LoopDataPrefetch.cpp 14.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
//===-------- LoopDataPrefetch.cpp - Loop Data Prefetching Pass -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements a Loop Data Prefetching Pass.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Scalar/LoopDataPrefetch.h"
#include "llvm/InitializePasses.h"

#define DEBUG_TYPE "loop-data-prefetch"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/CodeMetrics.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
#include "llvm/Transforms/Utils/ValueMapper.h"
using namespace llvm;

// By default, we limit this to creating 16 PHIs (which is a little over half
// of the allocatable register set).
static cl::opt<bool>
PrefetchWrites("loop-prefetch-writes", cl::Hidden, cl::init(false),
               cl::desc("Prefetch write addresses"));

static cl::opt<unsigned>
    PrefetchDistance("prefetch-distance",
                     cl::desc("Number of instructions to prefetch ahead"),
                     cl::Hidden);

static cl::opt<unsigned>
    MinPrefetchStride("min-prefetch-stride",
                      cl::desc("Min stride to add prefetches"), cl::Hidden);

static cl::opt<unsigned> MaxPrefetchIterationsAhead(
    "max-prefetch-iters-ahead",
    cl::desc("Max number of iterations to prefetch ahead"), cl::Hidden);

STATISTIC(NumPrefetches, "Number of prefetches inserted");

namespace {

/// Loop prefetch implementation class.
class LoopDataPrefetch {
public:
  LoopDataPrefetch(AssumptionCache *AC, DominatorTree *DT, LoopInfo *LI,
                   ScalarEvolution *SE, const TargetTransformInfo *TTI,
                   OptimizationRemarkEmitter *ORE)
      : AC(AC), DT(DT), LI(LI), SE(SE), TTI(TTI), ORE(ORE) {}

  bool run();

private:
  bool runOnLoop(Loop *L);

  /// Check if the stride of the accesses is large enough to
  /// warrant a prefetch.
  bool isStrideLargeEnough(const SCEVAddRecExpr *AR, unsigned TargetMinStride);

  unsigned getMinPrefetchStride(unsigned NumMemAccesses,
                                unsigned NumStridedMemAccesses,
                                unsigned NumPrefetches,
                                bool HasCall) {
    if (MinPrefetchStride.getNumOccurrences() > 0)
      return MinPrefetchStride;
    return TTI->getMinPrefetchStride(NumMemAccesses, NumStridedMemAccesses,
                                     NumPrefetches, HasCall);
  }

  unsigned getPrefetchDistance() {
    if (PrefetchDistance.getNumOccurrences() > 0)
      return PrefetchDistance;
    return TTI->getPrefetchDistance();
  }

  unsigned getMaxPrefetchIterationsAhead() {
    if (MaxPrefetchIterationsAhead.getNumOccurrences() > 0)
      return MaxPrefetchIterationsAhead;
    return TTI->getMaxPrefetchIterationsAhead();
  }

  bool doPrefetchWrites() {
    if (PrefetchWrites.getNumOccurrences() > 0)
      return PrefetchWrites;
    return TTI->enableWritePrefetching();
  }

  AssumptionCache *AC;
  DominatorTree *DT;
  LoopInfo *LI;
  ScalarEvolution *SE;
  const TargetTransformInfo *TTI;
  OptimizationRemarkEmitter *ORE;
};

/// Legacy class for inserting loop data prefetches.
class LoopDataPrefetchLegacyPass : public FunctionPass {
public:
  static char ID; // Pass ID, replacement for typeid
  LoopDataPrefetchLegacyPass() : FunctionPass(ID) {
    initializeLoopDataPrefetchLegacyPassPass(*PassRegistry::getPassRegistry());
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<AssumptionCacheTracker>();
    AU.addRequired<DominatorTreeWrapperPass>();
    AU.addPreserved<DominatorTreeWrapperPass>();
    AU.addRequired<LoopInfoWrapperPass>();
    AU.addPreserved<LoopInfoWrapperPass>();
    AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
    AU.addRequired<ScalarEvolutionWrapperPass>();
    AU.addPreserved<ScalarEvolutionWrapperPass>();
    AU.addRequired<TargetTransformInfoWrapperPass>();
  }

  bool runOnFunction(Function &F) override;
  };
}

char LoopDataPrefetchLegacyPass::ID = 0;
INITIALIZE_PASS_BEGIN(LoopDataPrefetchLegacyPass, "loop-data-prefetch",
                      "Loop Data Prefetch", false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
INITIALIZE_PASS_END(LoopDataPrefetchLegacyPass, "loop-data-prefetch",
                    "Loop Data Prefetch", false, false)

FunctionPass *llvm::createLoopDataPrefetchPass() {
  return new LoopDataPrefetchLegacyPass();
}

bool LoopDataPrefetch::isStrideLargeEnough(const SCEVAddRecExpr *AR,
                                           unsigned TargetMinStride) {
  // No need to check if any stride goes.
  if (TargetMinStride <= 1)
    return true;

  const auto *ConstStride = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE));
  // If MinStride is set, don't prefetch unless we can ensure that stride is
  // larger.
  if (!ConstStride)
    return false;

  unsigned AbsStride = std::abs(ConstStride->getAPInt().getSExtValue());
  return TargetMinStride <= AbsStride;
}

PreservedAnalyses LoopDataPrefetchPass::run(Function &F,
                                            FunctionAnalysisManager &AM) {
  DominatorTree *DT = &AM.getResult<DominatorTreeAnalysis>(F);
  LoopInfo *LI = &AM.getResult<LoopAnalysis>(F);
  ScalarEvolution *SE = &AM.getResult<ScalarEvolutionAnalysis>(F);
  AssumptionCache *AC = &AM.getResult<AssumptionAnalysis>(F);
  OptimizationRemarkEmitter *ORE =
      &AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
  const TargetTransformInfo *TTI = &AM.getResult<TargetIRAnalysis>(F);

  LoopDataPrefetch LDP(AC, DT, LI, SE, TTI, ORE);
  bool Changed = LDP.run();

  if (Changed) {
    PreservedAnalyses PA;
    PA.preserve<DominatorTreeAnalysis>();
    PA.preserve<LoopAnalysis>();
    return PA;
  }

  return PreservedAnalyses::all();
}

bool LoopDataPrefetchLegacyPass::runOnFunction(Function &F) {
  if (skipFunction(F))
    return false;

  DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
  LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
  ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
  AssumptionCache *AC =
      &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
  OptimizationRemarkEmitter *ORE =
      &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
  const TargetTransformInfo *TTI =
      &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);

  LoopDataPrefetch LDP(AC, DT, LI, SE, TTI, ORE);
  return LDP.run();
}

bool LoopDataPrefetch::run() {
  // If PrefetchDistance is not set, don't run the pass.  This gives an
  // opportunity for targets to run this pass for selected subtargets only
  // (whose TTI sets PrefetchDistance).
  if (getPrefetchDistance() == 0)
    return false;
  assert(TTI->getCacheLineSize() && "Cache line size is not set for target");

  bool MadeChange = false;

  for (Loop *I : *LI)
    for (auto L = df_begin(I), LE = df_end(I); L != LE; ++L)
      MadeChange |= runOnLoop(*L);

  return MadeChange;
}

/// A record for a potential prefetch made during the initial scan of the
/// loop. This is used to let a single prefetch target multiple memory accesses.
struct Prefetch {
  /// The address formula for this prefetch as returned by ScalarEvolution.
  const SCEVAddRecExpr *LSCEVAddRec;
  /// The point of insertion for the prefetch instruction.
  Instruction *InsertPt;
  /// True if targeting a write memory access.
  bool Writes;
  /// The (first seen) prefetched instruction.
  Instruction *MemI;

  /// Constructor to create a new Prefetch for \p I.
  Prefetch(const SCEVAddRecExpr *L, Instruction *I)
      : LSCEVAddRec(L), InsertPt(nullptr), Writes(false), MemI(nullptr) {
    addInstruction(I);
  };

  /// Add the instruction \param I to this prefetch. If it's not the first
  /// one, 'InsertPt' and 'Writes' will be updated as required.
  /// \param PtrDiff the known constant address difference to the first added
  /// instruction.
  void addInstruction(Instruction *I, DominatorTree *DT = nullptr,
                      int64_t PtrDiff = 0) {
    if (!InsertPt) {
      MemI = I;
      InsertPt = I;
      Writes = isa<StoreInst>(I);
    } else {
      BasicBlock *PrefBB = InsertPt->getParent();
      BasicBlock *InsBB = I->getParent();
      if (PrefBB != InsBB) {
        BasicBlock *DomBB = DT->findNearestCommonDominator(PrefBB, InsBB);
        if (DomBB != PrefBB)
          InsertPt = DomBB->getTerminator();
      }

      if (isa<StoreInst>(I) && PtrDiff == 0)
        Writes = true;
    }
  }
};

bool LoopDataPrefetch::runOnLoop(Loop *L) {
  bool MadeChange = false;

  // Only prefetch in the inner-most loop
  if (!L->isInnermost())
    return MadeChange;

  SmallPtrSet<const Value *, 32> EphValues;
  CodeMetrics::collectEphemeralValues(L, AC, EphValues);

  // Calculate the number of iterations ahead to prefetch
  CodeMetrics Metrics;
  bool HasCall = false;
  for (const auto BB : L->blocks()) {
    // If the loop already has prefetches, then assume that the user knows
    // what they are doing and don't add any more.
    for (auto &I : *BB) {
      if (isa<CallInst>(&I) || isa<InvokeInst>(&I)) {
        if (const Function *F = cast<CallBase>(I).getCalledFunction()) {
          if (F->getIntrinsicID() == Intrinsic::prefetch)
            return MadeChange;
          if (TTI->isLoweredToCall(F))
            HasCall = true;
        } else { // indirect call.
          HasCall = true;
        }
      }
    }
    Metrics.analyzeBasicBlock(BB, *TTI, EphValues);
  }
  unsigned LoopSize = Metrics.NumInsts;
  if (!LoopSize)
    LoopSize = 1;

  unsigned ItersAhead = getPrefetchDistance() / LoopSize;
  if (!ItersAhead)
    ItersAhead = 1;

  if (ItersAhead > getMaxPrefetchIterationsAhead())
    return MadeChange;

  unsigned ConstantMaxTripCount = SE->getSmallConstantMaxTripCount(L);
  if (ConstantMaxTripCount && ConstantMaxTripCount < ItersAhead + 1)
    return MadeChange;

  unsigned NumMemAccesses = 0;
  unsigned NumStridedMemAccesses = 0;
  SmallVector<Prefetch, 16> Prefetches;
  for (const auto BB : L->blocks())
    for (auto &I : *BB) {
      Value *PtrValue;
      Instruction *MemI;

      if (LoadInst *LMemI = dyn_cast<LoadInst>(&I)) {
        MemI = LMemI;
        PtrValue = LMemI->getPointerOperand();
      } else if (StoreInst *SMemI = dyn_cast<StoreInst>(&I)) {
        if (!doPrefetchWrites()) continue;
        MemI = SMemI;
        PtrValue = SMemI->getPointerOperand();
      } else continue;

      unsigned PtrAddrSpace = PtrValue->getType()->getPointerAddressSpace();
      if (PtrAddrSpace)
        continue;
      NumMemAccesses++;
      if (L->isLoopInvariant(PtrValue))
        continue;

      const SCEV *LSCEV = SE->getSCEV(PtrValue);
      const SCEVAddRecExpr *LSCEVAddRec = dyn_cast<SCEVAddRecExpr>(LSCEV);
      if (!LSCEVAddRec)
        continue;
      NumStridedMemAccesses++;

      // We don't want to double prefetch individual cache lines. If this
      // access is known to be within one cache line of some other one that
      // has already been prefetched, then don't prefetch this one as well.
      bool DupPref = false;
      for (auto &Pref : Prefetches) {
        const SCEV *PtrDiff = SE->getMinusSCEV(LSCEVAddRec, Pref.LSCEVAddRec);
        if (const SCEVConstant *ConstPtrDiff =
            dyn_cast<SCEVConstant>(PtrDiff)) {
          int64_t PD = std::abs(ConstPtrDiff->getValue()->getSExtValue());
          if (PD < (int64_t) TTI->getCacheLineSize()) {
            Pref.addInstruction(MemI, DT, PD);
            DupPref = true;
            break;
          }
        }
      }
      if (!DupPref)
        Prefetches.push_back(Prefetch(LSCEVAddRec, MemI));
    }

  unsigned TargetMinStride =
    getMinPrefetchStride(NumMemAccesses, NumStridedMemAccesses,
                         Prefetches.size(), HasCall);

  LLVM_DEBUG(dbgs() << "Prefetching " << ItersAhead
             << " iterations ahead (loop size: " << LoopSize << ") in "
             << L->getHeader()->getParent()->getName() << ": " << *L);
  LLVM_DEBUG(dbgs() << "Loop has: "
             << NumMemAccesses << " memory accesses, "
             << NumStridedMemAccesses << " strided memory accesses, "
             << Prefetches.size() << " potential prefetch(es), "
             << "a minimum stride of " << TargetMinStride << ", "
             << (HasCall ? "calls" : "no calls") << ".\n");

  for (auto &P : Prefetches) {
    // Check if the stride of the accesses is large enough to warrant a
    // prefetch.
    if (!isStrideLargeEnough(P.LSCEVAddRec, TargetMinStride))
      continue;

    const SCEV *NextLSCEV = SE->getAddExpr(P.LSCEVAddRec, SE->getMulExpr(
      SE->getConstant(P.LSCEVAddRec->getType(), ItersAhead),
      P.LSCEVAddRec->getStepRecurrence(*SE)));
    if (!isSafeToExpand(NextLSCEV, *SE))
      continue;

    BasicBlock *BB = P.InsertPt->getParent();
    Type *I8Ptr = Type::getInt8PtrTy(BB->getContext(), 0/*PtrAddrSpace*/);
    SCEVExpander SCEVE(*SE, BB->getModule()->getDataLayout(), "prefaddr");
    Value *PrefPtrValue = SCEVE.expandCodeFor(NextLSCEV, I8Ptr, P.InsertPt);

    IRBuilder<> Builder(P.InsertPt);
    Module *M = BB->getParent()->getParent();
    Type *I32 = Type::getInt32Ty(BB->getContext());
    Function *PrefetchFunc = Intrinsic::getDeclaration(
        M, Intrinsic::prefetch, PrefPtrValue->getType());
    Builder.CreateCall(
        PrefetchFunc,
        {PrefPtrValue,
         ConstantInt::get(I32, P.Writes),
         ConstantInt::get(I32, 3), ConstantInt::get(I32, 1)});
    ++NumPrefetches;
    LLVM_DEBUG(dbgs() << "  Access: "
               << *P.MemI->getOperand(isa<LoadInst>(P.MemI) ? 0 : 1)
               << ", SCEV: " << *P.LSCEVAddRec << "\n");
    ORE->emit([&]() {
        return OptimizationRemark(DEBUG_TYPE, "Prefetched", P.MemI)
          << "prefetched memory access";
      });

    MadeChange = true;
  }

  return MadeChange;
}