElementType();
    if (!CV[0]) {
      Type *NewPtrTy = PointerType::get(ElTy, PtrTy->getAddressSpace());
      CV[0] = Builder.CreateBitCast(V, NewPtrTy, V->getName() + ".i0");
    }
    if (I != 0)
      CV[I] = Builder.CreateConstGEP1_32(ElTy, CV[0], I,
                                         V->getName() + ".i" + Twine(I));
  } else {
    // Search through a chain of InsertElementInsts looking for element I.
    // Record other elements in the cache.  The new V is still suitable
    // for all uncached indices.
    while (true) {
      InsertElementInst *Insert = dyn_cast<InsertElementInst>(V);
      if (!Insert)
        break;
      ConstantInt *Idx = dyn_cast<ConstantInt>(Insert->getOperand(2));
      if (!Idx)
        break;
      unsigned J = Idx->getZExtValue();
      V = Insert->getOperand(0);
      if (I == J) {
        CV[J] = Insert->getOperand(1);
        return CV[J];
      } else if (!CV[J]) {
        // Only cache the first entry we find for each index we're not actively
        // searching for. This prevents us from going too far up the chain and
        // caching incorrect entries.
        CV[J] = Insert->getOperand(1);
      }
    }
    CV[I] = Builder.CreateExtractElement(V, Builder.getInt32(I),
                                         V->getName() + ".i" + Twine(I));
  }
  return CV[I];
}

bool ScalarizerLegacyPass::runOnFunction(Function &F) {
  if (skipFunction(F))
    return false;

  Module &M = *F.getParent();
  unsigned ParallelLoopAccessMDKind =
      M.getContext().getMDKindID("llvm.mem.parallel_loop_access");
  DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
  ScalarizerVisitor Impl(ParallelLoopAccessMDKind, DT);
  return Impl.visit(F);
}

FunctionPass *llvm::createScalarizerPass() {
  return new ScalarizerLegacyPass();
}

bool ScalarizerVisitor::visit(Function &F) {
  assert(Gathered.empty() && Scattered.empty());

  // To ensure we replace gathered components correctly we need to do an ordered
  // traversal of the basic blocks in the function.
  ReversePostOrderTraversal<BasicBlock *> RPOT(&F.getEntryBlock());
  for (BasicBlock *BB : RPOT) {
    for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) {
      Instruction *I = &*II;
      bool Done = InstVisitor::visit(I);
      ++II;
      if (Done && I->getType()->isVoidTy())
        I->eraseFromParent();
    }
  }
  return finish();
}

// Return a scattered form of V that can be accessed by Point.  V must be a
// vector or a pointer to a vector.
Scatterer ScalarizerVisitor::scatter(Instruction *Point, Value *V) {
  if (Argument *VArg = dyn_cast<Argument>(V)) {
    // Put the scattered form of arguments in the entry block,
    // so that it can be used everywhere.
    Function *F = VArg->getParent();
    BasicBlock *BB = &F->getEntryBlock();
    return Scatterer(BB, BB->begin(), V, &Scattered[V]);
  }
  if (Instruction *VOp = dyn_cast<Instruction>(V)) {
    // When scalarizing PHI nodes we might try to examine/rewrite InsertElement
    // nodes in predecessors. If those predecessors are unreachable from entry,
    // then the IR in those blocks could have unexpected properties resulting in
    // infinite loops in Scatterer::operator[]. By simply treating values
    // originating from instructions in unreachable blocks as undef we do not
    // need to analyse them further.
    if (!DT->isReachableFromEntry(VOp->getParent()))
      return Scatterer(Point->getParent(), Point->getIterator(),
                       UndefValue::get(V->getType()));
    // Put the scattered form of an instruction directly after the
    // instruction.
    BasicBlock *BB = VOp->getParent();
    return Scatterer(BB, std::next(BasicBlock::iterator(VOp)),
                     V, &Scattered[V]);
  }
  // In the fallback case, just put the scattered before Point and
  // keep the result local to Point.
  return Scatterer(Point->getParent(), Point->getIterator(), V);
}

// Replace Op with the gathered form of the components in CV.  Defer the
// deletion of Op and creation of the gathered form to the end of the pass,
// so that we can avoid creating the gathered form if all uses of Op are
// replaced with uses of CV.
void ScalarizerVisitor::gather(Instruction *Op, const ValueVector &CV) {
  transferMetadataAndIRFlags(Op, CV);

  // If we already have a scattered form of Op (created from ExtractElements
  // of Op itself), replace them with the new form.
  ValueVector &SV = Scattered[Op];
  if (!SV.empty()) {
    for (unsigned I = 0, E = SV.size(); I != E; ++I) {
      Value *V = SV[I];
      if (V == nullptr || SV[I] == CV[I])
        continue;

      Instruction *Old = cast<Instruction>(V);
      if (isa<Instruction>(CV[I]))
        CV[I]->takeName(Old);
      Old->replaceAllUsesWith(CV[I]);
      PotentiallyDeadInstrs.emplace_back(Old);
    }
  }
  SV = CV;
  Gathered.push_back(GatherList::value_type(Op, &SV));
}

// Return true if it is safe to transfer the given metadata tag from
// vector to scalar instructions.
bool ScalarizerVisitor::canTransferMetadata(unsigned Tag) {
  return (Tag == LLVMContext::MD_tbaa
          || Tag == LLVMContext::MD_fpmath
          || Tag == LLVMContext::MD_tbaa_struct
          || Tag == LLVMContext::MD_invariant_load
          || Tag == LLVMContext::MD_alias_scope
          || Tag == LLVMContext::MD_noalias
          || Tag == ParallelLoopAccessMDKind
          || Tag == LLVMContext::MD_access_group);
}

// Transfer metadata from Op to the instructions in CV if it is known
// to be safe to do so.
void ScalarizerVisitor::transferMetadataAndIRFlags(Instruction *Op,
                                                   const ValueVector &CV) {
  SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
  Op->getAllMetadataOtherThanDebugLoc(MDs);
  for (unsigned I = 0, E = CV.size(); I != E; ++I) {
    if (Instruction *New = dyn_cast<Instruction>(CV[I])) {
      for (const auto &MD : MDs)
        if (canTransferMetadata(MD.first))
          New->setMetadata(MD.first, MD.second);
      New->copyIRFlags(Op);
      if (Op->getDebugLoc() && !New->getDebugLoc())
        New->setDebugLoc(Op->getDebugLoc());
    }
  }
}

// Try to fill in Layout from Ty, returning true on success.  Alignment is
// the alignment of the vector, or None if the ABI default should be used.
Optional<VectorLayout>
ScalarizerVisitor::getVectorLayout(Type *Ty, Align Alignment,
                                   const DataLayout &DL) {
  VectorLayout Layout;
  // Make sure we're dealing with a vector.
  Layout.VecTy = dyn_cast<VectorType>(Ty);
  if (!Layout.VecTy)
    return None;
  // Check that we're dealing with full-byte elements.
  Layout.ElemTy = Layout.VecTy->getElementType();
  if (!DL.typeSizeEqualsStoreSize(Layout.ElemTy))
    return None;
  Layout.VecAlign = Alignment;
  Layout.ElemSize = DL.getTypeStoreSize(Layout.ElemTy);
  return Layout;
}

// Scalarize one-operand instruction I, using Split(Builder, X, Name)
// to create an instruction like I with operand X and name Name.
template<typename Splitter>
bool ScalarizerVisitor::splitUnary(Instruction &I, const Splitter &Split) {
  VectorType *VT = dyn_cast<VectorType>(I.getType());
  if (!VT)
    return false;

  unsigned NumElems = cast<FixedVectorType>(VT)->getNumElements();
  IRBuilder<> Builder(&I);
  Scatterer Op = scatter(&I, I.getOperand(0));
  assert(Op.size() == NumElems && "Mismatched unary operation");
  ValueVector Res;
  Res.resize(NumElems);
  for (unsigned Elem = 0; Elem < NumElems; ++Elem)
    Res[Elem] = Split(Builder, Op[Elem], I.getName() + ".i" + Twine(Elem));
  gather(&I, Res);
  return true;
}

// Scalarize two-operand instruction I, using Split(Builder, X, Y, Name)
// to create an instruction like I with operands X and Y and name Name.
template<typename Splitter>
bool ScalarizerVisitor::splitBinary(Instruction &I, const Splitter &Split) {
  VectorType *VT = dyn_cast<VectorType>(I.getType());
  if (!VT)
    return false;

  unsigned NumElems = cast<FixedVectorType>(VT)->getNumElements();
  IRBuilder<> Builder(&I);
  Scatterer VOp0 = scatter(&I, I.getOperand(0));
  Scatterer VOp1 = scatter(&I, I.getOperand(1));
  assert(VOp0.size() == NumElems && "Mismatched binary operation");
  assert(VOp1.size() == NumElems && "Mismatched binary operation");
  ValueVector Res;
  Res.resize(NumElems);
  for (unsigned Elem = 0; Elem < NumElems; ++Elem) {
    Value *Op0 = VOp0[Elem];
    Value *Op1 = VOp1[Elem];
    Res[Elem] = Split(Builder, Op0, Op1, I.getName() + ".i" + Twine(Elem));
  }
  gather(&I, Res);
  return true;
}

static bool isTriviallyScalariable(Intrinsic::ID ID) {
  return isTriviallyVectorizable(ID);
}

// All of the current scalarizable intrinsics only have one mangled type.
static Function *getScalarIntrinsicDeclaration(Module *M,
                                               Intrinsic::ID ID,
                                               VectorType *Ty) {
  return Intrinsic::getDeclaration(M, ID, { Ty->getScalarType() });
}

/// If a call to a vector typed intrinsic function, split into a scalar call per
/// element if possible for the intrinsic.
bool ScalarizerVisitor::splitCall(CallInst &CI) {
  VectorType *VT = dyn_cast<VectorType>(CI.getType());
  if (!VT)
    return false;

  Function *F = CI.getCalledFunction();
  if (!F)
    return false;

  Intrinsic::ID ID = F->getIntrinsicID();
  if (ID == Intrinsic::not_intrinsic || !isTriviallyScalariable(ID))
    return false;

  unsigned NumElems = cast<FixedVectorType>(VT)->getNumElements();
  unsigned NumArgs = CI.getNumArgOperands();

  ValueVector ScalarOperands(NumArgs);
  SmallVector<Scatterer, 8> Scattered(NumArgs);

  Scattered.resize(NumArgs);

  // Assumes that any vector type has the same number of elements as the return
  // vector type, which is true for all current intrinsics.
  for (unsigned I = 0; I != NumArgs; ++I) {
    Value *OpI = CI.getOperand(I);
    if (OpI->getType()->isVectorTy()) {
      Scattered[I] = scatter(&CI, OpI);
      assert(Scattered[I].size() == NumElems && "mismatched call operands");
    } else {
      ScalarOperands[I] = OpI;
    }
  }

  ValueVector Res(NumElems);
  ValueVector ScalarCallOps(NumArgs);

  Function *NewIntrin = getScalarIntrinsicDeclaration(F->getParent(), ID, VT);
  IRBuilder<> Builder(&CI);

  // Perform actual scalarization, taking care to preserve any scalar operands.
  for (unsigned Elem = 0; Elem < NumElems; ++Elem) {
    ScalarCallOps.clear();

    for (unsigned J = 0; J != NumArgs; ++J) {
      if (hasVectorInstrinsicScalarOpd(ID, J))
        ScalarCallOps.push_back(ScalarOperands[J]);
      else
        ScalarCallOps.push_back(Scattered[J][Elem]);
    }

    Res[Elem] = Builder.CreateCall(NewIntrin, ScalarCallOps,
                                   CI.getName() + ".i" + Twine(Elem));
  }

  gather(&CI, Res);
  return true;
}

bool ScalarizerVisitor::visitSelectInst(SelectInst &SI) {
  VectorType *VT = dyn_cast<VectorType>(SI.getType());
  if (!VT)
    return false;

  unsigned NumElems = cast<FixedVectorType>(VT)->getNumElements();
  IRBuilder<> Builder(&SI);
  Scatterer VOp1 = scatter(&SI, SI.getOperand(1));
  Scatterer VOp2 = scatter(&SI, SI.getOperand(2));
  assert(VOp1.size() == NumElems && "Mismatched select");
  assert(VOp2.size() == NumElems && "Mismatched select");
  ValueVector Res;
  Res.resize(NumElems);

  if (SI.getOperand(0)->getType()->isVectorTy()) {
    Scatterer VOp0 = scatter(&SI, SI.getOperand(0));
    assert(VOp0.size() == NumElems && "Mismatched select");
    for (unsigned I = 0; I < NumElems; ++I) {
      Value *Op0 = VOp0[I];
      Value *Op1 = VOp1[I];
      Value *Op2 = VOp2[I];
      Res[I] = Builder.CreateSelect(Op0, Op1, Op2,
                                    SI.getName() + ".i" + Twine(I));
    }
  } else {
    Value *Op0 = SI.getOperand(0);
    for (unsigned I = 0; I < NumElems; ++I) {
      Value *Op1 = VOp1[I];
      Value *Op2 = VOp2[I];
      Res[I] = Builder.CreateSelect(Op0, Op1, Op2,
                                    SI.getName() + ".i" + Twine(I));
    }
  }
  gather(&SI, Res);
  return true;
}

bool ScalarizerVisitor::visitICmpInst(ICmpInst &ICI) {
  return splitBinary(ICI, ICmpSplitter(ICI));
}

bool ScalarizerVisitor::visitFCmpInst(FCmpInst &FCI) {
  return splitBinary(FCI, FCmpSplitter(FCI));
}

bool ScalarizerVisitor::visitUnaryOperator(UnaryOperator &UO) {
  return splitUnary(UO, UnarySplitter(UO));
}

bool ScalarizerVisitor::visitBinaryOperator(BinaryOperator &BO) {
  return splitBinary(BO, BinarySplitter(BO));
}

bool ScalarizerVisitor::visitGetElementPtrInst(GetElementPtrInst &GEPI) {
  VectorType *VT = dyn_cast<VectorType>(GEPI.getType());
  if (!VT)
    return false;

  IRBuilder<> Builder(&GEPI);
  unsigned NumElems = cast<FixedVectorType>(VT)->getNumElements();
  unsigned NumIndices = GEPI.getNumIndices();

  // The base pointer might be scalar even if it's a vector GEP. In those cases,
  // splat the pointer into a vector value, and scatter that vector.
  Value *Op0 = GEPI.getOperand(0);
  if (!Op0->getType()->isVectorTy())
    Op0 = Builder.CreateVectorSplat(NumElems, Op0);
  Scatterer Base = scatter(&GEPI, Op0);

  SmallVector<Scatterer, 8> Ops;
  Ops.resize(NumIndices);
  for (unsigned I = 0; I < NumIndices; ++I) {
    Value *Op = GEPI.getOperand(I + 1);

    // The indices might be scalars even if it's a vector GEP. In those cases,
    // splat the scalar into a vector value, and scatter that vector.
    if (!Op->getType()->isVectorTy())
      Op = Builder.CreateVectorSplat(NumElems, Op);

    Ops[I] = scatter(&GEPI, Op);
  }

  ValueVector Res;
  Res.resize(NumElems);
  for (unsigned I = 0; I < NumElems; ++I) {
    SmallVector<Value *, 8> Indices;
    Indices.resize(NumIndices);
    for (unsigned J = 0; J < NumIndices; ++J)
      Indices[J] = Ops[J][I];
    Res[I] = Builder.CreateGEP(GEPI.getSourceElementType(), Base[I], Indices,
                               GEPI.getName() + ".i" + Twine(I));
    if (GEPI.isInBounds())
      if (GetElementPtrInst *NewGEPI = dyn_cast<GetElementPtrInst>(Res[I]))
        NewGEPI->setIsInBounds();
  }
  gather(&GEPI, Res);
  return true;
}

bool ScalarizerVisitor::visitCastInst(CastInst &CI) {
  VectorType *VT = dyn_cast<VectorType>(CI.getDestTy());
  if (!VT)
    return false;

  unsigned NumElems = cast<FixedVectorType>(VT)->getNumElements();
  IRBuilder<> Builder(&CI);
  Scatterer Op0 = scatter(&CI, CI.getOperand(0));
  assert(Op0.size() == NumElems && "Mismatched cast");
  ValueVector Res;
  Res.resize(NumElems);
  for (unsigned I = 0; I < NumElems; ++I)
    Res[I] = Builder.CreateCast(CI.getOpcode(), Op0[I], VT->getElementType(),
                                CI.getName() + ".i" + Twine(I));
  gather(&CI, Res);
  return true;
}

bool ScalarizerVisitor::visitBitCastInst(BitCastInst &BCI) {
  VectorType *DstVT = dyn_cast<VectorType>(BCI.getDestTy());
  VectorType *SrcVT = dyn_cast<VectorType>(BCI.getSrcTy());
  if (!DstVT || !SrcVT)
    return false;

  unsigned DstNumElems = cast<FixedVectorType>(DstVT)->getNumElements();
  unsigned SrcNumElems = cast<FixedVectorType>(SrcVT)->getNumElements();
  IRBuilder<> Builder(&BCI);
  Scatterer Op0 = scatter(&BCI, BCI.getOperand(0));
  ValueVector Res;
  Res.resize(DstNumElems);

  if (DstNumElems == SrcNumElems) {
    for (unsigned I = 0; I < DstNumElems; ++I)
      Res[I] = Builder.CreateBitCast(Op0[I], DstVT->getElementType(),
                                     BCI.getName() + ".i" + Twine(I));
  } else if (DstNumElems > SrcNumElems) {
    // <M x t1> -> <N*M x t2>.  Convert each t1 to <N x t2> and copy the
    // individual elements to the destination.
    unsigned FanOut = DstNumElems / SrcNumElems;
    auto *MidTy = FixedVectorType::get(DstVT->getElementType(), FanOut);
    unsigned ResI = 0;
    for (unsigned Op0I = 0; Op0I < SrcNumElems; ++Op0I) {
      Value *V = Op0[Op0I];
      Instruction *VI;
      // Look through any existing bitcasts before converting to <N x t2>.
      // In the best case, the resulting conversion might be a no-op.
      while ((VI = dyn_cast<Instruction>(V)) &&
             VI->getOpcode() == Instruction::BitCast)
        V = VI->getOperand(0);
      V = Builder.CreateBitCast(V, MidTy, V->getName() + ".cast");
      Scatterer Mid = scatter(&BCI, V);
      for (unsigned MidI = 0; MidI < FanOut; ++MidI)
        Res[ResI++] = Mid[MidI];
    }
  } else {
    // <N*M x t1> -> <M x t2>.  Convert each group of <N x t1> into a t2.
    unsigned FanIn = SrcNumElems / DstNumElems;
    auto *MidTy = FixedVectorType::get(SrcVT->getElementType(), FanIn);
    unsigned Op0I = 0;
    for (unsigned ResI = 0; ResI < DstNumElems; ++ResI) {
      Value *V = UndefValue::get(MidTy);
      for (unsigned MidI = 0; MidI < FanIn; ++MidI)
        V = Builder.CreateInsertElement(V, Op0[Op0I++], Builder.getInt32(MidI),
                                        BCI.getName() + ".i" + Twine(ResI)
                                        + ".upto" + Twine(MidI));
      Res[ResI] = Builder.CreateBitCast(V, DstVT->getElementType(),
                                        BCI.getName() + ".i" + Twine(ResI));
    }
  }
  gather(&BCI, Res);
  return true;
}

bool ScalarizerVisitor::visitInsertElementInst(InsertElementInst &IEI) {
  VectorType *VT = dyn_cast<VectorType>(IEI.getType());
  if (!VT)
    return false;

  unsigned NumElems = cast<FixedVectorType>(VT)->getNumElements();
  IRBuilder<> Builder(&IEI);
  Scatterer Op0 = scatter(&IEI, IEI.getOperand(0));
  Value *NewElt = IEI.getOperand(1);
  Value *InsIdx = IEI.getOperand(2);

  ValueVector Res;
  Res.resize(NumElems);

  if (auto *CI = dyn_cast<ConstantInt>(InsIdx)) {
    for (unsigned I = 0; I < NumElems; ++I)
      Res[I] = CI->getValue().getZExtValue() == I ? NewElt : Op0[I];
  } else {
    if (!ScalarizeVariableInsertExtract)
      return false;

    for (unsigned I = 0; I < NumElems; ++I) {
      Value *ShouldReplace =
          Builder.CreateICmpEQ(InsIdx, ConstantInt::get(InsIdx->getType(), I),
                               InsIdx->getName() + ".is." + Twine(I));
      Value *OldElt = Op0[I];
      Res[I] = Builder.CreateSelect(ShouldReplace, NewElt, OldElt,
                                    IEI.getName() + ".i" + Twine(I));
    }
  }

  gather(&IEI, Res);
  return true;
}

bool ScalarizerVisitor::visitExtractElementInst(ExtractElementInst &EEI) {
  VectorType *VT = dyn_cast<VectorType>(EEI.getOperand(0)->getType());
  if (!VT)
    return false;

  unsigned NumSrcElems = cast<FixedVectorType>(VT)->getNumElements();
  IRBuilder<> Builder(&EEI);
  Scatterer Op0 = scatter(&EEI, EEI.getOperand(0));
  Value *ExtIdx = EEI.getOperand(1);

  if (auto *CI = dyn_cast<ConstantInt>(ExtIdx)) {
    Value *Res = Op0[CI->getValue().getZExtValue()];
    gather(&EEI, {Res});
    return true;
  }

  if (!ScalarizeVariableInsertExtract)
    return false;

  Value *Res = UndefValue::get(VT->getElementType());
  for (unsigned I = 0; I < NumSrcElems; ++I) {
    Value *ShouldExtract =
        Builder.CreateICmpEQ(ExtIdx, ConstantInt::get(ExtIdx->getType(), I),
                             ExtIdx->getName() + ".is." + Twine(I));
    Value *Elt = Op0[I];
    Res = Builder.CreateSelect(ShouldExtract, Elt, Res,
                               EEI.getName() + ".upto" + Twine(I));
  }
  gather(&EEI, {Res});
  return true;
}

bool ScalarizerVisitor::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
  VectorType *VT = dyn_cast<VectorType>(SVI.getType());
  if (!VT)
    return false;

  unsigned NumElems = cast<FixedVectorType>(VT)->getNumElements();
  Scatterer Op0 = scatter(&SVI, SVI.getOperand(0));
  Scatterer Op1 = scatter(&SVI, SVI.getOperand(1));
  ValueVector Res;
  Res.resize(NumElems);

  for (unsigned I = 0; I < NumElems; ++I) {
    int Selector = SVI.getMaskValue(I);
    if (Selector < 0)
      Res[I] = UndefValue::get(VT->getElementType());
    else if (unsigned(Selector) < Op0.size())
      Res[I] = Op0[Selector];
    else
      Res[I] = Op1[Selector - Op0.size()];
  }
  gather(&SVI, Res);
  return true;
}

bool ScalarizerVisitor::visitPHINode(PHINode &PHI) {
  VectorType *VT = dyn_cast<VectorType>(PHI.getType());
  if (!VT)
    return false;

  unsigned NumElems = cast<FixedVectorType>(VT)->getNumElements();
  IRBuilder<> Builder(&PHI);
  ValueVector Res;
  Res.resize(NumElems);

  unsigned NumOps = PHI.getNumOperands();
  for (unsigned I = 0; I < NumElems; ++I)
    Res[I] = Builder.CreatePHI(VT->getElementType(), NumOps,
                               PHI.getName() + ".i" + Twine(I));

  for (unsigned I = 0; I < NumOps; ++I) {
    Scatterer Op = scatter(&PHI, PHI.getIncomingValue(I));
    BasicBlock *IncomingBlock = PHI.getIncomingBlock(I);
    for (unsigned J = 0; J < NumElems; ++J)
      cast<PHINode>(Res[J])->addIncoming(Op[J], IncomingBlock);
  }
  gather(&PHI, Res);
  return true;
}

bool ScalarizerVisitor::visitLoadInst(LoadInst &LI) {
  if (!ScalarizeLoadStore)
    return false;
  if (!LI.isSimple())
    return false;

  Optional<VectorLayout> Layout = getVectorLayout(
      LI.getType(), LI.getAlign(), LI.getModule()->getDataLayout());
  if (!Layout)
    return false;

  unsigned NumElems = cast<FixedVectorType>(Layout->VecTy)->getNumElements();
  IRBuilder<> Builder(&LI);
  Scatterer Ptr = scatter(&LI, LI.getPointerOperand());
  ValueVector Res;
  Res.resize(NumElems);

  for (unsigned I = 0; I < NumElems; ++I)
    Res[I] = Builder.CreateAlignedLoad(Layout->VecTy->getElementType(), Ptr[I],
                                       Align(Layout->getElemAlign(I)),
                                       LI.getName() + ".i" + Twine(I));
  gather(&LI, Res);
  return true;
}

bool ScalarizerVisitor::visitStoreInst(StoreInst &SI) {
  if (!ScalarizeLoadStore)
    return false;
  if (!SI.isSimple())
    return false;

  Value *FullValue = SI.getValueOperand();
  Optional<VectorLayout> Layout = getVectorLayout(
      FullValue->getType(), SI.getAlign(), SI.getModule()->getDataLayout());
  if (!Layout)
    return false;

  unsigned NumElems = cast<FixedVectorType>(Layout->VecTy)->getNumElements();
  IRBuilder<> Builder(&SI);
  Scatterer VPtr = scatter(&SI, SI.getPointerOperand());
  Scatterer VVal = scatter(&SI, FullValue);

  ValueVector Stores;
  Stores.resize(NumElems);
  for (unsigned I = 0; I < NumElems; ++I) {
    Value *Val = VVal[I];
    Value *Ptr = VPtr[I];
    Stores[I] = Builder.CreateAlignedStore(Val, Ptr, Layout->getElemAlign(I));
  }
  transferMetadataAndIRFlags(&SI, Stores);
  return true;
}

bool ScalarizerVisitor::visitCallInst(CallInst &CI) {
  return splitCall(CI);
}

// Delete the instructions that we scalarized.  If a full vector result
// is still needed, recreate it using InsertElements.
bool ScalarizerVisitor::finish() {
  // The presence of data in Gathered or Scattered indicates changes
  // made to the Function.
  if (Gathered.empty() && Scattered.empty())
    return false;
  for (const auto &GMI : Gathered) {
    Instruction *Op = GMI.first;
    ValueVector &CV = *GMI.second;
    if (!Op->use_empty()) {
      // The value is still needed, so recreate it using a series of
      // InsertElements.
      Value *Res = UndefValue::get(Op->getType());
      if (auto *Ty = dyn_cast<VectorType>(Op->getType())) {
        BasicBlock *BB = Op->getParent();
        unsigned Count = cast<FixedVectorType>(Ty)->getNumElements();
        IRBuilder<> Builder(Op);
        if (isa<PHINode>(Op))
          Builder.SetInsertPoint(BB, BB->getFirstInsertionPt());
        for (unsigned I = 0; I < Count; ++I)
          Res = Builder.CreateInsertElement(Res, CV[I], Builder.getInt32(I),
                                            Op->getName() + ".upto" + Twine(I));
        Res->takeName(Op);
      } else {
        assert(CV.size() == 1 && Op->getType() == CV[0]->getType());
        Res = CV[0];
        if (Op == Res)
          continue;
      }
      Op->replaceAllUsesWith(Res);
    }
    PotentiallyDeadInstrs.emplace_back(Op);
  }
  Gathered.clear();
  Scattered.clear();

  RecursivelyDeleteTriviallyDeadInstructionsPermissive(PotentiallyDeadInstrs);

  return true;
}

PreservedAnalyses ScalarizerPass::run(Function &F, FunctionAnalysisManager &AM) {
  Module &M = *F.getParent();
  unsigned ParallelLoopAccessMDKind =
      M.getContext().getMDKindID("llvm.mem.parallel_loop_access");
  DominatorTree *DT = &AM.getResult<DominatorTreeAnalysis>(F);
  ScalarizerVisitor Impl(ParallelLoopAccessMDKind, DT);
  bool Changed = Impl.visit(F);
  PreservedAnalyses PA;
  PA.preserve<DominatorTreeAnalysis>();
  return Changed ? PA : PreservedAnalyses::all();
}