LowerMatrixIntrinsics.cpp 78.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043
//===- LowerMatrixIntrinsics.cpp -  Lower matrix intrinsics -----*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Lower matrix intrinsics to vector operations.
//
// TODO:
//  * Improve fusion:
//   * Support more cases, e.g. multiply-add, multiply-sub, operands/results
//     transposed.
//   * Improve cost-modeling, e.g. choose different number of rows/columns
//     columns for tiles, consider cost of copies on alias.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Scalar/LowerMatrixIntrinsics.h"
#include "llvm/ADT/GraphTraits.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/DomTreeUpdater.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Analysis/VectorUtils.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Alignment.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/LoopUtils.h"
#include "llvm/Transforms/Utils/MatrixUtils.h"

using namespace llvm;
using namespace PatternMatch;

#define DEBUG_TYPE "lower-matrix-intrinsics"

static cl::opt<bool> EnableShapePropagation(
    "matrix-propagate-shape", cl::init(true), cl::Hidden,
    cl::desc("Enable/disable shape propagation from matrix intrinsics to other "
             "instructions."));

static cl::opt<bool>
    FuseMatrix("fuse-matrix", cl::init(true), cl::Hidden,
               cl::desc("Enable/disable fusing matrix instructions."));
// TODO: Allow and use non-square tiles.
static cl::opt<unsigned> TileSize(
    "fuse-matrix-tile-size", cl::init(4), cl::Hidden,
    cl::desc(
        "Tile size for matrix instruction fusion using square-shaped tiles."));
static cl::opt<bool> TileUseLoops("fuse-matrix-use-loops", cl::init(false),
                                  cl::Hidden,
                                  cl::desc("Generate loop nest for tiling."));
static cl::opt<bool> ForceFusion(
    "force-fuse-matrix", cl::init(false), cl::Hidden,
    cl::desc("Force matrix instruction fusion even if not profitable."));
static cl::opt<bool> AllowContractEnabled(
    "matrix-allow-contract", cl::init(false), cl::Hidden,
    cl::desc("Allow the use of FMAs if available and profitable. This may "
             "result in different results, due to less rounding error."));

enum class MatrixLayoutTy { ColumnMajor, RowMajor };

static cl::opt<MatrixLayoutTy> MatrixLayout(
    "matrix-default-layout", cl::init(MatrixLayoutTy::ColumnMajor),
    cl::desc("Sets the default matrix layout"),
    cl::values(clEnumValN(MatrixLayoutTy::ColumnMajor, "column-major",
                          "Use column-major layout"),
               clEnumValN(MatrixLayoutTy::RowMajor, "row-major",
                          "Use row-major layout")));

/// Helper function to either return Scope, if it is a subprogram or the
/// attached subprogram for a local scope.
static DISubprogram *getSubprogram(DIScope *Scope) {
  if (auto *Subprogram = dyn_cast<DISubprogram>(Scope))
    return Subprogram;
  return cast<DILocalScope>(Scope)->getSubprogram();
}

namespace {

// Given an element pointer \p BasePtr to the start of a (sub) matrix, compute
// the start address of vector \p VecIdx with type (\p EltType x \p NumElements)
// assuming \p Stride elements between start two consecutive vectors.
// \p Stride must be >= \p NumElements.
// For column-major matrixes, the function computes the address of a column
// vectors and \p NumElements must be set to the number of elements in a column
// (= number of rows of the matrix). For row-major matrixes, the function
// computes the address of a row vector and \p NumElements must be set to the
// number of elements in a column (= number of columns of the matrix).
//
// Consider a 4x4 matrix in column-mjaor layout like below
//
//      0       1      2      3
// 0   v_0_0  v_0_1  v_0_2  v_0_3
// 1   v_1_0  v_1_1  v_1_2  v_1_3
// 2   v_2_0  v_2_1  v_2_2  v_2_3
// 3   v_3_0  v_3_1  v_3_2  v_3_3

// To compute the column addresses for a 2x3 sub-matrix at row 1 and column 1,
// we need a pointer to the first element of the submatrix as base pointer.
// Then we can use computeVectorAddr to compute the addresses for the columns
// of the sub-matrix.
//
// Column 0: computeVectorAddr(Base, 0 (column), 4 (stride), 2 (num rows), ..)
//           -> just returns Base
// Column 1: computeVectorAddr(Base, 1 (column), 4 (stride), 2 (num rows), ..)
//           -> returns Base + (1 * 4)
// Column 2: computeVectorAddr(Base, 2 (column), 4 (stride), 2 (num rows), ..)
//           -> returns Base + (2 * 4)
//
// The graphic below illustrates the number of elements in a column (marked
// with |) and the number of skipped elements (marked with }).
//
//         v_0_0  v_0_1 {v_0_2 {v_0_3
//                Base   Col 1  Col 2
//                  |     |      |
//         v_1_0 |v_1_1 |v_1_2 |v_1_3
//         v_2_0 |v_2_1 |v_2_2 |v_2_3
//         v_3_0 {v_3_1 {v_3_2  v_3_3
//
Value *computeVectorAddr(Value *BasePtr, Value *VecIdx, Value *Stride,
                         unsigned NumElements, Type *EltType,
                         IRBuilder<> &Builder) {

  assert((!isa<ConstantInt>(Stride) ||
          cast<ConstantInt>(Stride)->getZExtValue() >= NumElements) &&
         "Stride must be >= the number of elements in the result vector.");
  unsigned AS = cast<PointerType>(BasePtr->getType())->getAddressSpace();

  // Compute the start of the vector with index VecIdx as VecIdx * Stride.
  Value *VecStart = Builder.CreateMul(VecIdx, Stride, "vec.start");

  // Get pointer to the start of the selected vector. Skip GEP creation,
  // if we select vector 0.
  if (isa<ConstantInt>(VecStart) && cast<ConstantInt>(VecStart)->isZero())
    VecStart = BasePtr;
  else
    VecStart = Builder.CreateGEP(EltType, BasePtr, VecStart, "vec.gep");

  // Cast elementwise vector start pointer to a pointer to a vector
  // (EltType x NumElements)*.
  auto *VecType = FixedVectorType::get(EltType, NumElements);
  Type *VecPtrType = PointerType::get(VecType, AS);
  return Builder.CreatePointerCast(VecStart, VecPtrType, "vec.cast");
}

/// LowerMatrixIntrinsics contains the methods used to lower matrix intrinsics.
///
/// Currently, the lowering for each matrix intrinsic is done as follows:
/// 1. Propagate the shape information from intrinsics to connected
/// instructions.
/// 2. Lower instructions with shape information (assuming column-major layout).
///  The lowering works similarly using row-major layout.
///  2.1. Get column vectors for each argument. If we already lowered the
///       definition of an argument, use the produced column vectors directly.
///       If not, split the operand vector containing an embedded matrix into
///       a set of column vectors,
///  2.2. Lower the instruction in terms of column major operations, which
///       yields a set of column vectors containing result matrix. Note that we
///       lower all instructions that have shape information. Besides the
///       intrinsics, this includes stores for example.
///  2.3. Update uses of the lowered instruction. If we have shape information
///       for a user, there is nothing to do, as we will look up the result
///       column matrix when lowering the user. For other uses, we embed the
///       result matrix in a flat vector and update the use.
///  2.4. Cache the result column matrix for the instruction we lowered
/// 3. After we lowered all instructions in a function, remove the now
///    obsolete instructions.
///
class LowerMatrixIntrinsics {
  Function &Func;
  const DataLayout &DL;
  const TargetTransformInfo &TTI;
  AliasAnalysis *AA;
  DominatorTree *DT;
  LoopInfo *LI;
  OptimizationRemarkEmitter *ORE;

  /// Contains estimates of the number of operations (loads, stores, compute) required to lower a matrix operation.
  struct OpInfoTy {
    /// Number of stores emitted to generate this matrix.
    unsigned NumStores = 0;
    /// Number of loads emitted to generate this matrix.
    unsigned NumLoads = 0;
    /// Number of compute operations emitted to generate this matrix.
    unsigned NumComputeOps = 0;

    OpInfoTy &operator+=(const OpInfoTy &RHS) {
      NumStores += RHS.NumStores;
      NumLoads += RHS.NumLoads;
      NumComputeOps += RHS.NumComputeOps;
      return *this;
    }
  };

  /// Wrapper class representing a matrix as a set of vectors, either in row or
  /// column major layout. All vectors must have the same vector type.
  class MatrixTy {
    SmallVector<Value *, 16> Vectors;

    OpInfoTy OpInfo;

    bool IsColumnMajor = true;

  public:
    MatrixTy()
        : Vectors(),
          IsColumnMajor(MatrixLayout == MatrixLayoutTy::ColumnMajor) {}
    MatrixTy(ArrayRef<Value *> Vectors)
        : Vectors(Vectors.begin(), Vectors.end()),
          IsColumnMajor(MatrixLayout == MatrixLayoutTy::ColumnMajor) {}
    MatrixTy(unsigned NumRows, unsigned NumColumns, Type *EltTy)
        : IsColumnMajor(MatrixLayout == MatrixLayoutTy::ColumnMajor) {

      unsigned D = isColumnMajor() ? NumColumns : NumRows;
      for (unsigned J = 0; J < D; ++J)
        addVector(UndefValue::get(FixedVectorType::get(
            EltTy, isColumnMajor() ? NumRows : NumColumns)));
    }

    Value *getVector(unsigned i) const { return Vectors[i]; }
    Value *getColumn(unsigned i) const {
      assert(isColumnMajor() && "only supported for column-major matrixes");
      return Vectors[i];
    }
    Value *getRow(unsigned i) const {
      assert(!isColumnMajor() && "only supported for row-major matrixes");
      return Vectors[i];
    }

    void setVector(unsigned i, Value *V) { Vectors[i] = V; }

    Type *getElementType() const { return getVectorTy()->getElementType(); }

    unsigned getNumVectors() const {
      if (isColumnMajor())
        return getNumColumns();
      return getNumRows();
    }

    unsigned getNumColumns() const {
      if (isColumnMajor())
        return Vectors.size();
      else {
        assert(Vectors.size() > 0 && "Cannot call getNumRows without columns");
        return cast<FixedVectorType>(Vectors[0]->getType())->getNumElements();
      }
    }
    unsigned getNumRows() const {
      if (isColumnMajor()) {
        assert(Vectors.size() > 0 && "Cannot call getNumRows without columns");
        return cast<FixedVectorType>(Vectors[0]->getType())->getNumElements();
      } else
        return Vectors.size();
    }

    void addVector(Value *V) { Vectors.push_back(V); }
    VectorType *getColumnTy() {
      assert(isColumnMajor() && "only supported for column-major matrixes");
      return getVectorTy();
    }

    VectorType *getVectorTy() const {
      return cast<VectorType>(Vectors[0]->getType());
    }

    iterator_range<SmallVector<Value *, 8>::iterator> columns() {
      assert(isColumnMajor() &&
             "columns() only supported for column-major matrixes");
      return make_range(Vectors.begin(), Vectors.end());
    }

    iterator_range<SmallVector<Value *, 8>::iterator> vectors() {
      return make_range(Vectors.begin(), Vectors.end());
    }

    /// Embed the vectors of the matrix into a flat vector by concatenating
    /// them.
    Value *embedInVector(IRBuilder<> &Builder) const {
      return Vectors.size() == 1 ? Vectors[0]
                                 : concatenateVectors(Builder, Vectors);
    }

    MatrixTy &addNumLoads(unsigned N) {
      OpInfo.NumLoads += N;
      return *this;
    }

    void setNumLoads(unsigned N) { OpInfo.NumLoads = N; }

    MatrixTy &addNumStores(unsigned N) {
      OpInfo.NumStores += N;
      return *this;
    }

    MatrixTy &addNumComputeOps(unsigned N) {
      OpInfo.NumComputeOps += N;
      return *this;
    }

    unsigned getNumStores() const { return OpInfo.NumStores; }
    unsigned getNumLoads() const { return OpInfo.NumLoads; }
    unsigned getNumComputeOps() const { return OpInfo.NumComputeOps; }

    const OpInfoTy &getOpInfo() const { return OpInfo; }

    bool isColumnMajor() const { return IsColumnMajor; }

    unsigned getStride() const {
      if (isColumnMajor())
        return getNumRows();
      return getNumColumns();
    }

    /// Extract a vector of \p NumElts starting at index (\p I, \p J). If the
    /// matrix is column-major, the result vector is extracted from a column
    /// vector, otherwise from a row vector.
    Value *extractVector(unsigned I, unsigned J, unsigned NumElts,
                         IRBuilder<> &Builder) const {
      Value *Vec = isColumnMajor() ? getColumn(J) : getRow(I);
      Value *Undef = UndefValue::get(Vec->getType());
      return Builder.CreateShuffleVector(
          Vec, Undef, createSequentialMask(isColumnMajor() ? I : J, NumElts, 0),
          "block");
    }
  };

  struct ShapeInfo {
    unsigned NumRows;
    unsigned NumColumns;

    bool IsColumnMajor;

    ShapeInfo(unsigned NumRows = 0, unsigned NumColumns = 0)
        : NumRows(NumRows), NumColumns(NumColumns),
          IsColumnMajor(MatrixLayout == MatrixLayoutTy::ColumnMajor) {}

    ShapeInfo(Value *NumRows, Value *NumColumns)
        : ShapeInfo(cast<ConstantInt>(NumRows)->getZExtValue(),
                    cast<ConstantInt>(NumColumns)->getZExtValue()) {}

    bool operator==(const ShapeInfo &other) {
      return NumRows == other.NumRows && NumColumns == other.NumColumns;
    }
    bool operator!=(const ShapeInfo &other) { return !(*this == other); }

    /// Returns true if shape-information is defined, meaning both dimensions
    /// are != 0.
    operator bool() const {
      assert(NumRows == 0 || NumColumns != 0);
      return NumRows != 0;
    }

    unsigned getStride() const {
      if (IsColumnMajor)
        return NumRows;
      return NumColumns;
    }

    unsigned getNumVectors() const {
      if (IsColumnMajor)
        return NumColumns;
      return NumRows;
    }
  };

  /// Maps instructions to their shape information. The shape information
  /// describes the shape to be used while lowering. This matches the shape of
  /// the result value of the instruction, with the only exceptions being store
  /// instructions and the matrix_column_major_store intrinsics. For those, the
  /// shape information indicates that those instructions should be lowered
  /// using shape information as well.
  DenseMap<Value *, ShapeInfo> ShapeMap;

  /// List of instructions to remove. While lowering, we are not replacing all
  /// users of a lowered instruction, if shape information is available and
  /// those need to be removed after we finished lowering.
  SmallVector<Instruction *, 16> ToRemove;

  /// Map from instructions to their produced column matrix.
  MapVector<Value *, MatrixTy> Inst2ColumnMatrix;

public:
  LowerMatrixIntrinsics(Function &F, TargetTransformInfo &TTI,
                        AliasAnalysis *AA, DominatorTree *DT, LoopInfo *LI,
                        OptimizationRemarkEmitter *ORE)
      : Func(F), DL(F.getParent()->getDataLayout()), TTI(TTI), AA(AA), DT(DT),
        LI(LI), ORE(ORE) {}

  unsigned getNumOps(Type *VT) {
    assert(isa<VectorType>(VT) && "Expected vector type");
    return getNumOps(VT->getScalarType(),
                     cast<FixedVectorType>(VT)->getNumElements());
  }

  //
  /// Return the estimated number of vector ops required for an operation on
  /// \p VT * N.
  unsigned getNumOps(Type *ST, unsigned N) {
    return std::ceil((ST->getPrimitiveSizeInBits() * N).getFixedSize() /
                     double(TTI.getRegisterBitWidth(true)));
  }

  /// Return the set of vectors that a matrix value is lowered to.
  ///
  /// If we lowered \p MatrixVal, just return the cache result matrix. Otherwise
  /// split the flat vector \p MatrixVal containing a matrix with shape \p SI
  /// into vectors.
  MatrixTy getMatrix(Value *MatrixVal, const ShapeInfo &SI,
                     IRBuilder<> &Builder) {
    VectorType *VType = dyn_cast<VectorType>(MatrixVal->getType());
    assert(VType && "MatrixVal must be a vector type");
    assert(cast<FixedVectorType>(VType)->getNumElements() ==
               SI.NumRows * SI.NumColumns &&
           "The vector size must match the number of matrix elements");

    // Check if we lowered MatrixVal using shape information. In that case,
    // return the existing matrix, if it matches the requested shape
    // information. If there is a mis-match, embed the result in a flat
    // vector and split it later.
    auto Found = Inst2ColumnMatrix.find(MatrixVal);
    if (Found != Inst2ColumnMatrix.end()) {
      MatrixTy &M = Found->second;
      // Return the found matrix, if its shape matches the requested shape
      // information
      if (SI.NumRows == M.getNumRows() && SI.NumColumns == M.getNumColumns())
        return M;

      MatrixVal = M.embedInVector(Builder);
    }

    // Otherwise split MatrixVal.
    SmallVector<Value *, 16> SplitVecs;
    Value *Undef = UndefValue::get(VType);
    for (unsigned MaskStart = 0;
         MaskStart < cast<FixedVectorType>(VType)->getNumElements();
         MaskStart += SI.getStride()) {
      Value *V = Builder.CreateShuffleVector(
          MatrixVal, Undef, createSequentialMask(MaskStart, SI.getStride(), 0),
          "split");
      SplitVecs.push_back(V);
    }

    return {SplitVecs};
  }

  /// If \p V already has a known shape return false.  Otherwise set the shape
  /// for instructions that support it.
  bool setShapeInfo(Value *V, ShapeInfo Shape) {
    assert(Shape && "Shape not set");
    if (isa<UndefValue>(V) || !supportsShapeInfo(V))
      return false;

    auto SIter = ShapeMap.find(V);
    if (SIter != ShapeMap.end()) {
      LLVM_DEBUG(dbgs() << "  not overriding existing shape: "
                        << SIter->second.NumRows << " "
                        << SIter->second.NumColumns << " for " << *V << "\n");
      return false;
    }

    ShapeMap.insert({V, Shape});
    LLVM_DEBUG(dbgs() << "  " << Shape.NumRows << " x " << Shape.NumColumns
                      << " for " << *V << "\n");
    return true;
  }

  bool isUniformShape(Value *V) {
    Instruction *I = dyn_cast<Instruction>(V);
    if (!I)
      return true;

    switch (I->getOpcode()) {
    case Instruction::FAdd:
    case Instruction::FSub:
    case Instruction::FMul: // Scalar multiply.
    case Instruction::Add:
    case Instruction::Mul:
    case Instruction::Sub:
      return true;
    default:
      return false;
    }
  }

  /// Returns true if shape information can be used for \p V. The supported
  /// instructions must match the instructions that can be lowered by this pass.
  bool supportsShapeInfo(Value *V) {
    Instruction *Inst = dyn_cast<Instruction>(V);
    if (!Inst)
      return false;

    IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst);
    if (II)
      switch (II->getIntrinsicID()) {
      case Intrinsic::matrix_multiply:
      case Intrinsic::matrix_transpose:
      case Intrinsic::matrix_column_major_load:
      case Intrinsic::matrix_column_major_store:
        return true;
      default:
        return false;
      }
    return isUniformShape(V) || isa<StoreInst>(V) || isa<LoadInst>(V);
  }

  /// Propagate the shape information of instructions to their users.
  /// The work list contains instructions for which we can compute the shape,
  /// either based on the information provided by matrix intrinsics or known
  /// shapes of operands.
  SmallVector<Instruction *, 32>
  propagateShapeForward(SmallVectorImpl<Instruction *> &WorkList) {
    SmallVector<Instruction *, 32> NewWorkList;
    // Pop an element for which we guaranteed to have at least one of the
    // operand shapes.  Add the shape for this and then add users to the work
    // list.
    LLVM_DEBUG(dbgs() << "Forward-propagate shapes:\n");
    while (!WorkList.empty()) {
      Instruction *Inst = WorkList.back();
      WorkList.pop_back();

      // New entry, set the value and insert operands
      bool Propagate = false;

      Value *MatrixA;
      Value *MatrixB;
      Value *M;
      Value *N;
      Value *K;
      if (match(Inst, m_Intrinsic<Intrinsic::matrix_multiply>(
                          m_Value(MatrixA), m_Value(MatrixB), m_Value(M),
                          m_Value(N), m_Value(K)))) {
        Propagate = setShapeInfo(Inst, {M, K});
      } else if (match(Inst, m_Intrinsic<Intrinsic::matrix_transpose>(
                                 m_Value(MatrixA), m_Value(M), m_Value(N)))) {
        // Flip dimensions.
        Propagate = setShapeInfo(Inst, {N, M});
      } else if (match(Inst, m_Intrinsic<Intrinsic::matrix_column_major_store>(
                                 m_Value(MatrixA), m_Value(), m_Value(),
                                 m_Value(), m_Value(M), m_Value(N)))) {
        Propagate = setShapeInfo(Inst, {N, M});
      } else if (match(Inst, m_Intrinsic<Intrinsic::matrix_column_major_load>(
                                 m_Value(), m_Value(), m_Value(), m_Value(M),
                                 m_Value(N)))) {
        Propagate = setShapeInfo(Inst, {M, N});
      } else if (match(Inst, m_Store(m_Value(MatrixA), m_Value()))) {
        auto OpShape = ShapeMap.find(MatrixA);
        if (OpShape != ShapeMap.end())
          setShapeInfo(Inst, OpShape->second);
        continue;
      } else if (isUniformShape(Inst)) {
        // Find the first operand that has a known shape and use that.
        for (auto &Op : Inst->operands()) {
          auto OpShape = ShapeMap.find(Op.get());
          if (OpShape != ShapeMap.end()) {
            Propagate |= setShapeInfo(Inst, OpShape->second);
            break;
          }
        }
      }

      if (Propagate) {
        NewWorkList.push_back(Inst);
        for (auto *User : Inst->users())
          if (ShapeMap.count(User) == 0)
            WorkList.push_back(cast<Instruction>(User));
      }
    }

    return NewWorkList;
  }

  /// Propagate the shape to operands of instructions with shape information.
  /// \p Worklist contains the instruction for which we already know the shape.
  SmallVector<Instruction *, 32>
  propagateShapeBackward(SmallVectorImpl<Instruction *> &WorkList) {
    SmallVector<Instruction *, 32> NewWorkList;

    auto pushInstruction = [](Value *V,
                              SmallVectorImpl<Instruction *> &WorkList) {
      Instruction *I = dyn_cast<Instruction>(V);
      if (I)
        WorkList.push_back(I);
    };
    // Pop an element with known shape.  Traverse the operands, if their shape
    // derives from the result shape and is unknown, add it and add them to the
    // worklist.
    LLVM_DEBUG(dbgs() << "Backward-propagate shapes:\n");
    while (!WorkList.empty()) {
      Value *V = WorkList.back();
      WorkList.pop_back();

      size_t BeforeProcessingV = WorkList.size();
      if (!isa<Instruction>(V))
        continue;

      Value *MatrixA;
      Value *MatrixB;
      Value *M;
      Value *N;
      Value *K;
      if (match(V, m_Intrinsic<Intrinsic::matrix_multiply>(
                       m_Value(MatrixA), m_Value(MatrixB), m_Value(M),
                       m_Value(N), m_Value(K)))) {
        if (setShapeInfo(MatrixA, {M, N}))
          pushInstruction(MatrixA, WorkList);

        if (setShapeInfo(MatrixB, {N, K}))
          pushInstruction(MatrixB, WorkList);

      } else if (match(V, m_Intrinsic<Intrinsic::matrix_transpose>(
                              m_Value(MatrixA), m_Value(M), m_Value(N)))) {
        // Flip dimensions.
        if (setShapeInfo(MatrixA, {M, N}))
          pushInstruction(MatrixA, WorkList);
      } else if (match(V, m_Intrinsic<Intrinsic::matrix_column_major_store>(
                              m_Value(MatrixA), m_Value(), m_Value(), m_Value(),
                              m_Value(M), m_Value(N)))) {
        if (setShapeInfo(MatrixA, {M, N})) {
          pushInstruction(MatrixA, WorkList);
        }
      } else if (isa<LoadInst>(V) ||
                 match(V, m_Intrinsic<Intrinsic::matrix_column_major_load>())) {
        // Nothing to do, no matrix input.
      } else if (isa<StoreInst>(V)) {
        // Nothing to do.  We forward-propagated to this so we would just
        // backward propagate to an instruction with an already known shape.
      } else if (isUniformShape(V)) {
        // Propagate to all operands.
        ShapeInfo Shape = ShapeMap[V];
        for (Use &U : cast<Instruction>(V)->operands()) {
          if (setShapeInfo(U.get(), Shape))
            pushInstruction(U.get(), WorkList);
        }
      }
      // After we discovered new shape info for new instructions in the
      // worklist, we use their users as seeds for the next round of forward
      // propagation.
      for (size_t I = BeforeProcessingV; I != WorkList.size(); I++)
        for (User *U : WorkList[I]->users())
          if (isa<Instruction>(U) && V != U)
            NewWorkList.push_back(cast<Instruction>(U));
    }
    return NewWorkList;
  }

  bool Visit() {
    if (EnableShapePropagation) {
      SmallVector<Instruction *, 32> WorkList;

      // Initially only the shape of matrix intrinsics is known.
      // Initialize the work list with ops carrying shape information.
      for (BasicBlock &BB : Func)
        for (Instruction &Inst : BB) {
          IntrinsicInst *II = dyn_cast<IntrinsicInst>(&Inst);
          if (!II)
            continue;

          switch (II->getIntrinsicID()) {
          case Intrinsic::matrix_multiply:
          case Intrinsic::matrix_transpose:
          case Intrinsic::matrix_column_major_load:
          case Intrinsic::matrix_column_major_store:
            WorkList.push_back(&Inst);
            break;
          default:
            break;
          }
        }
      // Propagate shapes until nothing changes any longer.
      while (!WorkList.empty()) {
        WorkList = propagateShapeForward(WorkList);
        WorkList = propagateShapeBackward(WorkList);
      }
    }

    bool Changed = false;
    SmallVector<CallInst *, 16> MaybeFusableInsts;
    SmallVector<Instruction *, 16> MatrixInsts;

    // First, collect all instructions with shape information and candidates for
    // fusion (currently only matrix multiplies).
    ReversePostOrderTraversal<Function *> RPOT(&Func);
    for (auto *BB : RPOT)
      for (Instruction &I : *BB) {
        if (ShapeMap.find(&I) == ShapeMap.end())
          continue;
        if (match(&I, m_Intrinsic<Intrinsic::matrix_multiply>()))
          MaybeFusableInsts.push_back(cast<CallInst>(&I));
        MatrixInsts.push_back(&I);
      }

    // Second, try to fuse candidates.
    SmallPtrSet<Instruction *, 16> FusedInsts;
    for (CallInst *CI : MaybeFusableInsts)
      LowerMatrixMultiplyFused(CI, FusedInsts);
    Changed = !FusedInsts.empty();

    // Third, lower remaining instructions with shape information.
    for (Instruction *Inst : MatrixInsts) {
      if (FusedInsts.count(Inst))
        continue;

      IRBuilder<> Builder(Inst);

      if (CallInst *CInst = dyn_cast<CallInst>(Inst))
        Changed |= VisitCallInst(CInst);

      Value *Op1;
      Value *Op2;
      if (auto *BinOp = dyn_cast<BinaryOperator>(Inst))
        Changed |= VisitBinaryOperator(BinOp);
      if (match(Inst, m_Load(m_Value(Op1))))
        Changed |= VisitLoad(cast<LoadInst>(Inst), Op1, Builder);
      else if (match(Inst, m_Store(m_Value(Op1), m_Value(Op2))))
        Changed |= VisitStore(cast<StoreInst>(Inst), Op1, Op2, Builder);
    }

    if (ORE) {
      RemarkGenerator RemarkGen(Inst2ColumnMatrix, *ORE, Func);
      RemarkGen.emitRemarks();
    }

    for (Instruction *Inst : reverse(ToRemove))
      Inst->eraseFromParent();

    return Changed;
  }

  /// Turns \p BasePtr into an elementwise pointer to \p EltType.
  Value *createElementPtr(Value *BasePtr, Type *EltType, IRBuilder<> &Builder) {
    unsigned AS = cast<PointerType>(BasePtr->getType())->getAddressSpace();
    Type *EltPtrType = PointerType::get(EltType, AS);
    return Builder.CreatePointerCast(BasePtr, EltPtrType);
  }

  /// Replace intrinsic calls
  bool VisitCallInst(CallInst *Inst) {
    if (!Inst->getCalledFunction() || !Inst->getCalledFunction()->isIntrinsic())
      return false;

    switch (Inst->getCalledFunction()->getIntrinsicID()) {
    case Intrinsic::matrix_multiply:
      LowerMultiply(Inst);
      break;
    case Intrinsic::matrix_transpose:
      LowerTranspose(Inst);
      break;
    case Intrinsic::matrix_column_major_load:
      LowerColumnMajorLoad(Inst);
      break;
    case Intrinsic::matrix_column_major_store:
      LowerColumnMajorStore(Inst);
      break;
    default:
      return false;
    }
    return true;
  }

  /// Compute the alignment for a column/row \p Idx with \p Stride between them.
  /// The address at \p Idx == 0 has alignment \p A. If \p Stride is a
  /// ConstantInt, reduce the initial alignment based on the byte offset. For
  /// non-ConstantInt strides, return the common alignment of the initial
  /// alignment and the element size in bytes.
  Align getAlignForIndex(unsigned Idx, Value *Stride, Type *ElementTy,
                         MaybeAlign A) const {
    Align InitialAlign = DL.getValueOrABITypeAlignment(A, ElementTy);
    if (Idx == 0)
      return InitialAlign;

    TypeSize ElementSizeInBits = DL.getTypeSizeInBits(ElementTy);
    if (auto *ConstStride = dyn_cast<ConstantInt>(Stride)) {
      uint64_t StrideInBytes =
          ConstStride->getZExtValue() * ElementSizeInBits / 8;
      return commonAlignment(InitialAlign, Idx * StrideInBytes);
    }
    return commonAlignment(InitialAlign, ElementSizeInBits / 8);
  }

  /// Load a matrix with \p Shape starting at \p Ptr and using \p Stride between
  /// vectors.
  MatrixTy loadMatrix(Type *Ty, Value *Ptr, MaybeAlign MAlign, Value *Stride,
                      bool IsVolatile, ShapeInfo Shape, IRBuilder<> &Builder) {
    auto VType = cast<VectorType>(Ty);
    Value *EltPtr = createElementPtr(Ptr, VType->getElementType(), Builder);
    MatrixTy Result;
    for (unsigned I = 0, E = Shape.getNumVectors(); I < E; ++I) {
      Value *GEP = computeVectorAddr(EltPtr, Builder.getInt64(I), Stride,
                                     Shape.getStride(), VType->getElementType(),
                                     Builder);
      Value *Vector = Builder.CreateAlignedLoad(
          GEP, getAlignForIndex(I, Stride, VType->getElementType(), MAlign),
          IsVolatile, "col.load");

      Result.addVector(Vector);
    }
    return Result.addNumLoads(getNumOps(Result.getVectorTy()) *
                              Result.getNumVectors());
  }

  /// Loads a sub-matrix with shape \p ResultShape from a \p R x \p C matrix,
  /// starting at \p MatrixPtr[I][J].
  MatrixTy loadMatrix(Value *MatrixPtr, MaybeAlign Align, bool IsVolatile,
                      ShapeInfo MatrixShape, Value *I, Value *J,
                      ShapeInfo ResultShape, Type *EltTy,
                      IRBuilder<> &Builder) {

    Value *Offset = Builder.CreateAdd(
        Builder.CreateMul(J, Builder.getInt64(MatrixShape.getStride())), I);

    unsigned AS = cast<PointerType>(MatrixPtr->getType())->getAddressSpace();
    Value *EltPtr =
        Builder.CreatePointerCast(MatrixPtr, PointerType::get(EltTy, AS));
    Value *TileStart = Builder.CreateGEP(EltTy, EltPtr, Offset);
    auto *TileTy = FixedVectorType::get(EltTy, ResultShape.NumRows *
                                                   ResultShape.NumColumns);
    Type *TilePtrTy = PointerType::get(TileTy, AS);
    Value *TilePtr =
        Builder.CreatePointerCast(TileStart, TilePtrTy, "col.cast");

    return loadMatrix(TileTy, TilePtr, Align,
                      Builder.getInt64(MatrixShape.getStride()), IsVolatile,
                      ResultShape, Builder);
  }

  /// Lower a load instruction with shape information.
  void LowerLoad(Instruction *Inst, Value *Ptr, MaybeAlign Align, Value *Stride,
                 bool IsVolatile, ShapeInfo Shape) {
    IRBuilder<> Builder(Inst);
    finalizeLowering(Inst,
                     loadMatrix(Inst->getType(), Ptr, Align, Stride, IsVolatile,
                                Shape, Builder),
                     Builder);
  }

  /// Lowers llvm.matrix.column.major.load.
  ///
  /// The intrinsic loads a matrix from memory using a stride between columns.
  void LowerColumnMajorLoad(CallInst *Inst) {
    assert(MatrixLayout == MatrixLayoutTy::ColumnMajor &&
           "Intrinsic only supports column-major layout!");
    Value *Ptr = Inst->getArgOperand(0);
    Value *Stride = Inst->getArgOperand(1);
    LowerLoad(Inst, Ptr, Inst->getParamAlign(0), Stride,
              cast<ConstantInt>(Inst->getArgOperand(2))->isOne(),
              {Inst->getArgOperand(3), Inst->getArgOperand(4)});
  }

  /// Stores a sub-matrix \p StoreVal into the \p R x \p C matrix starting at \p
  /// MatrixPtr[I][J].
  void storeMatrix(const MatrixTy &StoreVal, Value *MatrixPtr,
                   MaybeAlign MAlign, bool IsVolatile, ShapeInfo MatrixShape,
                   Value *I, Value *J, Type *EltTy, IRBuilder<> &Builder) {
    Value *Offset = Builder.CreateAdd(
        Builder.CreateMul(J, Builder.getInt64(MatrixShape.getStride())), I);

    unsigned AS = cast<PointerType>(MatrixPtr->getType())->getAddressSpace();
    Value *EltPtr =
        Builder.CreatePointerCast(MatrixPtr, PointerType::get(EltTy, AS));
    Value *TileStart = Builder.CreateGEP(EltTy, EltPtr, Offset);
    auto *TileTy = FixedVectorType::get(EltTy, StoreVal.getNumRows() *
                                                   StoreVal.getNumColumns());
    Type *TilePtrTy = PointerType::get(TileTy, AS);
    Value *TilePtr =
        Builder.CreatePointerCast(TileStart, TilePtrTy, "col.cast");

    storeMatrix(TileTy, StoreVal, TilePtr, MAlign,
                Builder.getInt64(MatrixShape.getStride()), IsVolatile, Builder);
  }

  /// Store matrix \p StoreVal starting at \p Ptr and using \p Stride between
  /// vectors.
  MatrixTy storeMatrix(Type *Ty, MatrixTy StoreVal, Value *Ptr,
                       MaybeAlign MAlign, Value *Stride, bool IsVolatile,
                       IRBuilder<> &Builder) {
    auto VType = cast<VectorType>(Ty);
    Value *EltPtr = createElementPtr(Ptr, VType->getElementType(), Builder);
    for (auto Vec : enumerate(StoreVal.vectors())) {
      Value *GEP = computeVectorAddr(EltPtr, Builder.getInt64(Vec.index()),
                                     Stride, StoreVal.getStride(),
                                     VType->getElementType(), Builder);
      Builder.CreateAlignedStore(Vec.value(), GEP,
                                 getAlignForIndex(Vec.index(), Stride,
                                                  VType->getElementType(),
                                                  MAlign),
                                 IsVolatile);
    }
    return MatrixTy().addNumStores(getNumOps(StoreVal.getVectorTy()) *
                                   StoreVal.getNumVectors());
  }

  /// Lower a store instruction with shape information.
  void LowerStore(Instruction *Inst, Value *Matrix, Value *Ptr, MaybeAlign A,
                  Value *Stride, bool IsVolatile, ShapeInfo Shape) {
    IRBuilder<> Builder(Inst);
    auto StoreVal = getMatrix(Matrix, Shape, Builder);
    finalizeLowering(Inst,
                     storeMatrix(Matrix->getType(), StoreVal, Ptr, A, Stride,
                                 IsVolatile, Builder),
                     Builder);
  }

  /// Lowers llvm.matrix.column.major.store.
  ///
  /// The intrinsic store a matrix back memory using a stride between columns.
  void LowerColumnMajorStore(CallInst *Inst) {
    assert(MatrixLayout == MatrixLayoutTy::ColumnMajor &&
           "Intrinsic only supports column-major layout!");
    Value *Matrix = Inst->getArgOperand(0);
    Value *Ptr = Inst->getArgOperand(1);
    Value *Stride = Inst->getArgOperand(2);
    LowerStore(Inst, Matrix, Ptr, Inst->getParamAlign(1), Stride,
               cast<ConstantInt>(Inst->getArgOperand(3))->isOne(),
               {Inst->getArgOperand(4), Inst->getArgOperand(5)});
  }

  // Set elements I..I+NumElts-1 to Block
  Value *insertVector(Value *Col, unsigned I, Value *Block,
                      IRBuilder<> &Builder) {

    // First, bring Block to the same size as Col
    unsigned BlockNumElts =
        cast<FixedVectorType>(Block->getType())->getNumElements();
    unsigned NumElts = cast<FixedVectorType>(Col->getType())->getNumElements();
    assert(NumElts >= BlockNumElts && "Too few elements for current block");

    Value *Undef = UndefValue::get(Block->getType());
    Block = Builder.CreateShuffleVector(
        Block, Undef,
        createSequentialMask(0, BlockNumElts, NumElts - BlockNumElts));

    // If Col is 7 long and I is 2 and BlockNumElts is 2 the mask is: 0, 1, 7,
    // 8, 4, 5, 6
    SmallVector<int, 16> Mask;
    unsigned i;
    for (i = 0; i < I; i++)
      Mask.push_back(i);

    unsigned VecNumElts =
        cast<FixedVectorType>(Col->getType())->getNumElements();
    for (; i < I + BlockNumElts; i++)
      Mask.push_back(i - I + VecNumElts);

    for (; i < VecNumElts; i++)
      Mask.push_back(i);

    return Builder.CreateShuffleVector(Col, Block, Mask);
  }

  Value *createMulAdd(Value *Sum, Value *A, Value *B, bool UseFPOp,
                      IRBuilder<> &Builder, bool AllowContraction,
                      unsigned &NumComputeOps) {
    NumComputeOps += getNumOps(A->getType());
    if (!Sum)
      return UseFPOp ? Builder.CreateFMul(A, B) : Builder.CreateMul(A, B);

    if (UseFPOp) {
      if (AllowContraction) {
        // Use fmuladd for floating point operations and let the backend decide
        // if that's profitable.
        Function *FMulAdd = Intrinsic::getDeclaration(
            Func.getParent(), Intrinsic::fmuladd, A->getType());
        return Builder.CreateCall(FMulAdd, {A, B, Sum});
      }
      NumComputeOps += getNumOps(A->getType());
      Value *Mul = Builder.CreateFMul(A, B);
      return Builder.CreateFAdd(Sum, Mul);
    }

    NumComputeOps += getNumOps(A->getType());
    Value *Mul = Builder.CreateMul(A, B);
    return Builder.CreateAdd(Sum, Mul);
  }

  /// Cache \p Matrix as result of \p Inst and update the uses of \p Inst. For
  /// users with shape information, there's nothing to do: the will use the
  /// cached value when they are lowered. For other users, \p Matrix is
  /// flattened and the uses are updated to use it. Also marks \p Inst for
  /// deletion.
  void finalizeLowering(Instruction *Inst, MatrixTy Matrix,
                        IRBuilder<> &Builder) {
    Inst2ColumnMatrix.insert(std::make_pair(Inst, Matrix));

    ToRemove.push_back(Inst);
    Value *Flattened = nullptr;
    for (auto I = Inst->use_begin(), E = Inst->use_end(); I != E;) {
      Use &U = *I++;
      if (ShapeMap.find(U.getUser()) == ShapeMap.end()) {
        if (!Flattened)
          Flattened = Matrix.embedInVector(Builder);
        U.set(Flattened);
      }
    }
  }

  /// Compute \p Result += \p A * \p B for input matrices with left-associating
  /// addition.
  void emitMatrixMultiply(MatrixTy &Result, const MatrixTy &A,
                          const MatrixTy &B, bool AllowContraction,
                          IRBuilder<> &Builder, bool isTiled) {
    const unsigned VF = std::max<unsigned>(
        TTI.getRegisterBitWidth(true) /
            Result.getElementType()->getPrimitiveSizeInBits().getFixedSize(),
        1U);
    unsigned R = Result.getNumRows();
    unsigned C = Result.getNumColumns();
    unsigned M = A.getNumColumns();

    bool IsFP = Result.getElementType()->isFloatingPointTy();
    assert(A.isColumnMajor() == B.isColumnMajor() &&
           Result.isColumnMajor() == A.isColumnMajor() &&
           "operands must agree on matrix layout");
    unsigned NumComputeOps = 0;
    if (A.isColumnMajor()) {
      // Multiply columns from the first operand with scalars from the second
      // operand. Then move along the K axes and accumulate the columns.  With
      // this the adds can be vectorized without reassociation.
      for (unsigned J = 0; J < C; ++J) {
        unsigned BlockSize = VF;
        // If Result is zero, we don't need to accumulate in the K==0 iteration.
        bool isSumZero = isa<ConstantAggregateZero>(Result.getColumn(J));

        for (unsigned I = 0; I < R; I += BlockSize) {
          // Gradually lower the vectorization factor to cover the remainder.
          while (I + BlockSize > R)
            BlockSize /= 2;

          Value *Sum = isTiled ? Result.extractVector(I, J, BlockSize, Builder)
                               : nullptr;
          for (unsigned K = 0; K < M; ++K) {
            Value *L = A.extractVector(I, K, BlockSize, Builder);
            Value *RH = Builder.CreateExtractElement(B.getColumn(J), K);
            Value *Splat = Builder.CreateVectorSplat(BlockSize, RH, "splat");
            Sum = createMulAdd(isSumZero && K == 0 ? nullptr : Sum, L, Splat,
                               Result.getElementType()->isFloatingPointTy(),
                               Builder, AllowContraction, NumComputeOps);
          }
          Result.setVector(J,
                           insertVector(Result.getVector(J), I, Sum, Builder));
        }
      }
    } else {
      // Multiply rows from the second operand with scalars from the first
      // operand. Then move along the K axes and accumulate the rows.  With this
      // the adds can be vectorized without reassociation.
      for (unsigned I = 0; I < R; ++I) {
        unsigned BlockSize = VF;
        bool isSumZero = isa<ConstantAggregateZero>(Result.getRow(I));
        for (unsigned J = 0; J < C; J += BlockSize) {
          // Gradually lower the vectorization factor to cover the remainder.
          while (J + BlockSize > C)
            BlockSize /= 2;

          Value *Sum = nullptr;
          for (unsigned K = 0; K < M; ++K) {
            Value *R = B.extractVector(K, J, BlockSize, Builder);
            Value *LH = Builder.CreateExtractElement(A.getVector(I), K);
            Value *Splat = Builder.CreateVectorSplat(BlockSize, LH, "splat");
            Sum = createMulAdd(isSumZero && K == 0 ? nullptr : Sum, Splat, R,
                               IsFP, Builder, AllowContraction, NumComputeOps);
          }
          Result.setVector(I,
                           insertVector(Result.getVector(I), J, Sum, Builder));
        }
      }
    }
    Result.addNumComputeOps(NumComputeOps);
  }

  /// Ensure that the memory in \p Load does not alias \p Store by potentially
  /// copying it to a new location.  This new or otherwise the original location
  /// is returned.
  Value *getNonAliasingPointer(LoadInst *Load, StoreInst *Store,
                               CallInst *MatMul) {
    MemoryLocation StoreLoc = MemoryLocation::get(Store);
    MemoryLocation LoadLoc = MemoryLocation::get(Load);

    AliasResult LdAliased = AA->alias(LoadLoc, StoreLoc);

    // If we can statically determine noalias we're good.
    if (!LdAliased)
      return Load->getPointerOperand();

    // Create code to check if the memory locations of the Load and Store
    // overlap and if they do, copy Load's operand to a new buffer.

    // First, create  new blocks for 2n part of the check and the copy.
    BasicBlock *Check0 = MatMul->getParent();
    // FIXME: Use lazy DTU and update SplitBlock to accept a DTU instead of a
    // DT. Manually collect dominator tree updates, to avoid unnecessary work,
    // as we adjust Check0 and Check1's branches.
    SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
    for (BasicBlock *Succ : successors(Check0))
      DTUpdates.push_back({DT->Delete, Check0, Succ});

    BasicBlock *Check1 = SplitBlock(MatMul->getParent(), MatMul, nullptr, LI,
                                    nullptr, "alias_cont");
    BasicBlock *Copy =
        SplitBlock(MatMul->getParent(), MatMul, nullptr, LI, nullptr, "copy");
    BasicBlock *Fusion = SplitBlock(MatMul->getParent(), MatMul, nullptr, LI,
                                    nullptr, "no_alias");

    // Check if the loaded memory location begins before the end of the store
    // location. If the condition holds, they might overlap, otherwise they are
    // guaranteed to not overlap.
    IRBuilder<> Builder(MatMul);
    Check0->getTerminator()->eraseFromParent();
    Builder.SetInsertPoint(Check0);
    Type *IntPtrTy = Builder.getIntPtrTy(Load->getModule()->getDataLayout());
    Value *StoreBegin = Builder.CreatePtrToInt(
        const_cast<Value *>(StoreLoc.Ptr), IntPtrTy, "store.begin");
    Value *StoreEnd = Builder.CreateAdd(
        StoreBegin, ConstantInt::get(IntPtrTy, StoreLoc.Size.getValue()),
        "store.end", true, true);
    Value *LoadBegin = Builder.CreatePtrToInt(const_cast<Value *>(LoadLoc.Ptr),
                                              IntPtrTy, "load.begin");
    Builder.CreateCondBr(Builder.CreateICmpULT(LoadBegin, StoreEnd), Check1,
                         Fusion);

    // Check if the store begins before the end of the load location. If the
    // condition holds, they alias, otherwise they are guaranteed to not
    // overlap.
    Check1->getTerminator()->eraseFromParent();
    Builder.SetInsertPoint(Check1, Check1->begin());
    Value *LoadEnd = Builder.CreateAdd(
        LoadBegin, ConstantInt::get(IntPtrTy, LoadLoc.Size.getValue()),
        "load.end", true, true);
    Builder.CreateCondBr(Builder.CreateICmpULT(StoreBegin, LoadEnd), Copy,
                         Fusion);

    // Copy load operand to new alloca.
    Builder.SetInsertPoint(Copy, Copy->begin());
    AllocaInst *NewLd =
        Builder.CreateAlloca(Load->getType(), Load->getPointerAddressSpace());
    Builder.CreateMemCpy(NewLd, NewLd->getAlign(),
                         Load->getPointerOperand(), Load->getAlign(),
                         LoadLoc.Size.getValue());
    Builder.SetInsertPoint(Fusion, Fusion->begin());
    PHINode *PHI = Builder.CreatePHI(Load->getPointerOperandType(), 3);
    PHI->addIncoming(Load->getPointerOperand(), Check0);
    PHI->addIncoming(Load->getPointerOperand(), Check1);
    PHI->addIncoming(NewLd, Copy);

    // Adjust DT.
    DTUpdates.push_back({DT->Insert, Check0, Check1});
    DTUpdates.push_back({DT->Insert, Check0, Fusion});
    DTUpdates.push_back({DT->Insert, Check1, Copy});
    DTUpdates.push_back({DT->Insert, Check1, Fusion});
    DT->applyUpdates(DTUpdates);
    return PHI;
  }

  bool isFusionProfitable(CallInst *MatMul) {
    if (ForceFusion)
      return true;

    ShapeInfo LShape(MatMul->getArgOperand(2), MatMul->getArgOperand(3));
    ShapeInfo RShape(MatMul->getArgOperand(3), MatMul->getArgOperand(4));

    const unsigned R = LShape.NumRows;
    const unsigned C = RShape.NumColumns;
    const unsigned M = LShape.NumColumns;
    auto *EltType = cast<VectorType>(MatMul->getType())->getElementType();

    const unsigned VF =
        std::max<unsigned>(TTI.getRegisterBitWidth(true) /
                               EltType->getPrimitiveSizeInBits().getFixedSize(),
                           1U);

    // Cost model for tiling
    //
    // For tiling to be beneficial, we need reuse either along the R or
    // the C axis.  We vectorize along the R axis so that means at least
    // 3 elements.
    // TODO: Also consider cost of copying if operands alias.
    if (R <= VF && C == 1)
      return false;
    // Then we need enough elements to exceed the number of vector
    // registers we have.  Note that this is an oversimplification since
    // fusing also takes some extra loads which may exceed the number of
    // reloads necessary.
    unsigned Op0Regs = (R + VF - 1) / VF * M;
    unsigned Op1Regs = (M + VF - 1) / VF * C;
    return Op0Regs + Op1Regs > TTI.getNumberOfRegisters(true);
  }

  MatrixTy getZeroMatrix(Type *EltType, unsigned R, unsigned C) {
    MatrixTy Res;
    auto *ColumType = FixedVectorType::get(EltType, R);
    for (unsigned I = 0; I < C; ++I)
      Res.addVector(ConstantAggregateZero::get(ColumType));
    return Res;
  }

  void createTiledLoops(CallInst *MatMul, Value *LPtr, ShapeInfo LShape,
                        Value *RPtr, ShapeInfo RShape, StoreInst *Store,
                        bool AllowContract) {
    auto *EltType = cast<VectorType>(MatMul->getType())->getElementType();

    // Create the main tiling loop nest.
    TileInfo TI(LShape.NumRows, RShape.NumColumns, LShape.NumColumns, TileSize);
    DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
    Instruction *InsertI = cast<Instruction>(MatMul);
    BasicBlock *Start = InsertI->getParent();
    BasicBlock *End =
        SplitBlock(InsertI->getParent(), InsertI, DT, LI, nullptr, "continue");
    IRBuilder<> Builder(MatMul);
    BasicBlock *InnerBody = TI.CreateTiledLoops(Start, End, Builder, DTU, *LI);

    Type *TileVecTy =
        FixedVectorType::get(MatMul->getType()->getScalarType(), TileSize);
    MatrixTy TileResult;
    // Insert in the inner loop header.
    Builder.SetInsertPoint(TI.InnerLoopHeader->getTerminator());
    // Create PHI nodes for the result columns to accumulate across iterations.
    SmallVector<PHINode *, 4> ColumnPhis;
    for (unsigned I = 0; I < TileSize; I++) {
      auto *Phi = Builder.CreatePHI(TileVecTy, 2, "result.vec." + Twine(I));
      Phi->addIncoming(ConstantAggregateZero::get(TileVecTy),
                       TI.RowLoopHeader->getSingleSuccessor());
      TileResult.addVector(Phi);
      ColumnPhis.push_back(Phi);
    }

    // Insert in the inner loop body, which computes
    //   Res += Load(CurrentRow, K) * Load(K, CurrentColumn)
    Builder.SetInsertPoint(InnerBody->getTerminator());
    // Load tiles of the operands.
    MatrixTy A = loadMatrix(LPtr, {}, false, LShape, TI.CurrentRow, TI.CurrentK,
                            {TileSize, TileSize}, EltType, Builder);
    MatrixTy B = loadMatrix(RPtr, {}, false, RShape, TI.CurrentK, TI.CurrentCol,
                            {TileSize, TileSize}, EltType, Builder);
    emitMatrixMultiply(TileResult, A, B, AllowContract, Builder, true);
    // Store result after the inner loop is done.
    Builder.SetInsertPoint(TI.RowLoopLatch->getTerminator());
    storeMatrix(TileResult, Store->getPointerOperand(), Store->getAlign(),
                Store->isVolatile(), {LShape.NumRows, RShape.NumColumns},
                TI.CurrentRow, TI.CurrentCol, EltType, Builder);

    for (unsigned I = 0; I < TileResult.getNumVectors(); I++)
      ColumnPhis[I]->addIncoming(TileResult.getVector(I), TI.InnerLoopLatch);

    // Force unrolling of a few iterations of the inner loop, to make sure there
    // is enough work per iteration.
    // FIXME: The unroller should make this decision directly instead, but
    // currently the cost-model is not up to the task.
    unsigned InnerLoopUnrollCount = std::min(10u, LShape.NumColumns / TileSize);
    addStringMetadataToLoop(LI->getLoopFor(TI.InnerLoopHeader),
                            "llvm.loop.unroll.count", InnerLoopUnrollCount);
  }

  void emitSIMDTiling(CallInst *MatMul, LoadInst *LoadOp0, LoadInst *LoadOp1,
                      StoreInst *Store,
                      SmallPtrSetImpl<Instruction *> &FusedInsts) {
    assert(MatrixLayout == MatrixLayoutTy::ColumnMajor &&
           "Tiling only supported for column-major matrixes at the moment!");
    if (!isFusionProfitable(MatMul))
      return;

    ShapeInfo LShape(MatMul->getArgOperand(2), MatMul->getArgOperand(3));
    ShapeInfo RShape(MatMul->getArgOperand(3), MatMul->getArgOperand(4));

    const unsigned R = LShape.NumRows;
    const unsigned C = RShape.NumColumns;
    const unsigned M = LShape.NumColumns;
    auto *EltType = cast<VectorType>(MatMul->getType())->getElementType();

    Value *APtr = getNonAliasingPointer(LoadOp0, Store, MatMul);
    Value *BPtr = getNonAliasingPointer(LoadOp1, Store, MatMul);
    Value *CPtr = Store->getPointerOperand();

    bool AllowContract = AllowContractEnabled || (isa<FPMathOperator>(MatMul) &&
                                                  MatMul->hasAllowContract());
    if (TileUseLoops && (R % TileSize == 0 && C % TileSize == 0))
      createTiledLoops(MatMul, APtr, LShape, BPtr, RShape, Store,
                       AllowContract);
    else {
      IRBuilder<> Builder(Store);
      for (unsigned J = 0; J < C; J += TileSize)
        for (unsigned I = 0; I < R; I += TileSize) {
          const unsigned TileR = std::min(R - I, unsigned(TileSize));
          const unsigned TileC = std::min(C - J, unsigned(TileSize));
          MatrixTy Res = getZeroMatrix(EltType, TileR, TileC);

          for (unsigned K = 0; K < M; K += TileSize) {
            const unsigned TileM = std::min(M - K, unsigned(TileSize));
            MatrixTy A =
                loadMatrix(APtr, LoadOp0->getAlign(), LoadOp0->isVolatile(),
                           LShape, Builder.getInt64(I), Builder.getInt64(K),
                           {TileR, TileM}, EltType, Builder);
            MatrixTy B =
                loadMatrix(BPtr, LoadOp1->getAlign(), LoadOp1->isVolatile(),
                           RShape, Builder.getInt64(K), Builder.getInt64(J),
                           {TileM, TileC}, EltType, Builder);
            emitMatrixMultiply(Res, A, B, AllowContract, Builder, true);
          }
          storeMatrix(Res, CPtr, Store->getAlign(), Store->isVolatile(), {R, M},
                      Builder.getInt64(I), Builder.getInt64(J), EltType,
                      Builder);
        }
    }

    // Mark eliminated instructions as fused and remove them.
    FusedInsts.insert(Store);
    FusedInsts.insert(MatMul);
    Store->eraseFromParent();
    MatMul->eraseFromParent();
    if (LoadOp0->hasNUses(0)) {
      FusedInsts.insert(LoadOp0);
      LoadOp0->eraseFromParent();
    }
    if (LoadOp1->hasNUses(0)) {
      FusedInsts.insert(LoadOp1);
      LoadOp1->eraseFromParent();
    }
  }

  /// Try to lower matrix multiply chains by fusing operations.
  ///
  /// Currently we only lower {ld, ld} -> matmul -> st chains.
  //
  /// No need to return a MatrixTy object for the result of the operation, since
  /// the single store user will be lowered as part of this. Instructions that
  /// are completely eliminated by fusion are added to \p FusedInsts.
  void LowerMatrixMultiplyFused(CallInst *MatMul,
                                SmallPtrSetImpl<Instruction *> &FusedInsts) {
    if (!FuseMatrix || !MatMul->hasOneUse() ||
        MatrixLayout != MatrixLayoutTy::ColumnMajor || !DT)
      return;

    auto *LoadOp0 = dyn_cast<LoadInst>(MatMul->getOperand(0));
    auto *LoadOp1 = dyn_cast<LoadInst>(MatMul->getOperand(1));
    auto *Store = dyn_cast<StoreInst>(*MatMul->user_begin());
    if (LoadOp0 && LoadOp1 && Store) {
      // The store address must dominate the MatMul instruction, otherwise
      // we create invalid IR.
      // FIXME: See if we can hoist the store address computation.
      auto *AddrI = dyn_cast<Instruction>(Store->getOperand(1));
      if (AddrI && (!DT->dominates(AddrI, MatMul)))
        return;

      emitSIMDTiling(MatMul, LoadOp0, LoadOp1, Store, FusedInsts);
      return;
    }
  }

  /// Lowers llvm.matrix.multiply.
  void LowerMultiply(CallInst *MatMul) {
    IRBuilder<> Builder(MatMul);
    auto *EltType = cast<VectorType>(MatMul->getType())->getElementType();
    ShapeInfo LShape(MatMul->getArgOperand(2), MatMul->getArgOperand(3));
    ShapeInfo RShape(MatMul->getArgOperand(3), MatMul->getArgOperand(4));

    const MatrixTy &Lhs = getMatrix(MatMul->getArgOperand(0), LShape, Builder);
    const MatrixTy &Rhs = getMatrix(MatMul->getArgOperand(1), RShape, Builder);
    assert(Lhs.getElementType() == Rhs.getElementType() &&
           "Matrix multiply argument element types do not match.");

    const unsigned R = LShape.NumRows;
    const unsigned C = RShape.NumColumns;
    assert(LShape.NumColumns == RShape.NumRows);

    // Initialize the output
    MatrixTy Result(R, C, EltType);
    assert(Lhs.getElementType() == Result.getElementType() &&
           "Matrix multiply result element type does not match arguments.");

    bool AllowContract = AllowContractEnabled || (isa<FPMathOperator>(MatMul) &&
                                                  MatMul->hasAllowContract());
    emitMatrixMultiply(Result, Lhs, Rhs, AllowContract, Builder, false);
    finalizeLowering(MatMul, Result, Builder);
  }

  /// Lowers llvm.matrix.transpose.
  void LowerTranspose(CallInst *Inst) {
    MatrixTy Result;
    IRBuilder<> Builder(Inst);
    Value *InputVal = Inst->getArgOperand(0);
    VectorType *VectorTy = cast<VectorType>(InputVal->getType());
    ShapeInfo ArgShape(Inst->getArgOperand(1), Inst->getArgOperand(2));
    MatrixTy InputMatrix = getMatrix(InputVal, ArgShape, Builder);

    const unsigned NewNumVecs =
        InputMatrix.isColumnMajor() ? ArgShape.NumRows : ArgShape.NumColumns;
    const unsigned NewNumElts =
        InputMatrix.isColumnMajor() ? ArgShape.NumColumns : ArgShape.NumRows;

    for (unsigned I = 0; I < NewNumVecs; ++I) {
      // Build a single result vector. First initialize it.
      Value *ResultVector = UndefValue::get(
          FixedVectorType::get(VectorTy->getElementType(), NewNumElts));
      // Go through the old elements and insert it into the resulting vector.
      for (auto J : enumerate(InputMatrix.vectors())) {
        Value *Elt = Builder.CreateExtractElement(J.value(), I);
        // Row and column indices are transposed.
        ResultVector =
            Builder.CreateInsertElement(ResultVector, Elt, J.index());
      }
      Result.addVector(ResultVector);
    }

    // TODO: Improve estimate of operations needed for transposes. Currently we
    // just count the insertelement/extractelement instructions, but do not
    // account for later simplifications/combines.
    finalizeLowering(
        Inst,
        Result.addNumComputeOps(2 * ArgShape.NumRows * ArgShape.NumColumns),
        Builder);
  }

  /// Lower load instructions, if shape information is available.
  bool VisitLoad(LoadInst *Inst, Value *Ptr, IRBuilder<> &Builder) {
    auto I = ShapeMap.find(Inst);
    if (I == ShapeMap.end())
      return false;

    LowerLoad(Inst, Ptr, Inst->getAlign(),
              Builder.getInt64(I->second.getStride()), Inst->isVolatile(),
              I->second);
    return true;
  }

  bool VisitStore(StoreInst *Inst, Value *StoredVal, Value *Ptr,
                  IRBuilder<> &Builder) {
    auto I = ShapeMap.find(StoredVal);
    if (I == ShapeMap.end())
      return false;

    LowerStore(Inst, StoredVal, Ptr, Inst->getAlign(),
               Builder.getInt64(I->second.getStride()), Inst->isVolatile(),
               I->second);
    return true;
  }

  /// Lower binary operators, if shape information is available.
  bool VisitBinaryOperator(BinaryOperator *Inst) {
    auto I = ShapeMap.find(Inst);
    if (I == ShapeMap.end())
      return false;

    Value *Lhs = Inst->getOperand(0);
    Value *Rhs = Inst->getOperand(1);

    IRBuilder<> Builder(Inst);
    ShapeInfo &Shape = I->second;

    MatrixTy Result;
    MatrixTy A = getMatrix(Lhs, Shape, Builder);
    MatrixTy B = getMatrix(Rhs, Shape, Builder);
    assert(A.isColumnMajor() == B.isColumnMajor() &&
           Result.isColumnMajor() == A.isColumnMajor() &&
           "operands must agree on matrix layout");

    // Helper to perform binary op on vectors.
    auto BuildVectorOp = [&Builder, Inst](Value *LHS, Value *RHS) {
      switch (Inst->getOpcode()) {
      case Instruction::Add:
        return Builder.CreateAdd(LHS, RHS);
      case Instruction::Mul:
        return Builder.CreateMul(LHS, RHS);
      case Instruction::Sub:
        return Builder.CreateSub(LHS, RHS);
      case Instruction::FAdd:
        return Builder.CreateFAdd(LHS, RHS);
      case Instruction::FMul:
        return Builder.CreateFMul(LHS, RHS);
      case Instruction::FSub:
        return Builder.CreateFSub(LHS, RHS);
      default:
        llvm_unreachable("Unsupported binary operator for matrix");
      }
    };

    for (unsigned I = 0; I < Shape.getNumVectors(); ++I)
      Result.addVector(BuildVectorOp(A.getVector(I), B.getVector(I)));

    finalizeLowering(Inst,
                     Result.addNumComputeOps(getNumOps(Result.getVectorTy()) *
                                             Result.getNumVectors()),
                     Builder);
    return true;
  }

  /// Helper to linearize a matrix expression tree into a string. Currently
  /// matrix expressions are linarized by starting at an expression leaf and
  /// linearizing bottom up.
  struct ExprLinearizer {
    unsigned LengthToBreak = 100;
    std::string Str;
    raw_string_ostream Stream;
    unsigned LineLength = 0;
    const DataLayout &DL;

    /// Mapping from instructions to matrixes. It is used to identify
    /// matrix instructions.
    const MapVector<Value *, MatrixTy> &Inst2Matrix;

    /// Mapping from values to the leaves of all expressions that the value is
    /// part of.
    const DenseMap<Value *, SmallPtrSet<Value *, 2>> &Shared;

    /// Set of matrix expressions in the scope of a given DISubprogram.
    const SmallSetVector<Value *, 32> &ExprsInSubprogram;

    /// Leaf node of the expression to linearize.
    Value *Leaf;

    /// Used to keep track of sub-expressions that get reused while linearizing
    /// the expression. Re-used sub-expressions are marked as (reused).
    SmallPtrSet<Value *, 8> ReusedExprs;

    ExprLinearizer(const DataLayout &DL,
                   const MapVector<Value *, MatrixTy> &Inst2Matrix,
                   const DenseMap<Value *, SmallPtrSet<Value *, 2>> &Shared,
                   const SmallSetVector<Value *, 32> &ExprsInSubprogram,
                   Value *Leaf)
        : Str(), Stream(Str), DL(DL), Inst2Matrix(Inst2Matrix), Shared(Shared),
          ExprsInSubprogram(ExprsInSubprogram), Leaf(Leaf) {}

    void indent(unsigned N) {
      LineLength += N;
      for (unsigned i = 0; i < N; i++)
        Stream << " ";
    }

    void lineBreak() {
      Stream << "\n";
      LineLength = 0;
    }

    void maybeIndent(unsigned Indent) {
      if (LineLength >= LengthToBreak)
        lineBreak();

      if (LineLength == 0)
        indent(Indent);
    }

    void write(StringRef S) {
      LineLength += S.size();
      Stream << S;
    }

    Value *getUnderlyingObjectThroughLoads(Value *V) {
      if (Value *Ptr = getPointerOperand(V))
        return getUnderlyingObjectThroughLoads(Ptr);
      else if (V->getType()->isPointerTy())
        return getUnderlyingObject(V);
      return V;
    }

    /// Returns true if \p V is a matrix value in the given subprogram.
    bool isMatrix(Value *V) const { return ExprsInSubprogram.count(V); }

    /// If \p V is a matrix value, print its shape as as NumRows x NumColumns to
    /// \p SS.
    void prettyPrintMatrixType(Value *V, raw_string_ostream &SS) {
      auto M = Inst2Matrix.find(V);
      if (M == Inst2Matrix.end())
        SS << "unknown";
      else {
        SS << M->second.getNumRows();
        SS << "x";
        SS << M->second.getNumColumns();
      }
    }

    /// Write the called function name. Handles calls to llvm.matrix.*
    /// specially: we write the name, followed by the dimensions of the input
    /// matrixes, followed by the scalar type name.
    void writeFnName(CallInst *CI) {
      if (!CI->getCalledFunction())
        write("<no called fn>");
      else {
        StringRef Name = CI->getCalledFunction()->getName();
        if (!Name.startswith("llvm.matrix")) {
          write(Name);
          return;
        }
        IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
        write(StringRef(Intrinsic::getName(II->getIntrinsicID(), {}))
                  .drop_front(StringRef("llvm.matrix.").size()));
        write(".");
        std::string Tmp = "";
        raw_string_ostream SS(Tmp);

        switch (II->getIntrinsicID()) {
        case Intrinsic::matrix_multiply:
          prettyPrintMatrixType(II->getOperand(0), SS);
          SS << ".";
          prettyPrintMatrixType(II->getOperand(1), SS);
          SS << "." << *II->getType()->getScalarType();
          break;
        case Intrinsic::matrix_transpose:
          prettyPrintMatrixType(II->getOperand(0), SS);
          SS << "." << *II->getType()->getScalarType();
          break;
        case Intrinsic::matrix_column_major_load:
          prettyPrintMatrixType(II, SS);
          SS << "." << *II->getType()->getScalarType();
          break;
        case Intrinsic::matrix_column_major_store:
          prettyPrintMatrixType(II->getOperand(0), SS);
          SS << "." << *II->getOperand(0)->getType()->getScalarType();
          break;
        default:
          llvm_unreachable("Unhandled case");
        }
        SS.flush();
        write(Tmp);
      }
    }

    unsigned getNumShapeArgs(CallInst *CI) const {
      if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
        switch (II->getIntrinsicID()) {
        case Intrinsic::matrix_multiply:
          return 3;
        case Intrinsic::matrix_transpose:
          return 2;
        case Intrinsic::matrix_column_major_load:
        case Intrinsic::matrix_column_major_store:
          return 3;
        default:
          return 0;
        }
      }
      return 0;
    }

    /// Special printing for values: for pointers, we print if they refer to an
    /// (function) external address or a stack address, for other values we
    /// either print the constant or "scalar"/"matrix" for other values.
    void write(Value *V) {
      V = getUnderlyingObjectThroughLoads(V);
      if (V->getType()->isPointerTy()) {
        if (isa<AllocaInst>(V)) {
          Stream << "stack addr";
          LineLength += StringRef("stack addr").size();
        } else {
          Stream << "addr";
          LineLength += StringRef("addr").size();
        }
        if (!V->getName().empty()) {
          Stream << " %" << V->getName() << "";
          LineLength += V->getName().size() + 2;
        }
        return;
      }

      std::string Tmp;
      raw_string_ostream TmpStream(Tmp);

      if (auto *CI = dyn_cast<ConstantInt>(V))
        TmpStream << CI->getValue();
      else if (isa<Constant>(V))
        TmpStream << "constant";
      else {
        if (isMatrix(V))
          TmpStream << "matrix";
        else
          TmpStream << "scalar";
      }
      TmpStream.flush();
      Tmp = std::string(StringRef(Tmp).trim());
      LineLength += Tmp.size();
      Stream << Tmp;
    }

    /// Linearize expression \p Expr starting at an indentation of \p Indent.
    /// Expressions that are re-used multiple times are prefixed with (reused)
    /// at the re-used root instruction.
    void linearizeExpr(Value *Expr, unsigned Indent, bool ParentReused,
                       bool ParentShared) {
      auto *I = cast<Instruction>(Expr);
      maybeIndent(Indent);
      SmallVector<Value *, 8> Ops;

      // Is Expr shared with other expression leaves?
      bool ExprShared = false;

      // Deal with shared subtrees. Mark them as shared, if required.
      if (!ParentShared) {
        auto SI = Shared.find(Expr);
        assert(SI != Shared.end() && SI->second.count(Leaf));

        for (Value *S : SI->second) {
          if (S == Leaf)
            continue;
          DebugLoc DL = cast<Instruction>(S)->getDebugLoc();
          write("shared with remark at line " + std::to_string(DL.getLine()) +
                " column " + std::to_string(DL.getCol()) + " (");
        }
        ExprShared = SI->second.size() > 1;
      }

      bool Reused = !ReusedExprs.insert(Expr).second;
      if (Reused && !ParentReused)
        write("(reused) ");

      if (auto *CI = dyn_cast<CallInst>(I)) {
        writeFnName(CI);

        Ops.append(CI->arg_begin(), CI->arg_end() - getNumShapeArgs(CI));
      } else if (isa<BitCastInst>(Expr)) {
        // Special case bitcasts, which are used to materialize matrixes from
        // non-matrix ops.
        write("matrix");
        return;
      } else {
        Ops.append(I->value_op_begin(), I->value_op_end());
        write(std::string(I->getOpcodeName()));
      }

      write(std::string("("));

      unsigned NumOpsToBreak = 1;
      if (match(Expr, m_Intrinsic<Intrinsic::matrix_column_major_load>()))
        NumOpsToBreak = 2;

      for (Value *Op : Ops) {
        if (Ops.size() > NumOpsToBreak)
          lineBreak();

        maybeIndent(Indent + 1);
        if (isMatrix(Op))
          linearizeExpr(Op, Indent + 1, Reused, ExprShared);
        else
          write(Op);
        if (Op != Ops.back())
          write(", ");
      }

      write(")");
    }

    const std::string &getResult() {
      Stream.flush();
      return Str;
    }
  };

  /// Generate remarks for matrix operations in a function. To generate remarks
  /// for matrix expressions, the following approach is used:
  /// 1. Use the inlined-at debug information to group matrix operations to the
  ///    DISubprograms they are contained in.
  /// 2. Collect leaves of matrix expressions (done in
  ///    RemarkGenerator::getExpressionLeaves) for each subprogram - expression
  //     mapping.  Leaves are lowered matrix instructions without other matrix
  //     users (like stores) in the current subprogram.
  /// 3. For each leaf, create a remark containing a linearizied version of the
  ///    matrix expression. The expression is linearized by a recursive
  ///    bottom-up traversal of the matrix operands, starting at a leaf. Note
  ///    that multiple leaves can share sub-expressions. Shared subexpressions
  ///    are explicitly marked as shared().
  struct RemarkGenerator {
    const MapVector<Value *, MatrixTy> &Inst2Matrix;
    OptimizationRemarkEmitter &ORE;
    Function &Func;
    const DataLayout &DL;

    RemarkGenerator(const MapVector<Value *, MatrixTy> &Inst2Matrix,
                    OptimizationRemarkEmitter &ORE, Function &Func)
        : Inst2Matrix(Inst2Matrix), ORE(ORE), Func(Func),
          DL(Func.getParent()->getDataLayout()) {}

    /// Return all leaves of the expressions in \p ExprsInSubprogram. Those are
    /// instructions in Inst2Matrix returning void or without any users in
    /// \p ExprsInSubprogram. Currently that should only include stores.
    SmallVector<Value *, 4>
    getExpressionLeaves(const SmallSetVector<Value *, 32> &ExprsInSubprogram) {
      SmallVector<Value *, 4> Leaves;
      for (auto *Expr : ExprsInSubprogram)
        if (Expr->getType()->isVoidTy() ||
            !any_of(Expr->users(), [&ExprsInSubprogram](User *U) {
              return ExprsInSubprogram.count(U);
            }))
          Leaves.push_back(Expr);
      return Leaves;
    }

    /// Recursively traverse expression \p V starting at \p Leaf and add \p Leaf
    /// to all visited expressions in \p Shared. Limit the matrix operations to
    /// the ones in \p ExprsInSubprogram.
    void collectSharedInfo(Value *Leaf, Value *V,
                           const SmallSetVector<Value *, 32> &ExprsInSubprogram,
                           DenseMap<Value *, SmallPtrSet<Value *, 2>> &Shared) {

      if (!ExprsInSubprogram.count(V))
        return;

      auto I = Shared.insert({V, {}});
      I.first->second.insert(Leaf);

      for (Value *Op : cast<Instruction>(V)->operand_values())
        collectSharedInfo(Leaf, Op, ExprsInSubprogram, Shared);
      return;
    }

    /// Calculate the number of exclusive and shared op counts for expression
    /// starting at \p V. Expressions used multiple times are counted once.
    /// Limit the matrix operations to the ones in \p ExprsInSubprogram.
    std::pair<OpInfoTy, OpInfoTy>
    sumOpInfos(Value *Root, SmallPtrSetImpl<Value *> &ReusedExprs,
               const SmallSetVector<Value *, 32> &ExprsInSubprogram,
               DenseMap<Value *, SmallPtrSet<Value *, 2>> &Shared) const {
      if (!ExprsInSubprogram.count(Root))
        return {};

      // Already counted this expression. Stop.
      if (!ReusedExprs.insert(Root).second)
        return {};

      OpInfoTy SharedCount;
      OpInfoTy Count;

      auto I = Shared.find(Root);
      auto CM = Inst2Matrix.find(Root);
      if (I->second.size() == 1)
        Count = CM->second.getOpInfo();
      else
        SharedCount = CM->second.getOpInfo();

      for (Value *Op : cast<Instruction>(Root)->operand_values()) {
        auto C = sumOpInfos(Op, ReusedExprs, ExprsInSubprogram, Shared);
        Count += C.first;
        SharedCount += C.second;
      }
      return {Count, SharedCount};
    }

    void emitRemarks() {
      if (!ORE.allowExtraAnalysis(DEBUG_TYPE))
        return;

      // Map matrix operations to their containting subprograms, by traversing
      // the inlinedAt chain. If the function does not have a DISubprogram, we
      // only map them to the containing function.
      MapVector<DISubprogram *, SmallVector<Value *, 8>> Subprog2Exprs;
      for (auto &KV : Inst2Matrix) {
        if (Func.getSubprogram()) {
          auto *I = cast<Instruction>(KV.first);
          DILocation *Context = I->getDebugLoc();
          while (Context) {
            auto I =
                Subprog2Exprs.insert({getSubprogram(Context->getScope()), {}});
            I.first->second.push_back(KV.first);
            Context = DebugLoc(Context).getInlinedAt();
          }
        } else {
          auto I = Subprog2Exprs.insert({nullptr, {}});
          I.first->second.push_back(KV.first);
        }
      }
      for (auto &KV : Subprog2Exprs) {
        SmallSetVector<Value *, 32> ExprsInSubprogram(KV.second.begin(),
                                                      KV.second.end());
        auto Leaves = getExpressionLeaves(ExprsInSubprogram);

        DenseMap<Value *, SmallPtrSet<Value *, 2>> Shared;
        for (Value *Leaf : Leaves)
          collectSharedInfo(Leaf, Leaf, ExprsInSubprogram, Shared);

        // Generate remarks for each leaf.
        for (auto *L : Leaves) {

          DebugLoc Loc = cast<Instruction>(L)->getDebugLoc();
          DILocation *Context = cast<Instruction>(L)->getDebugLoc();
          while (Context) {
            if (getSubprogram(Context->getScope()) == KV.first) {
              Loc = Context;
              break;
            }
            Context = DebugLoc(Context).getInlinedAt();
          }

          SmallPtrSet<Value *, 8> ReusedExprs;
          OpInfoTy Counts, SharedCounts;
          std::tie(Counts, SharedCounts) =
              sumOpInfos(L, ReusedExprs, ExprsInSubprogram, Shared);

          OptimizationRemark Rem(DEBUG_TYPE, "matrix-lowered", Loc,
                                 cast<Instruction>(L)->getParent());

          Rem << "Lowered with ";
          Rem << ore::NV("NumStores", Counts.NumStores) << " stores, "
              << ore::NV("NumLoads", Counts.NumLoads) << " loads, "
              << ore::NV("NumComputeOps", Counts.NumComputeOps)
              << " compute ops";

          if (SharedCounts.NumStores > 0 || SharedCounts.NumLoads > 0 ||
              SharedCounts.NumComputeOps > 0) {
            Rem << ",\nadditionally "
                << ore::NV("NumStores", SharedCounts.NumStores) << " stores, "
                << ore::NV("NumLoads", SharedCounts.NumLoads) << " loads, "
                << ore::NV("NumFPOps", SharedCounts.NumComputeOps)
                << " compute ops"
                << " are shared with other expressions";
          }

          Rem << ("\n" + linearize(L, Shared, ExprsInSubprogram, DL));
          ORE.emit(Rem);
        }
      }
    }

    std::string
    linearize(Value *L,
              const DenseMap<Value *, SmallPtrSet<Value *, 2>> &Shared,
              const SmallSetVector<Value *, 32> &ExprsInSubprogram,
              const DataLayout &DL) {
      ExprLinearizer Lin(DL, Inst2Matrix, Shared, ExprsInSubprogram, L);
      Lin.linearizeExpr(L, 0, false, false);
      return Lin.getResult();
    }
  };
};
} // namespace

PreservedAnalyses LowerMatrixIntrinsicsPass::run(Function &F,
                                                 FunctionAnalysisManager &AM) {
  auto &TTI = AM.getResult<TargetIRAnalysis>(F);
  auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
  auto &AA = AM.getResult<AAManager>(F);
  auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
  auto &LI = AM.getResult<LoopAnalysis>(F);

  LowerMatrixIntrinsics LMT(F, TTI, &AA, &DT, &LI, &ORE);
  if (LMT.Visit()) {
    PreservedAnalyses PA;
    PA.preserveSet<CFGAnalyses>();
    return PA;
  }
  return PreservedAnalyses::all();
}

namespace {

class LowerMatrixIntrinsicsLegacyPass : public FunctionPass {
public:
  static char ID;

  LowerMatrixIntrinsicsLegacyPass() : FunctionPass(ID) {
    initializeLowerMatrixIntrinsicsLegacyPassPass(
        *PassRegistry::getPassRegistry());
  }

  bool runOnFunction(Function &F) override {
    auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
    auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
    auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
    auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
    auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
    LowerMatrixIntrinsics LMT(F, TTI, &AA, &DT, &LI, &ORE);
    bool C = LMT.Visit();
    return C;
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<TargetTransformInfoWrapperPass>();
    AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
    AU.addRequired<AAResultsWrapperPass>();
    AU.addRequired<DominatorTreeWrapperPass>();
    AU.addPreserved<DominatorTreeWrapperPass>();
    AU.addRequired<LoopInfoWrapperPass>();
    AU.addPreserved<LoopInfoWrapperPass>();
  }
};
} // namespace

static const char pass_name[] = "Lower the matrix intrinsics";
char LowerMatrixIntrinsicsLegacyPass::ID = 0;
INITIALIZE_PASS_BEGIN(LowerMatrixIntrinsicsLegacyPass, DEBUG_TYPE, pass_name,
                      false, false)
INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_END(LowerMatrixIntrinsicsLegacyPass, DEBUG_TYPE, pass_name,
                    false, false)

Pass *llvm::createLowerMatrixIntrinsicsPass() {
  return new LowerMatrixIntrinsicsLegacyPass();
}

namespace {

/// A lightweight version of the matrix lowering pass that only requires TTI.
/// Advanced features that require DT, AA or ORE like tiling are disabled. This
/// is used to lower matrix intrinsics if the main lowering pass is not run, for
/// example with -O0.
class LowerMatrixIntrinsicsMinimalLegacyPass : public FunctionPass {
public:
  static char ID;

  LowerMatrixIntrinsicsMinimalLegacyPass() : FunctionPass(ID) {
    initializeLowerMatrixIntrinsicsMinimalLegacyPassPass(
        *PassRegistry::getPassRegistry());
  }

  bool runOnFunction(Function &F) override {
    auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
    LowerMatrixIntrinsics LMT(F, TTI, nullptr, nullptr, nullptr, nullptr);
    bool C = LMT.Visit();
    return C;
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<TargetTransformInfoWrapperPass>();
    AU.setPreservesCFG();
  }
};
} // namespace

static const char pass_name_minimal[] = "Lower the matrix intrinsics (minimal)";
char LowerMatrixIntrinsicsMinimalLegacyPass::ID = 0;
INITIALIZE_PASS_BEGIN(LowerMatrixIntrinsicsMinimalLegacyPass,
                      "lower-matrix-intrinsics-minimal", pass_name_minimal,
                      false, false)
INITIALIZE_PASS_END(LowerMatrixIntrinsicsMinimalLegacyPass,
                    "lower-matrix-intrinsics-minimal", pass_name_minimal, false,
                    false)

Pass *llvm::createLowerMatrixIntrinsicsMinimalPass() {
  return new LowerMatrixIntrinsicsMinimalLegacyPass();
}