LoopSimplifyCFG.cpp 28.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
//===--------- LoopSimplifyCFG.cpp - Loop CFG Simplification Pass ---------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the Loop SimplifyCFG Pass. This pass is responsible for
// basic loop CFG cleanup, primarily to assist other loop passes. If you
// encounter a noncanonical CFG construct that causes another loop pass to
// perform suboptimally, this is the place to fix it up.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Scalar/LoopSimplifyCFG.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/BasicAliasAnalysis.h"
#include "llvm/Analysis/DependenceAnalysis.h"
#include "llvm/Analysis/DomTreeUpdater.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopIterator.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/MemorySSA.h"
#include "llvm/Analysis/MemorySSAUpdater.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/InitializePasses.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Scalar/LoopPassManager.h"
#include "llvm/Transforms/Utils.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/LoopUtils.h"
using namespace llvm;

#define DEBUG_TYPE "loop-simplifycfg"

static cl::opt<bool> EnableTermFolding("enable-loop-simplifycfg-term-folding",
                                       cl::init(true));

STATISTIC(NumTerminatorsFolded,
          "Number of terminators folded to unconditional branches");
STATISTIC(NumLoopBlocksDeleted,
          "Number of loop blocks deleted");
STATISTIC(NumLoopExitsDeleted,
          "Number of loop exiting edges deleted");

/// If \p BB is a switch or a conditional branch, but only one of its successors
/// can be reached from this block in runtime, return this successor. Otherwise,
/// return nullptr.
static BasicBlock *getOnlyLiveSuccessor(BasicBlock *BB) {
  Instruction *TI = BB->getTerminator();
  if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
    if (BI->isUnconditional())
      return nullptr;
    if (BI->getSuccessor(0) == BI->getSuccessor(1))
      return BI->getSuccessor(0);
    ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
    if (!Cond)
      return nullptr;
    return Cond->isZero() ? BI->getSuccessor(1) : BI->getSuccessor(0);
  }

  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
    auto *CI = dyn_cast<ConstantInt>(SI->getCondition());
    if (!CI)
      return nullptr;
    for (auto Case : SI->cases())
      if (Case.getCaseValue() == CI)
        return Case.getCaseSuccessor();
    return SI->getDefaultDest();
  }

  return nullptr;
}

/// Removes \p BB from all loops from [FirstLoop, LastLoop) in parent chain.
static void removeBlockFromLoops(BasicBlock *BB, Loop *FirstLoop,
                                 Loop *LastLoop = nullptr) {
  assert((!LastLoop || LastLoop->contains(FirstLoop->getHeader())) &&
         "First loop is supposed to be inside of last loop!");
  assert(FirstLoop->contains(BB) && "Must be a loop block!");
  for (Loop *Current = FirstLoop; Current != LastLoop;
       Current = Current->getParentLoop())
    Current->removeBlockFromLoop(BB);
}

/// Find innermost loop that contains at least one block from \p BBs and
/// contains the header of loop \p L.
static Loop *getInnermostLoopFor(SmallPtrSetImpl<BasicBlock *> &BBs,
                                 Loop &L, LoopInfo &LI) {
  Loop *Innermost = nullptr;
  for (BasicBlock *BB : BBs) {
    Loop *BBL = LI.getLoopFor(BB);
    while (BBL && !BBL->contains(L.getHeader()))
      BBL = BBL->getParentLoop();
    if (BBL == &L)
      BBL = BBL->getParentLoop();
    if (!BBL)
      continue;
    if (!Innermost || BBL->getLoopDepth() > Innermost->getLoopDepth())
      Innermost = BBL;
  }
  return Innermost;
}

namespace {
/// Helper class that can turn branches and switches with constant conditions
/// into unconditional branches.
class ConstantTerminatorFoldingImpl {
private:
  Loop &L;
  LoopInfo &LI;
  DominatorTree &DT;
  ScalarEvolution &SE;
  MemorySSAUpdater *MSSAU;
  LoopBlocksDFS DFS;
  DomTreeUpdater DTU;
  SmallVector<DominatorTree::UpdateType, 16> DTUpdates;

  // Whether or not the current loop has irreducible CFG.
  bool HasIrreducibleCFG = false;
  // Whether or not the current loop will still exist after terminator constant
  // folding will be done. In theory, there are two ways how it can happen:
  // 1. Loop's latch(es) become unreachable from loop header;
  // 2. Loop's header becomes unreachable from method entry.
  // In practice, the second situation is impossible because we only modify the
  // current loop and its preheader and do not affect preheader's reachibility
  // from any other block. So this variable set to true means that loop's latch
  // has become unreachable from loop header.
  bool DeleteCurrentLoop = false;

  // The blocks of the original loop that will still be reachable from entry
  // after the constant folding.
  SmallPtrSet<BasicBlock *, 8> LiveLoopBlocks;
  // The blocks of the original loop that will become unreachable from entry
  // after the constant folding.
  SmallVector<BasicBlock *, 8> DeadLoopBlocks;
  // The exits of the original loop that will still be reachable from entry
  // after the constant folding.
  SmallPtrSet<BasicBlock *, 8> LiveExitBlocks;
  // The exits of the original loop that will become unreachable from entry
  // after the constant folding.
  SmallVector<BasicBlock *, 8> DeadExitBlocks;
  // The blocks that will still be a part of the current loop after folding.
  SmallPtrSet<BasicBlock *, 8> BlocksInLoopAfterFolding;
  // The blocks that have terminators with constant condition that can be
  // folded. Note: fold candidates should be in L but not in any of its
  // subloops to avoid complex LI updates.
  SmallVector<BasicBlock *, 8> FoldCandidates;

  void dump() const {
    dbgs() << "Constant terminator folding for loop " << L << "\n";
    dbgs() << "After terminator constant-folding, the loop will";
    if (!DeleteCurrentLoop)
      dbgs() << " not";
    dbgs() << " be destroyed\n";
    auto PrintOutVector = [&](const char *Message,
                           const SmallVectorImpl<BasicBlock *> &S) {
      dbgs() << Message << "\n";
      for (const BasicBlock *BB : S)
        dbgs() << "\t" << BB->getName() << "\n";
    };
    auto PrintOutSet = [&](const char *Message,
                           const SmallPtrSetImpl<BasicBlock *> &S) {
      dbgs() << Message << "\n";
      for (const BasicBlock *BB : S)
        dbgs() << "\t" << BB->getName() << "\n";
    };
    PrintOutVector("Blocks in which we can constant-fold terminator:",
                   FoldCandidates);
    PrintOutSet("Live blocks from the original loop:", LiveLoopBlocks);
    PrintOutVector("Dead blocks from the original loop:", DeadLoopBlocks);
    PrintOutSet("Live exit blocks:", LiveExitBlocks);
    PrintOutVector("Dead exit blocks:", DeadExitBlocks);
    if (!DeleteCurrentLoop)
      PrintOutSet("The following blocks will still be part of the loop:",
                  BlocksInLoopAfterFolding);
  }

  /// Whether or not the current loop has irreducible CFG.
  bool hasIrreducibleCFG(LoopBlocksDFS &DFS) {
    assert(DFS.isComplete() && "DFS is expected to be finished");
    // Index of a basic block in RPO traversal.
    DenseMap<const BasicBlock *, unsigned> RPO;
    unsigned Current = 0;
    for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I)
      RPO[*I] = Current++;

    for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I) {
      BasicBlock *BB = *I;
      for (auto *Succ : successors(BB))
        if (L.contains(Succ) && !LI.isLoopHeader(Succ) && RPO[BB] > RPO[Succ])
          // If an edge goes from a block with greater order number into a block
          // with lesses number, and it is not a loop backedge, then it can only
          // be a part of irreducible non-loop cycle.
          return true;
    }
    return false;
  }

  /// Fill all information about status of blocks and exits of the current loop
  /// if constant folding of all branches will be done.
  void analyze() {
    DFS.perform(&LI);
    assert(DFS.isComplete() && "DFS is expected to be finished");

    // TODO: The algorithm below relies on both RPO and Postorder traversals.
    // When the loop has only reducible CFG inside, then the invariant "all
    // predecessors of X are processed before X in RPO" is preserved. However
    // an irreducible loop can break this invariant (e.g. latch does not have to
    // be the last block in the traversal in this case, and the algorithm relies
    // on this). We can later decide to support such cases by altering the
    // algorithms, but so far we just give up analyzing them.
    if (hasIrreducibleCFG(DFS)) {
      HasIrreducibleCFG = true;
      return;
    }

    // Collect live and dead loop blocks and exits.
    LiveLoopBlocks.insert(L.getHeader());
    for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I) {
      BasicBlock *BB = *I;

      // If a loop block wasn't marked as live so far, then it's dead.
      if (!LiveLoopBlocks.count(BB)) {
        DeadLoopBlocks.push_back(BB);
        continue;
      }

      BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(BB);

      // If a block has only one live successor, it's a candidate on constant
      // folding. Only handle blocks from current loop: branches in child loops
      // are skipped because if they can be folded, they should be folded during
      // the processing of child loops.
      bool TakeFoldCandidate = TheOnlySucc && LI.getLoopFor(BB) == &L;
      if (TakeFoldCandidate)
        FoldCandidates.push_back(BB);

      // Handle successors.
      for (BasicBlock *Succ : successors(BB))
        if (!TakeFoldCandidate || TheOnlySucc == Succ) {
          if (L.contains(Succ))
            LiveLoopBlocks.insert(Succ);
          else
            LiveExitBlocks.insert(Succ);
        }
    }

    // Sanity check: amount of dead and live loop blocks should match the total
    // number of blocks in loop.
    assert(L.getNumBlocks() == LiveLoopBlocks.size() + DeadLoopBlocks.size() &&
           "Malformed block sets?");

    // Now, all exit blocks that are not marked as live are dead.
    SmallVector<BasicBlock *, 8> ExitBlocks;
    L.getExitBlocks(ExitBlocks);
    SmallPtrSet<BasicBlock *, 8> UniqueDeadExits;
    for (auto *ExitBlock : ExitBlocks)
      if (!LiveExitBlocks.count(ExitBlock) &&
          UniqueDeadExits.insert(ExitBlock).second)
        DeadExitBlocks.push_back(ExitBlock);

    // Whether or not the edge From->To will still be present in graph after the
    // folding.
    auto IsEdgeLive = [&](BasicBlock *From, BasicBlock *To) {
      if (!LiveLoopBlocks.count(From))
        return false;
      BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(From);
      return !TheOnlySucc || TheOnlySucc == To || LI.getLoopFor(From) != &L;
    };

    // The loop will not be destroyed if its latch is live.
    DeleteCurrentLoop = !IsEdgeLive(L.getLoopLatch(), L.getHeader());

    // If we are going to delete the current loop completely, no extra analysis
    // is needed.
    if (DeleteCurrentLoop)
      return;

    // Otherwise, we should check which blocks will still be a part of the
    // current loop after the transform.
    BlocksInLoopAfterFolding.insert(L.getLoopLatch());
    // If the loop is live, then we should compute what blocks are still in
    // loop after all branch folding has been done. A block is in loop if
    // it has a live edge to another block that is in the loop; by definition,
    // latch is in the loop.
    auto BlockIsInLoop = [&](BasicBlock *BB) {
      return any_of(successors(BB), [&](BasicBlock *Succ) {
        return BlocksInLoopAfterFolding.count(Succ) && IsEdgeLive(BB, Succ);
      });
    };
    for (auto I = DFS.beginPostorder(), E = DFS.endPostorder(); I != E; ++I) {
      BasicBlock *BB = *I;
      if (BlockIsInLoop(BB))
        BlocksInLoopAfterFolding.insert(BB);
    }

    // Sanity check: header must be in loop.
    assert(BlocksInLoopAfterFolding.count(L.getHeader()) &&
           "Header not in loop?");
    assert(BlocksInLoopAfterFolding.size() <= LiveLoopBlocks.size() &&
           "All blocks that stay in loop should be live!");
  }

  /// We need to preserve static reachibility of all loop exit blocks (this is)
  /// required by loop pass manager. In order to do it, we make the following
  /// trick:
  ///
  ///  preheader:
  ///    <preheader code>
  ///    br label %loop_header
  ///
  ///  loop_header:
  ///    ...
  ///    br i1 false, label %dead_exit, label %loop_block
  ///    ...
  ///
  /// We cannot simply remove edge from the loop to dead exit because in this
  /// case dead_exit (and its successors) may become unreachable. To avoid that,
  /// we insert the following fictive preheader:
  ///
  ///  preheader:
  ///    <preheader code>
  ///    switch i32 0, label %preheader-split,
  ///                  [i32 1, label %dead_exit_1],
  ///                  [i32 2, label %dead_exit_2],
  ///                  ...
  ///                  [i32 N, label %dead_exit_N],
  ///
  ///  preheader-split:
  ///    br label %loop_header
  ///
  ///  loop_header:
  ///    ...
  ///    br i1 false, label %dead_exit_N, label %loop_block
  ///    ...
  ///
  /// Doing so, we preserve static reachibility of all dead exits and can later
  /// remove edges from the loop to these blocks.
  void handleDeadExits() {
    // If no dead exits, nothing to do.
    if (DeadExitBlocks.empty())
      return;

    // Construct split preheader and the dummy switch to thread edges from it to
    // dead exits.
    BasicBlock *Preheader = L.getLoopPreheader();
    BasicBlock *NewPreheader = llvm::SplitBlock(
        Preheader, Preheader->getTerminator(), &DT, &LI, MSSAU);

    IRBuilder<> Builder(Preheader->getTerminator());
    SwitchInst *DummySwitch =
        Builder.CreateSwitch(Builder.getInt32(0), NewPreheader);
    Preheader->getTerminator()->eraseFromParent();

    unsigned DummyIdx = 1;
    for (BasicBlock *BB : DeadExitBlocks) {
      // Eliminate all Phis and LandingPads from dead exits.
      // TODO: Consider removing all instructions in this dead block.
      SmallVector<Instruction *, 4> DeadInstructions;
      for (auto &PN : BB->phis())
        DeadInstructions.push_back(&PN);

      if (auto *LandingPad = dyn_cast<LandingPadInst>(BB->getFirstNonPHI()))
        DeadInstructions.emplace_back(LandingPad);

      for (Instruction *I : DeadInstructions) {
        I->replaceAllUsesWith(UndefValue::get(I->getType()));
        I->eraseFromParent();
      }

      assert(DummyIdx != 0 && "Too many dead exits!");
      DummySwitch->addCase(Builder.getInt32(DummyIdx++), BB);
      DTUpdates.push_back({DominatorTree::Insert, Preheader, BB});
      ++NumLoopExitsDeleted;
    }

    assert(L.getLoopPreheader() == NewPreheader && "Malformed CFG?");
    if (Loop *OuterLoop = LI.getLoopFor(Preheader)) {
      // When we break dead edges, the outer loop may become unreachable from
      // the current loop. We need to fix loop info accordingly. For this, we
      // find the most nested loop that still contains L and remove L from all
      // loops that are inside of it.
      Loop *StillReachable = getInnermostLoopFor(LiveExitBlocks, L, LI);

      // Okay, our loop is no longer in the outer loop (and maybe not in some of
      // its parents as well). Make the fixup.
      if (StillReachable != OuterLoop) {
        LI.changeLoopFor(NewPreheader, StillReachable);
        removeBlockFromLoops(NewPreheader, OuterLoop, StillReachable);
        for (auto *BB : L.blocks())
          removeBlockFromLoops(BB, OuterLoop, StillReachable);
        OuterLoop->removeChildLoop(&L);
        if (StillReachable)
          StillReachable->addChildLoop(&L);
        else
          LI.addTopLevelLoop(&L);

        // Some values from loops in [OuterLoop, StillReachable) could be used
        // in the current loop. Now it is not their child anymore, so such uses
        // require LCSSA Phis.
        Loop *FixLCSSALoop = OuterLoop;
        while (FixLCSSALoop->getParentLoop() != StillReachable)
          FixLCSSALoop = FixLCSSALoop->getParentLoop();
        assert(FixLCSSALoop && "Should be a loop!");
        // We need all DT updates to be done before forming LCSSA.
        DTU.applyUpdates(DTUpdates);
        if (MSSAU)
          MSSAU->applyUpdates(DTUpdates, DT);
        DTUpdates.clear();
        formLCSSARecursively(*FixLCSSALoop, DT, &LI, &SE);
      }
    }

    if (MSSAU) {
      // Clear all updates now. Facilitates deletes that follow.
      DTU.applyUpdates(DTUpdates);
      MSSAU->applyUpdates(DTUpdates, DT);
      DTUpdates.clear();
      if (VerifyMemorySSA)
        MSSAU->getMemorySSA()->verifyMemorySSA();
    }
  }

  /// Delete loop blocks that have become unreachable after folding. Make all
  /// relevant updates to DT and LI.
  void deleteDeadLoopBlocks() {
    if (MSSAU) {
      SmallSetVector<BasicBlock *, 8> DeadLoopBlocksSet(DeadLoopBlocks.begin(),
                                                        DeadLoopBlocks.end());
      MSSAU->removeBlocks(DeadLoopBlocksSet);
    }

    // The function LI.erase has some invariants that need to be preserved when
    // it tries to remove a loop which is not the top-level loop. In particular,
    // it requires loop's preheader to be strictly in loop's parent. We cannot
    // just remove blocks one by one, because after removal of preheader we may
    // break this invariant for the dead loop. So we detatch and erase all dead
    // loops beforehand.
    for (auto *BB : DeadLoopBlocks)
      if (LI.isLoopHeader(BB)) {
        assert(LI.getLoopFor(BB) != &L && "Attempt to remove current loop!");
        Loop *DL = LI.getLoopFor(BB);
        if (!DL->isOutermost()) {
          for (auto *PL = DL->getParentLoop(); PL; PL = PL->getParentLoop())
            for (auto *BB : DL->getBlocks())
              PL->removeBlockFromLoop(BB);
          DL->getParentLoop()->removeChildLoop(DL);
          LI.addTopLevelLoop(DL);
        }
        LI.erase(DL);
      }

    for (auto *BB : DeadLoopBlocks) {
      assert(BB != L.getHeader() &&
             "Header of the current loop cannot be dead!");
      LLVM_DEBUG(dbgs() << "Deleting dead loop block " << BB->getName()
                        << "\n");
      LI.removeBlock(BB);
    }

    DetatchDeadBlocks(DeadLoopBlocks, &DTUpdates, /*KeepOneInputPHIs*/true);
    DTU.applyUpdates(DTUpdates);
    DTUpdates.clear();
    for (auto *BB : DeadLoopBlocks)
      DTU.deleteBB(BB);

    NumLoopBlocksDeleted += DeadLoopBlocks.size();
  }

  /// Constant-fold terminators of blocks acculumated in FoldCandidates into the
  /// unconditional branches.
  void foldTerminators() {
    for (BasicBlock *BB : FoldCandidates) {
      assert(LI.getLoopFor(BB) == &L && "Should be a loop block!");
      BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(BB);
      assert(TheOnlySucc && "Should have one live successor!");

      LLVM_DEBUG(dbgs() << "Replacing terminator of " << BB->getName()
                        << " with an unconditional branch to the block "
                        << TheOnlySucc->getName() << "\n");

      SmallPtrSet<BasicBlock *, 2> DeadSuccessors;
      // Remove all BB's successors except for the live one.
      unsigned TheOnlySuccDuplicates = 0;
      for (auto *Succ : successors(BB))
        if (Succ != TheOnlySucc) {
          DeadSuccessors.insert(Succ);
          // If our successor lies in a different loop, we don't want to remove
          // the one-input Phi because it is a LCSSA Phi.
          bool PreserveLCSSAPhi = !L.contains(Succ);
          Succ->removePredecessor(BB, PreserveLCSSAPhi);
          if (MSSAU)
            MSSAU->removeEdge(BB, Succ);
        } else
          ++TheOnlySuccDuplicates;

      assert(TheOnlySuccDuplicates > 0 && "Should be!");
      // If TheOnlySucc was BB's successor more than once, after transform it
      // will be its successor only once. Remove redundant inputs from
      // TheOnlySucc's Phis.
      bool PreserveLCSSAPhi = !L.contains(TheOnlySucc);
      for (unsigned Dup = 1; Dup < TheOnlySuccDuplicates; ++Dup)
        TheOnlySucc->removePredecessor(BB, PreserveLCSSAPhi);
      if (MSSAU && TheOnlySuccDuplicates > 1)
        MSSAU->removeDuplicatePhiEdgesBetween(BB, TheOnlySucc);

      IRBuilder<> Builder(BB->getContext());
      Instruction *Term = BB->getTerminator();
      Builder.SetInsertPoint(Term);
      Builder.CreateBr(TheOnlySucc);
      Term->eraseFromParent();

      for (auto *DeadSucc : DeadSuccessors)
        DTUpdates.push_back({DominatorTree::Delete, BB, DeadSucc});

      ++NumTerminatorsFolded;
    }
  }

public:
  ConstantTerminatorFoldingImpl(Loop &L, LoopInfo &LI, DominatorTree &DT,
                                ScalarEvolution &SE,
                                MemorySSAUpdater *MSSAU)
      : L(L), LI(LI), DT(DT), SE(SE), MSSAU(MSSAU), DFS(&L),
        DTU(DT, DomTreeUpdater::UpdateStrategy::Eager) {}
  bool run() {
    assert(L.getLoopLatch() && "Should be single latch!");

    // Collect all available information about status of blocks after constant
    // folding.
    analyze();
    BasicBlock *Header = L.getHeader();
    (void)Header;

    LLVM_DEBUG(dbgs() << "In function " << Header->getParent()->getName()
                      << ": ");

    if (HasIrreducibleCFG) {
      LLVM_DEBUG(dbgs() << "Loops with irreducible CFG are not supported!\n");
      return false;
    }

    // Nothing to constant-fold.
    if (FoldCandidates.empty()) {
      LLVM_DEBUG(
          dbgs() << "No constant terminator folding candidates found in loop "
                 << Header->getName() << "\n");
      return false;
    }

    // TODO: Support deletion of the current loop.
    if (DeleteCurrentLoop) {
      LLVM_DEBUG(
          dbgs()
          << "Give up constant terminator folding in loop " << Header->getName()
          << ": we don't currently support deletion of the current loop.\n");
      return false;
    }

    // TODO: Support blocks that are not dead, but also not in loop after the
    // folding.
    if (BlocksInLoopAfterFolding.size() + DeadLoopBlocks.size() !=
        L.getNumBlocks()) {
      LLVM_DEBUG(
          dbgs() << "Give up constant terminator folding in loop "
                 << Header->getName() << ": we don't currently"
                    " support blocks that are not dead, but will stop "
                    "being a part of the loop after constant-folding.\n");
      return false;
    }

    SE.forgetTopmostLoop(&L);
    // Dump analysis results.
    LLVM_DEBUG(dump());

    LLVM_DEBUG(dbgs() << "Constant-folding " << FoldCandidates.size()
                      << " terminators in loop " << Header->getName() << "\n");

    // Make the actual transforms.
    handleDeadExits();
    foldTerminators();

    if (!DeadLoopBlocks.empty()) {
      LLVM_DEBUG(dbgs() << "Deleting " << DeadLoopBlocks.size()
                    << " dead blocks in loop " << Header->getName() << "\n");
      deleteDeadLoopBlocks();
    } else {
      // If we didn't do updates inside deleteDeadLoopBlocks, do them here.
      DTU.applyUpdates(DTUpdates);
      DTUpdates.clear();
    }

    if (MSSAU && VerifyMemorySSA)
      MSSAU->getMemorySSA()->verifyMemorySSA();

#ifndef NDEBUG
    // Make sure that we have preserved all data structures after the transform.
#if defined(EXPENSIVE_CHECKS)
    assert(DT.verify(DominatorTree::VerificationLevel::Full) &&
           "DT broken after transform!");
#else
    assert(DT.verify(DominatorTree::VerificationLevel::Fast) &&
           "DT broken after transform!");
#endif
    assert(DT.isReachableFromEntry(Header));
    LI.verify(DT);
#endif

    return true;
  }

  bool foldingBreaksCurrentLoop() const {
    return DeleteCurrentLoop;
  }
};
} // namespace

/// Turn branches and switches with known constant conditions into unconditional
/// branches.
static bool constantFoldTerminators(Loop &L, DominatorTree &DT, LoopInfo &LI,
                                    ScalarEvolution &SE,
                                    MemorySSAUpdater *MSSAU,
                                    bool &IsLoopDeleted) {
  if (!EnableTermFolding)
    return false;

  // To keep things simple, only process loops with single latch. We
  // canonicalize most loops to this form. We can support multi-latch if needed.
  if (!L.getLoopLatch())
    return false;

  ConstantTerminatorFoldingImpl BranchFolder(L, LI, DT, SE, MSSAU);
  bool Changed = BranchFolder.run();
  IsLoopDeleted = Changed && BranchFolder.foldingBreaksCurrentLoop();
  return Changed;
}

static bool mergeBlocksIntoPredecessors(Loop &L, DominatorTree &DT,
                                        LoopInfo &LI, MemorySSAUpdater *MSSAU) {
  bool Changed = false;
  DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
  // Copy blocks into a temporary array to avoid iterator invalidation issues
  // as we remove them.
  SmallVector<WeakTrackingVH, 16> Blocks(L.blocks());

  for (auto &Block : Blocks) {
    // Attempt to merge blocks in the trivial case. Don't modify blocks which
    // belong to other loops.
    BasicBlock *Succ = cast_or_null<BasicBlock>(Block);
    if (!Succ)
      continue;

    BasicBlock *Pred = Succ->getSinglePredecessor();
    if (!Pred || !Pred->getSingleSuccessor() || LI.getLoopFor(Pred) != &L)
      continue;

    // Merge Succ into Pred and delete it.
    MergeBlockIntoPredecessor(Succ, &DTU, &LI, MSSAU);

    if (MSSAU && VerifyMemorySSA)
      MSSAU->getMemorySSA()->verifyMemorySSA();

    Changed = true;
  }

  return Changed;
}

static bool simplifyLoopCFG(Loop &L, DominatorTree &DT, LoopInfo &LI,
                            ScalarEvolution &SE, MemorySSAUpdater *MSSAU,
                            bool &IsLoopDeleted) {
  bool Changed = false;

  // Constant-fold terminators with known constant conditions.
  Changed |= constantFoldTerminators(L, DT, LI, SE, MSSAU, IsLoopDeleted);

  if (IsLoopDeleted)
    return true;

  // Eliminate unconditional branches by merging blocks into their predecessors.
  Changed |= mergeBlocksIntoPredecessors(L, DT, LI, MSSAU);

  if (Changed)
    SE.forgetTopmostLoop(&L);

  return Changed;
}

PreservedAnalyses LoopSimplifyCFGPass::run(Loop &L, LoopAnalysisManager &AM,
                                           LoopStandardAnalysisResults &AR,
                                           LPMUpdater &LPMU) {
  Optional<MemorySSAUpdater> MSSAU;
  if (AR.MSSA)
    MSSAU = MemorySSAUpdater(AR.MSSA);
  bool DeleteCurrentLoop = false;
  if (!simplifyLoopCFG(L, AR.DT, AR.LI, AR.SE,
                       MSSAU.hasValue() ? MSSAU.getPointer() : nullptr,
                       DeleteCurrentLoop))
    return PreservedAnalyses::all();

  if (DeleteCurrentLoop)
    LPMU.markLoopAsDeleted(L, "loop-simplifycfg");

  auto PA = getLoopPassPreservedAnalyses();
  if (AR.MSSA)
    PA.preserve<MemorySSAAnalysis>();
  return PA;
}

namespace {
class LoopSimplifyCFGLegacyPass : public LoopPass {
public:
  static char ID; // Pass ID, replacement for typeid
  LoopSimplifyCFGLegacyPass() : LoopPass(ID) {
    initializeLoopSimplifyCFGLegacyPassPass(*PassRegistry::getPassRegistry());
  }

  bool runOnLoop(Loop *L, LPPassManager &LPM) override {
    if (skipLoop(L))
      return false;

    DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
    LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
    ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
    Optional<MemorySSAUpdater> MSSAU;
    if (EnableMSSALoopDependency) {
      MemorySSA *MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA();
      MSSAU = MemorySSAUpdater(MSSA);
      if (VerifyMemorySSA)
        MSSA->verifyMemorySSA();
    }
    bool DeleteCurrentLoop = false;
    bool Changed = simplifyLoopCFG(
        *L, DT, LI, SE, MSSAU.hasValue() ? MSSAU.getPointer() : nullptr,
        DeleteCurrentLoop);
    if (DeleteCurrentLoop)
      LPM.markLoopAsDeleted(*L);
    return Changed;
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    if (EnableMSSALoopDependency) {
      AU.addRequired<MemorySSAWrapperPass>();
      AU.addPreserved<MemorySSAWrapperPass>();
    }
    AU.addPreserved<DependenceAnalysisWrapperPass>();
    getLoopAnalysisUsage(AU);
  }
};
} // end namespace

char LoopSimplifyCFGLegacyPass::ID = 0;
INITIALIZE_PASS_BEGIN(LoopSimplifyCFGLegacyPass, "loop-simplifycfg",
                      "Simplify loop CFG", false, false)
INITIALIZE_PASS_DEPENDENCY(LoopPass)
INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
INITIALIZE_PASS_END(LoopSimplifyCFGLegacyPass, "loop-simplifycfg",
                    "Simplify loop CFG", false, false)

Pass *llvm::createLoopSimplifyCFGPass() {
  return new LoopSimplifyCFGLegacyPass();
}