MergeICmps.cpp 35.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946
//===- MergeICmps.cpp - Optimize chains of integer comparisons ------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass turns chains of integer comparisons into memcmp (the memcmp is
// later typically inlined as a chain of efficient hardware comparisons). This
// typically benefits c++ member or nonmember operator==().
//
// The basic idea is to replace a longer chain of integer comparisons loaded
// from contiguous memory locations into a shorter chain of larger integer
// comparisons. Benefits are double:
//  - There are less jumps, and therefore less opportunities for mispredictions
//    and I-cache misses.
//  - Code size is smaller, both because jumps are removed and because the
//    encoding of a 2*n byte compare is smaller than that of two n-byte
//    compares.
//
// Example:
//
//  struct S {
//    int a;
//    char b;
//    char c;
//    uint16_t d;
//    bool operator==(const S& o) const {
//      return a == o.a && b == o.b && c == o.c && d == o.d;
//    }
//  };
//
//  Is optimized as :
//
//    bool S::operator==(const S& o) const {
//      return memcmp(this, &o, 8) == 0;
//    }
//
//  Which will later be expanded (ExpandMemCmp) as a single 8-bytes icmp.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Scalar/MergeICmps.h"
#include "llvm/Analysis/DomTreeUpdater.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/Loads.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/BuildLibCalls.h"
#include <algorithm>
#include <numeric>
#include <utility>
#include <vector>

using namespace llvm;

namespace {

#define DEBUG_TYPE "mergeicmps"

// Returns true if the instruction is a simple load or a simple store
static bool isSimpleLoadOrStore(const Instruction *I) {
  if (const LoadInst *LI = dyn_cast<LoadInst>(I))
    return LI->isSimple();
  if (const StoreInst *SI = dyn_cast<StoreInst>(I))
    return SI->isSimple();
  return false;
}

// A BCE atom "Binary Compare Expression Atom" represents an integer load
// that is a constant offset from a base value, e.g. `a` or `o.c` in the example
// at the top.
struct BCEAtom {
  BCEAtom() = default;
  BCEAtom(GetElementPtrInst *GEP, LoadInst *LoadI, int BaseId, APInt Offset)
      : GEP(GEP), LoadI(LoadI), BaseId(BaseId), Offset(Offset) {}

  BCEAtom(const BCEAtom &) = delete;
  BCEAtom &operator=(const BCEAtom &) = delete;

  BCEAtom(BCEAtom &&that) = default;
  BCEAtom &operator=(BCEAtom &&that) {
    if (this == &that)
      return *this;
    GEP = that.GEP;
    LoadI = that.LoadI;
    BaseId = that.BaseId;
    Offset = std::move(that.Offset);
    return *this;
  }

  // We want to order BCEAtoms by (Base, Offset). However we cannot use
  // the pointer values for Base because these are non-deterministic.
  // To make sure that the sort order is stable, we first assign to each atom
  // base value an index based on its order of appearance in the chain of
  // comparisons. We call this index `BaseOrdering`. For example, for:
  //    b[3] == c[2] && a[1] == d[1] && b[4] == c[3]
  //    |  block 1 |    |  block 2 |    |  block 3 |
  // b gets assigned index 0 and a index 1, because b appears as LHS in block 1,
  // which is before block 2.
  // We then sort by (BaseOrdering[LHS.Base()], LHS.Offset), which is stable.
  bool operator<(const BCEAtom &O) const {
    return BaseId != O.BaseId ? BaseId < O.BaseId : Offset.slt(O.Offset);
  }

  GetElementPtrInst *GEP = nullptr;
  LoadInst *LoadI = nullptr;
  unsigned BaseId = 0;
  APInt Offset;
};

// A class that assigns increasing ids to values in the order in which they are
// seen. See comment in `BCEAtom::operator<()``.
class BaseIdentifier {
public:
  // Returns the id for value `Base`, after assigning one if `Base` has not been
  // seen before.
  int getBaseId(const Value *Base) {
    assert(Base && "invalid base");
    const auto Insertion = BaseToIndex.try_emplace(Base, Order);
    if (Insertion.second)
      ++Order;
    return Insertion.first->second;
  }

private:
  unsigned Order = 1;
  DenseMap<const Value*, int> BaseToIndex;
};

// If this value is a load from a constant offset w.r.t. a base address, and
// there are no other users of the load or address, returns the base address and
// the offset.
BCEAtom visitICmpLoadOperand(Value *const Val, BaseIdentifier &BaseId) {
  auto *const LoadI = dyn_cast<LoadInst>(Val);
  if (!LoadI)
    return {};
  LLVM_DEBUG(dbgs() << "load\n");
  if (LoadI->isUsedOutsideOfBlock(LoadI->getParent())) {
    LLVM_DEBUG(dbgs() << "used outside of block\n");
    return {};
  }
  // Do not optimize atomic loads to non-atomic memcmp
  if (!LoadI->isSimple()) {
    LLVM_DEBUG(dbgs() << "volatile or atomic\n");
    return {};
  }
  Value *const Addr = LoadI->getOperand(0);
  auto *const GEP = dyn_cast<GetElementPtrInst>(Addr);
  if (!GEP)
    return {};
  LLVM_DEBUG(dbgs() << "GEP\n");
  if (GEP->isUsedOutsideOfBlock(LoadI->getParent())) {
    LLVM_DEBUG(dbgs() << "used outside of block\n");
    return {};
  }
  const auto &DL = GEP->getModule()->getDataLayout();
  if (!isDereferenceablePointer(GEP, LoadI->getType(), DL)) {
    LLVM_DEBUG(dbgs() << "not dereferenceable\n");
    // We need to make sure that we can do comparison in any order, so we
    // require memory to be unconditionnally dereferencable.
    return {};
  }
  APInt Offset = APInt(DL.getPointerTypeSizeInBits(GEP->getType()), 0);
  if (!GEP->accumulateConstantOffset(DL, Offset))
    return {};
  return BCEAtom(GEP, LoadI, BaseId.getBaseId(GEP->getPointerOperand()),
                 Offset);
}

// A basic block with a comparison between two BCE atoms, e.g. `a == o.a` in the
// example at the top.
// The block might do extra work besides the atom comparison, in which case
// doesOtherWork() returns true. Under some conditions, the block can be
// split into the atom comparison part and the "other work" part
// (see canSplit()).
// Note: the terminology is misleading: the comparison is symmetric, so there
// is no real {l/r}hs. What we want though is to have the same base on the
// left (resp. right), so that we can detect consecutive loads. To ensure this
// we put the smallest atom on the left.
class BCECmpBlock {
 public:
  BCECmpBlock() {}

  BCECmpBlock(BCEAtom L, BCEAtom R, int SizeBits)
      : Lhs_(std::move(L)), Rhs_(std::move(R)), SizeBits_(SizeBits) {
    if (Rhs_ < Lhs_) std::swap(Rhs_, Lhs_);
  }

  bool IsValid() const { return Lhs_.BaseId != 0 && Rhs_.BaseId != 0; }

  // Assert the block is consistent: If valid, it should also have
  // non-null members besides Lhs_ and Rhs_.
  void AssertConsistent() const {
    if (IsValid()) {
      assert(BB);
      assert(CmpI);
      assert(BranchI);
    }
  }

  const BCEAtom &Lhs() const { return Lhs_; }
  const BCEAtom &Rhs() const { return Rhs_; }
  int SizeBits() const { return SizeBits_; }

  // Returns true if the block does other works besides comparison.
  bool doesOtherWork() const;

  // Returns true if the non-BCE-cmp instructions can be separated from BCE-cmp
  // instructions in the block.
  bool canSplit(AliasAnalysis &AA) const;

  // Return true if this all the relevant instructions in the BCE-cmp-block can
  // be sunk below this instruction. By doing this, we know we can separate the
  // BCE-cmp-block instructions from the non-BCE-cmp-block instructions in the
  // block.
  bool canSinkBCECmpInst(const Instruction *, DenseSet<Instruction *> &,
                         AliasAnalysis &AA) const;

  // We can separate the BCE-cmp-block instructions and the non-BCE-cmp-block
  // instructions. Split the old block and move all non-BCE-cmp-insts into the
  // new parent block.
  void split(BasicBlock *NewParent, AliasAnalysis &AA) const;

  // The basic block where this comparison happens.
  BasicBlock *BB = nullptr;
  // The ICMP for this comparison.
  ICmpInst *CmpI = nullptr;
  // The terminating branch.
  BranchInst *BranchI = nullptr;
  // The block requires splitting.
  bool RequireSplit = false;

private:
  BCEAtom Lhs_;
  BCEAtom Rhs_;
  int SizeBits_ = 0;
};

bool BCECmpBlock::canSinkBCECmpInst(const Instruction *Inst,
                                    DenseSet<Instruction *> &BlockInsts,
                                    AliasAnalysis &AA) const {
  // If this instruction has side effects and its in middle of the BCE cmp block
  // instructions, then bail for now.
  if (Inst->mayHaveSideEffects()) {
    // Bail if this is not a simple load or store
    if (!isSimpleLoadOrStore(Inst))
      return false;
    // Disallow stores that might alias the BCE operands
    MemoryLocation LLoc = MemoryLocation::get(Lhs_.LoadI);
    MemoryLocation RLoc = MemoryLocation::get(Rhs_.LoadI);
    if (isModSet(AA.getModRefInfo(Inst, LLoc)) ||
        isModSet(AA.getModRefInfo(Inst, RLoc)))
      return false;
  }
  // Make sure this instruction does not use any of the BCE cmp block
  // instructions as operand.
  for (auto BI : BlockInsts) {
    if (is_contained(Inst->operands(), BI))
      return false;
  }
  return true;
}

void BCECmpBlock::split(BasicBlock *NewParent, AliasAnalysis &AA) const {
  DenseSet<Instruction *> BlockInsts(
      {Lhs_.GEP, Rhs_.GEP, Lhs_.LoadI, Rhs_.LoadI, CmpI, BranchI});
  llvm::SmallVector<Instruction *, 4> OtherInsts;
  for (Instruction &Inst : *BB) {
    if (BlockInsts.count(&Inst))
      continue;
      assert(canSinkBCECmpInst(&Inst, BlockInsts, AA) &&
             "Split unsplittable block");
    // This is a non-BCE-cmp-block instruction. And it can be separated
    // from the BCE-cmp-block instruction.
    OtherInsts.push_back(&Inst);
  }

  // Do the actual spliting.
  for (Instruction *Inst : reverse(OtherInsts)) {
    Inst->moveBefore(&*NewParent->begin());
  }
}

bool BCECmpBlock::canSplit(AliasAnalysis &AA) const {
  DenseSet<Instruction *> BlockInsts(
      {Lhs_.GEP, Rhs_.GEP, Lhs_.LoadI, Rhs_.LoadI, CmpI, BranchI});
  for (Instruction &Inst : *BB) {
    if (!BlockInsts.count(&Inst)) {
      if (!canSinkBCECmpInst(&Inst, BlockInsts, AA))
        return false;
    }
  }
  return true;
}

bool BCECmpBlock::doesOtherWork() const {
  AssertConsistent();
  // All the instructions we care about in the BCE cmp block.
  DenseSet<Instruction *> BlockInsts(
      {Lhs_.GEP, Rhs_.GEP, Lhs_.LoadI, Rhs_.LoadI, CmpI, BranchI});
  // TODO(courbet): Can we allow some other things ? This is very conservative.
  // We might be able to get away with anything does not have any side
  // effects outside of the basic block.
  // Note: The GEPs and/or loads are not necessarily in the same block.
  for (const Instruction &Inst : *BB) {
    if (!BlockInsts.count(&Inst))
      return true;
  }
  return false;
}

// Visit the given comparison. If this is a comparison between two valid
// BCE atoms, returns the comparison.
BCECmpBlock visitICmp(const ICmpInst *const CmpI,
                      const ICmpInst::Predicate ExpectedPredicate,
                      BaseIdentifier &BaseId) {
  // The comparison can only be used once:
  //  - For intermediate blocks, as a branch condition.
  //  - For the final block, as an incoming value for the Phi.
  // If there are any other uses of the comparison, we cannot merge it with
  // other comparisons as we would create an orphan use of the value.
  if (!CmpI->hasOneUse()) {
    LLVM_DEBUG(dbgs() << "cmp has several uses\n");
    return {};
  }
  if (CmpI->getPredicate() != ExpectedPredicate)
    return {};
  LLVM_DEBUG(dbgs() << "cmp "
                    << (ExpectedPredicate == ICmpInst::ICMP_EQ ? "eq" : "ne")
                    << "\n");
  auto Lhs = visitICmpLoadOperand(CmpI->getOperand(0), BaseId);
  if (!Lhs.BaseId)
    return {};
  auto Rhs = visitICmpLoadOperand(CmpI->getOperand(1), BaseId);
  if (!Rhs.BaseId)
    return {};
  const auto &DL = CmpI->getModule()->getDataLayout();
  return BCECmpBlock(std::move(Lhs), std::move(Rhs),
                     DL.getTypeSizeInBits(CmpI->getOperand(0)->getType()));
}

// Visit the given comparison block. If this is a comparison between two valid
// BCE atoms, returns the comparison.
BCECmpBlock visitCmpBlock(Value *const Val, BasicBlock *const Block,
                          const BasicBlock *const PhiBlock,
                          BaseIdentifier &BaseId) {
  if (Block->empty()) return {};
  auto *const BranchI = dyn_cast<BranchInst>(Block->getTerminator());
  if (!BranchI) return {};
  LLVM_DEBUG(dbgs() << "branch\n");
  if (BranchI->isUnconditional()) {
    // In this case, we expect an incoming value which is the result of the
    // comparison. This is the last link in the chain of comparisons (note
    // that this does not mean that this is the last incoming value, blocks
    // can be reordered).
    auto *const CmpI = dyn_cast<ICmpInst>(Val);
    if (!CmpI) return {};
    LLVM_DEBUG(dbgs() << "icmp\n");
    auto Result = visitICmp(CmpI, ICmpInst::ICMP_EQ, BaseId);
    Result.CmpI = CmpI;
    Result.BranchI = BranchI;
    return Result;
  } else {
    // In this case, we expect a constant incoming value (the comparison is
    // chained).
    const auto *const Const = dyn_cast<ConstantInt>(Val);
    LLVM_DEBUG(dbgs() << "const\n");
    if (!Const->isZero()) return {};
    LLVM_DEBUG(dbgs() << "false\n");
    auto *const CmpI = dyn_cast<ICmpInst>(BranchI->getCondition());
    if (!CmpI) return {};
    LLVM_DEBUG(dbgs() << "icmp\n");
    assert(BranchI->getNumSuccessors() == 2 && "expecting a cond branch");
    BasicBlock *const FalseBlock = BranchI->getSuccessor(1);
    auto Result = visitICmp(
        CmpI, FalseBlock == PhiBlock ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE,
        BaseId);
    Result.CmpI = CmpI;
    Result.BranchI = BranchI;
    return Result;
  }
  return {};
}

static inline void enqueueBlock(std::vector<BCECmpBlock> &Comparisons,
                                BCECmpBlock &&Comparison) {
  LLVM_DEBUG(dbgs() << "Block '" << Comparison.BB->getName()
                    << "': Found cmp of " << Comparison.SizeBits()
                    << " bits between " << Comparison.Lhs().BaseId << " + "
                    << Comparison.Lhs().Offset << " and "
                    << Comparison.Rhs().BaseId << " + "
                    << Comparison.Rhs().Offset << "\n");
  LLVM_DEBUG(dbgs() << "\n");
  Comparisons.push_back(std::move(Comparison));
}

// A chain of comparisons.
class BCECmpChain {
 public:
   BCECmpChain(const std::vector<BasicBlock *> &Blocks, PHINode &Phi,
               AliasAnalysis &AA);

   int size() const { return Comparisons_.size(); }

#ifdef MERGEICMPS_DOT_ON
  void dump() const;
#endif  // MERGEICMPS_DOT_ON

  bool simplify(const TargetLibraryInfo &TLI, AliasAnalysis &AA,
                DomTreeUpdater &DTU);

private:
  static bool IsContiguous(const BCECmpBlock &First,
                           const BCECmpBlock &Second) {
    return First.Lhs().BaseId == Second.Lhs().BaseId &&
           First.Rhs().BaseId == Second.Rhs().BaseId &&
           First.Lhs().Offset + First.SizeBits() / 8 == Second.Lhs().Offset &&
           First.Rhs().Offset + First.SizeBits() / 8 == Second.Rhs().Offset;
  }

  PHINode &Phi_;
  std::vector<BCECmpBlock> Comparisons_;
  // The original entry block (before sorting);
  BasicBlock *EntryBlock_;
};

BCECmpChain::BCECmpChain(const std::vector<BasicBlock *> &Blocks, PHINode &Phi,
                         AliasAnalysis &AA)
    : Phi_(Phi) {
  assert(!Blocks.empty() && "a chain should have at least one block");
  // Now look inside blocks to check for BCE comparisons.
  std::vector<BCECmpBlock> Comparisons;
  BaseIdentifier BaseId;
  for (size_t BlockIdx = 0; BlockIdx < Blocks.size(); ++BlockIdx) {
    BasicBlock *const Block = Blocks[BlockIdx];
    assert(Block && "invalid block");
    BCECmpBlock Comparison = visitCmpBlock(Phi.getIncomingValueForBlock(Block),
                                           Block, Phi.getParent(), BaseId);
    Comparison.BB = Block;
    if (!Comparison.IsValid()) {
      LLVM_DEBUG(dbgs() << "chain with invalid BCECmpBlock, no merge.\n");
      return;
    }
    if (Comparison.doesOtherWork()) {
      LLVM_DEBUG(dbgs() << "block '" << Comparison.BB->getName()
                        << "' does extra work besides compare\n");
      if (Comparisons.empty()) {
        // This is the initial block in the chain, in case this block does other
        // work, we can try to split the block and move the irrelevant
        // instructions to the predecessor.
        //
        // If this is not the initial block in the chain, splitting it wont
        // work.
        //
        // As once split, there will still be instructions before the BCE cmp
        // instructions that do other work in program order, i.e. within the
        // chain before sorting. Unless we can abort the chain at this point
        // and start anew.
        //
        // NOTE: we only handle blocks a with single predecessor for now.
        if (Comparison.canSplit(AA)) {
          LLVM_DEBUG(dbgs()
                     << "Split initial block '" << Comparison.BB->getName()
                     << "' that does extra work besides compare\n");
          Comparison.RequireSplit = true;
          enqueueBlock(Comparisons, std::move(Comparison));
        } else {
          LLVM_DEBUG(dbgs()
                     << "ignoring initial block '" << Comparison.BB->getName()
                     << "' that does extra work besides compare\n");
        }
        continue;
      }
      // TODO(courbet): Right now we abort the whole chain. We could be
      // merging only the blocks that don't do other work and resume the
      // chain from there. For example:
      //  if (a[0] == b[0]) {  // bb1
      //    if (a[1] == b[1]) {  // bb2
      //      some_value = 3; //bb3
      //      if (a[2] == b[2]) { //bb3
      //        do a ton of stuff  //bb4
      //      }
      //    }
      //  }
      //
      // This is:
      //
      // bb1 --eq--> bb2 --eq--> bb3* -eq--> bb4 --+
      //  \            \           \               \
      //   ne           ne          ne              \
      //    \            \           \               v
      //     +------------+-----------+----------> bb_phi
      //
      // We can only merge the first two comparisons, because bb3* does
      // "other work" (setting some_value to 3).
      // We could still merge bb1 and bb2 though.
      return;
    }
    enqueueBlock(Comparisons, std::move(Comparison));
  }

  // It is possible we have no suitable comparison to merge.
  if (Comparisons.empty()) {
    LLVM_DEBUG(dbgs() << "chain with no BCE basic blocks, no merge\n");
    return;
  }
  EntryBlock_ = Comparisons[0].BB;
  Comparisons_ = std::move(Comparisons);
#ifdef MERGEICMPS_DOT_ON
  errs() << "BEFORE REORDERING:\n\n";
  dump();
#endif  // MERGEICMPS_DOT_ON
  // Reorder blocks by LHS. We can do that without changing the
  // semantics because we are only accessing dereferencable memory.
  llvm::sort(Comparisons_,
             [](const BCECmpBlock &LhsBlock, const BCECmpBlock &RhsBlock) {
               return std::tie(LhsBlock.Lhs(), LhsBlock.Rhs()) <
                      std::tie(RhsBlock.Lhs(), RhsBlock.Rhs());
             });
#ifdef MERGEICMPS_DOT_ON
  errs() << "AFTER REORDERING:\n\n";
  dump();
#endif  // MERGEICMPS_DOT_ON
}

#ifdef MERGEICMPS_DOT_ON
void BCECmpChain::dump() const {
  errs() << "digraph dag {\n";
  errs() << " graph [bgcolor=transparent];\n";
  errs() << " node [color=black,style=filled,fillcolor=lightyellow];\n";
  errs() << " edge [color=black];\n";
  for (size_t I = 0; I < Comparisons_.size(); ++I) {
    const auto &Comparison = Comparisons_[I];
    errs() << " \"" << I << "\" [label=\"%"
           << Comparison.Lhs().Base()->getName() << " + "
           << Comparison.Lhs().Offset << " == %"
           << Comparison.Rhs().Base()->getName() << " + "
           << Comparison.Rhs().Offset << " (" << (Comparison.SizeBits() / 8)
           << " bytes)\"];\n";
    const Value *const Val = Phi_.getIncomingValueForBlock(Comparison.BB);
    if (I > 0) errs() << " \"" << (I - 1) << "\" -> \"" << I << "\";\n";
    errs() << " \"" << I << "\" -> \"Phi\" [label=\"" << *Val << "\"];\n";
  }
  errs() << " \"Phi\" [label=\"Phi\"];\n";
  errs() << "}\n\n";
}
#endif  // MERGEICMPS_DOT_ON

namespace {

// A class to compute the name of a set of merged basic blocks.
// This is optimized for the common case of no block names.
class MergedBlockName {
  // Storage for the uncommon case of several named blocks.
  SmallString<16> Scratch;

public:
  explicit MergedBlockName(ArrayRef<BCECmpBlock> Comparisons)
      : Name(makeName(Comparisons)) {}
  const StringRef Name;

private:
  StringRef makeName(ArrayRef<BCECmpBlock> Comparisons) {
    assert(!Comparisons.empty() && "no basic block");
    // Fast path: only one block, or no names at all.
    if (Comparisons.size() == 1)
      return Comparisons[0].BB->getName();
    const int size = std::accumulate(Comparisons.begin(), Comparisons.end(), 0,
                                     [](int i, const BCECmpBlock &Cmp) {
                                       return i + Cmp.BB->getName().size();
                                     });
    if (size == 0)
      return StringRef("", 0);

    // Slow path: at least two blocks, at least one block with a name.
    Scratch.clear();
    // We'll have `size` bytes for name and `Comparisons.size() - 1` bytes for
    // separators.
    Scratch.reserve(size + Comparisons.size() - 1);
    const auto append = [this](StringRef str) {
      Scratch.append(str.begin(), str.end());
    };
    append(Comparisons[0].BB->getName());
    for (int I = 1, E = Comparisons.size(); I < E; ++I) {
      const BasicBlock *const BB = Comparisons[I].BB;
      if (!BB->getName().empty()) {
        append("+");
        append(BB->getName());
      }
    }
    return StringRef(Scratch);
  }
};
} // namespace

// Merges the given contiguous comparison blocks into one memcmp block.
static BasicBlock *mergeComparisons(ArrayRef<BCECmpBlock> Comparisons,
                                    BasicBlock *const InsertBefore,
                                    BasicBlock *const NextCmpBlock,
                                    PHINode &Phi, const TargetLibraryInfo &TLI,
                                    AliasAnalysis &AA, DomTreeUpdater &DTU) {
  assert(!Comparisons.empty() && "merging zero comparisons");
  LLVMContext &Context = NextCmpBlock->getContext();
  const BCECmpBlock &FirstCmp = Comparisons[0];

  // Create a new cmp block before next cmp block.
  BasicBlock *const BB =
      BasicBlock::Create(Context, MergedBlockName(Comparisons).Name,
                         NextCmpBlock->getParent(), InsertBefore);
  IRBuilder<> Builder(BB);
  // Add the GEPs from the first BCECmpBlock.
  Value *const Lhs = Builder.Insert(FirstCmp.Lhs().GEP->clone());
  Value *const Rhs = Builder.Insert(FirstCmp.Rhs().GEP->clone());

  Value *IsEqual = nullptr;
  LLVM_DEBUG(dbgs() << "Merging " << Comparisons.size() << " comparisons -> "
                    << BB->getName() << "\n");
  if (Comparisons.size() == 1) {
    LLVM_DEBUG(dbgs() << "Only one comparison, updating branches\n");
    Value *const LhsLoad =
        Builder.CreateLoad(FirstCmp.Lhs().LoadI->getType(), Lhs);
    Value *const RhsLoad =
        Builder.CreateLoad(FirstCmp.Rhs().LoadI->getType(), Rhs);
    // There are no blocks to merge, just do the comparison.
    IsEqual = Builder.CreateICmpEQ(LhsLoad, RhsLoad);
  } else {
    // If there is one block that requires splitting, we do it now, i.e.
    // just before we know we will collapse the chain. The instructions
    // can be executed before any of the instructions in the chain.
    const auto ToSplit =
        std::find_if(Comparisons.begin(), Comparisons.end(),
                     [](const BCECmpBlock &B) { return B.RequireSplit; });
    if (ToSplit != Comparisons.end()) {
      LLVM_DEBUG(dbgs() << "Splitting non_BCE work to header\n");
      ToSplit->split(BB, AA);
    }

    const unsigned TotalSizeBits = std::accumulate(
        Comparisons.begin(), Comparisons.end(), 0u,
        [](int Size, const BCECmpBlock &C) { return Size + C.SizeBits(); });

    // Create memcmp() == 0.
    const auto &DL = Phi.getModule()->getDataLayout();
    Value *const MemCmpCall = emitMemCmp(
        Lhs, Rhs,
        ConstantInt::get(DL.getIntPtrType(Context), TotalSizeBits / 8), Builder,
        DL, &TLI);
    IsEqual = Builder.CreateICmpEQ(
        MemCmpCall, ConstantInt::get(Type::getInt32Ty(Context), 0));
  }

  BasicBlock *const PhiBB = Phi.getParent();
  // Add a branch to the next basic block in the chain.
  if (NextCmpBlock == PhiBB) {
    // Continue to phi, passing it the comparison result.
    Builder.CreateBr(PhiBB);
    Phi.addIncoming(IsEqual, BB);
    DTU.applyUpdates({{DominatorTree::Insert, BB, PhiBB}});
  } else {
    // Continue to next block if equal, exit to phi else.
    Builder.CreateCondBr(IsEqual, NextCmpBlock, PhiBB);
    Phi.addIncoming(ConstantInt::getFalse(Context), BB);
    DTU.applyUpdates({{DominatorTree::Insert, BB, NextCmpBlock},
                      {DominatorTree::Insert, BB, PhiBB}});
  }
  return BB;
}

bool BCECmpChain::simplify(const TargetLibraryInfo &TLI, AliasAnalysis &AA,
                           DomTreeUpdater &DTU) {
  assert(Comparisons_.size() >= 2 && "simplifying trivial BCECmpChain");
  // First pass to check if there is at least one merge. If not, we don't do
  // anything and we keep analysis passes intact.
  const auto AtLeastOneMerged = [this]() {
    for (size_t I = 1; I < Comparisons_.size(); ++I) {
      if (IsContiguous(Comparisons_[I - 1], Comparisons_[I]))
        return true;
    }
    return false;
  };
  if (!AtLeastOneMerged())
    return false;

  LLVM_DEBUG(dbgs() << "Simplifying comparison chain starting at block "
                    << EntryBlock_->getName() << "\n");

  // Effectively merge blocks. We go in the reverse direction from the phi block
  // so that the next block is always available to branch to.
  const auto mergeRange = [this, &TLI, &AA, &DTU](int I, int Num,
                                                  BasicBlock *InsertBefore,
                                                  BasicBlock *Next) {
    return mergeComparisons(makeArrayRef(Comparisons_).slice(I, Num),
                            InsertBefore, Next, Phi_, TLI, AA, DTU);
  };
  int NumMerged = 1;
  BasicBlock *NextCmpBlock = Phi_.getParent();
  for (int I = static_cast<int>(Comparisons_.size()) - 2; I >= 0; --I) {
    if (IsContiguous(Comparisons_[I], Comparisons_[I + 1])) {
      LLVM_DEBUG(dbgs() << "Merging block " << Comparisons_[I].BB->getName()
                        << " into " << Comparisons_[I + 1].BB->getName()
                        << "\n");
      ++NumMerged;
    } else {
      NextCmpBlock = mergeRange(I + 1, NumMerged, NextCmpBlock, NextCmpBlock);
      NumMerged = 1;
    }
  }
  // Insert the entry block for the new chain before the old entry block.
  // If the old entry block was the function entry, this ensures that the new
  // entry can become the function entry.
  NextCmpBlock = mergeRange(0, NumMerged, EntryBlock_, NextCmpBlock);

  // Replace the original cmp chain with the new cmp chain by pointing all
  // predecessors of EntryBlock_ to NextCmpBlock instead. This makes all cmp
  // blocks in the old chain unreachable.
  while (!pred_empty(EntryBlock_)) {
    BasicBlock* const Pred = *pred_begin(EntryBlock_);
    LLVM_DEBUG(dbgs() << "Updating jump into old chain from " << Pred->getName()
                      << "\n");
    Pred->getTerminator()->replaceUsesOfWith(EntryBlock_, NextCmpBlock);
    DTU.applyUpdates({{DominatorTree::Delete, Pred, EntryBlock_},
                      {DominatorTree::Insert, Pred, NextCmpBlock}});
  }

  // If the old cmp chain was the function entry, we need to update the function
  // entry.
  const bool ChainEntryIsFnEntry =
      (EntryBlock_ == &EntryBlock_->getParent()->getEntryBlock());
  if (ChainEntryIsFnEntry && DTU.hasDomTree()) {
    LLVM_DEBUG(dbgs() << "Changing function entry from "
                      << EntryBlock_->getName() << " to "
                      << NextCmpBlock->getName() << "\n");
    DTU.getDomTree().setNewRoot(NextCmpBlock);
    DTU.applyUpdates({{DominatorTree::Delete, NextCmpBlock, EntryBlock_}});
  }
  EntryBlock_ = nullptr;

  // Delete merged blocks. This also removes incoming values in phi.
  SmallVector<BasicBlock *, 16> DeadBlocks;
  for (auto &Cmp : Comparisons_) {
    LLVM_DEBUG(dbgs() << "Deleting merged block " << Cmp.BB->getName() << "\n");
    DeadBlocks.push_back(Cmp.BB);
  }
  DeleteDeadBlocks(DeadBlocks, &DTU);

  Comparisons_.clear();
  return true;
}

std::vector<BasicBlock *> getOrderedBlocks(PHINode &Phi,
                                           BasicBlock *const LastBlock,
                                           int NumBlocks) {
  // Walk up from the last block to find other blocks.
  std::vector<BasicBlock *> Blocks(NumBlocks);
  assert(LastBlock && "invalid last block");
  BasicBlock *CurBlock = LastBlock;
  for (int BlockIndex = NumBlocks - 1; BlockIndex > 0; --BlockIndex) {
    if (CurBlock->hasAddressTaken()) {
      // Somebody is jumping to the block through an address, all bets are
      // off.
      LLVM_DEBUG(dbgs() << "skip: block " << BlockIndex
                        << " has its address taken\n");
      return {};
    }
    Blocks[BlockIndex] = CurBlock;
    auto *SinglePredecessor = CurBlock->getSinglePredecessor();
    if (!SinglePredecessor) {
      // The block has two or more predecessors.
      LLVM_DEBUG(dbgs() << "skip: block " << BlockIndex
                        << " has two or more predecessors\n");
      return {};
    }
    if (Phi.getBasicBlockIndex(SinglePredecessor) < 0) {
      // The block does not link back to the phi.
      LLVM_DEBUG(dbgs() << "skip: block " << BlockIndex
                        << " does not link back to the phi\n");
      return {};
    }
    CurBlock = SinglePredecessor;
  }
  Blocks[0] = CurBlock;
  return Blocks;
}

bool processPhi(PHINode &Phi, const TargetLibraryInfo &TLI, AliasAnalysis &AA,
                DomTreeUpdater &DTU) {
  LLVM_DEBUG(dbgs() << "processPhi()\n");
  if (Phi.getNumIncomingValues() <= 1) {
    LLVM_DEBUG(dbgs() << "skip: only one incoming value in phi\n");
    return false;
  }
  // We are looking for something that has the following structure:
  //   bb1 --eq--> bb2 --eq--> bb3 --eq--> bb4 --+
  //     \            \           \               \
  //      ne           ne          ne              \
  //       \            \           \               v
  //        +------------+-----------+----------> bb_phi
  //
  //  - The last basic block (bb4 here) must branch unconditionally to bb_phi.
  //    It's the only block that contributes a non-constant value to the Phi.
  //  - All other blocks (b1, b2, b3) must have exactly two successors, one of
  //    them being the phi block.
  //  - All intermediate blocks (bb2, bb3) must have only one predecessor.
  //  - Blocks cannot do other work besides the comparison, see doesOtherWork()

  // The blocks are not necessarily ordered in the phi, so we start from the
  // last block and reconstruct the order.
  BasicBlock *LastBlock = nullptr;
  for (unsigned I = 0; I < Phi.getNumIncomingValues(); ++I) {
    if (isa<ConstantInt>(Phi.getIncomingValue(I))) continue;
    if (LastBlock) {
      // There are several non-constant values.
      LLVM_DEBUG(dbgs() << "skip: several non-constant values\n");
      return false;
    }
    if (!isa<ICmpInst>(Phi.getIncomingValue(I)) ||
        cast<ICmpInst>(Phi.getIncomingValue(I))->getParent() !=
            Phi.getIncomingBlock(I)) {
      // Non-constant incoming value is not from a cmp instruction or not
      // produced by the last block. We could end up processing the value
      // producing block more than once.
      //
      // This is an uncommon case, so we bail.
      LLVM_DEBUG(
          dbgs()
          << "skip: non-constant value not from cmp or not from last block.\n");
      return false;
    }
    LastBlock = Phi.getIncomingBlock(I);
  }
  if (!LastBlock) {
    // There is no non-constant block.
    LLVM_DEBUG(dbgs() << "skip: no non-constant block\n");
    return false;
  }
  if (LastBlock->getSingleSuccessor() != Phi.getParent()) {
    LLVM_DEBUG(dbgs() << "skip: last block non-phi successor\n");
    return false;
  }

  const auto Blocks =
      getOrderedBlocks(Phi, LastBlock, Phi.getNumIncomingValues());
  if (Blocks.empty()) return false;
  BCECmpChain CmpChain(Blocks, Phi, AA);

  if (CmpChain.size() < 2) {
    LLVM_DEBUG(dbgs() << "skip: only one compare block\n");
    return false;
  }

  return CmpChain.simplify(TLI, AA, DTU);
}

static bool runImpl(Function &F, const TargetLibraryInfo &TLI,
                    const TargetTransformInfo &TTI, AliasAnalysis &AA,
                    DominatorTree *DT) {
  LLVM_DEBUG(dbgs() << "MergeICmpsLegacyPass: " << F.getName() << "\n");

  // We only try merging comparisons if the target wants to expand memcmp later.
  // The rationale is to avoid turning small chains into memcmp calls.
  if (!TTI.enableMemCmpExpansion(F.hasOptSize(), true))
    return false;

  // If we don't have memcmp avaiable we can't emit calls to it.
  if (!TLI.has(LibFunc_memcmp))
    return false;

  DomTreeUpdater DTU(DT, /*PostDominatorTree*/ nullptr,
                     DomTreeUpdater::UpdateStrategy::Eager);

  bool MadeChange = false;

  for (auto BBIt = ++F.begin(); BBIt != F.end(); ++BBIt) {
    // A Phi operation is always first in a basic block.
    if (auto *const Phi = dyn_cast<PHINode>(&*BBIt->begin()))
      MadeChange |= processPhi(*Phi, TLI, AA, DTU);
  }

  return MadeChange;
}

class MergeICmpsLegacyPass : public FunctionPass {
public:
  static char ID;

  MergeICmpsLegacyPass() : FunctionPass(ID) {
    initializeMergeICmpsLegacyPassPass(*PassRegistry::getPassRegistry());
  }

  bool runOnFunction(Function &F) override {
    if (skipFunction(F)) return false;
    const auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
    const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
    // MergeICmps does not need the DominatorTree, but we update it if it's
    // already available.
    auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
    auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
    return runImpl(F, TLI, TTI, AA, DTWP ? &DTWP->getDomTree() : nullptr);
  }

 private:
  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<TargetLibraryInfoWrapperPass>();
    AU.addRequired<TargetTransformInfoWrapperPass>();
    AU.addRequired<AAResultsWrapperPass>();
    AU.addPreserved<GlobalsAAWrapperPass>();
    AU.addPreserved<DominatorTreeWrapperPass>();
  }
};

} // namespace

char MergeICmpsLegacyPass::ID = 0;
INITIALIZE_PASS_BEGIN(MergeICmpsLegacyPass, "mergeicmps",
                      "Merge contiguous icmps into a memcmp", false, false)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
INITIALIZE_PASS_END(MergeICmpsLegacyPass, "mergeicmps",
                    "Merge contiguous icmps into a memcmp", false, false)

Pass *llvm::createMergeICmpsLegacyPass() { return new MergeICmpsLegacyPass(); }

PreservedAnalyses MergeICmpsPass::run(Function &F,
                                      FunctionAnalysisManager &AM) {
  auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
  auto &TTI = AM.getResult<TargetIRAnalysis>(F);
  auto &AA = AM.getResult<AAManager>(F);
  auto *DT = AM.getCachedResult<DominatorTreeAnalysis>(F);
  const bool MadeChanges = runImpl(F, TLI, TTI, AA, DT);
  if (!MadeChanges)
    return PreservedAnalyses::all();
  PreservedAnalyses PA;
  PA.preserve<GlobalsAA>();
  PA.preserve<DominatorTreeAnalysis>();
  return PA;
}