JumpThreading.cpp 116 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014
//===- JumpThreading.cpp - Thread control through conditional blocks ------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the Jump Threading pass.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Scalar/JumpThreading.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/BlockFrequencyInfo.h"
#include "llvm/Analysis/BranchProbabilityInfo.h"
#include "llvm/Analysis/CFG.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/DomTreeUpdater.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/GuardUtils.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/LazyValueInfo.h"
#include "llvm/Analysis/Loads.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/ConstantRange.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/BlockFrequency.h"
#include "llvm/Support/BranchProbability.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/SSAUpdater.h"
#include "llvm/Transforms/Utils/ValueMapper.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <iterator>
#include <memory>
#include <utility>

using namespace llvm;
using namespace jumpthreading;

#define DEBUG_TYPE "jump-threading"

STATISTIC(NumThreads, "Number of jumps threaded");
STATISTIC(NumFolds,   "Number of terminators folded");
STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");

static cl::opt<unsigned>
BBDuplicateThreshold("jump-threading-threshold",
          cl::desc("Max block size to duplicate for jump threading"),
          cl::init(6), cl::Hidden);

static cl::opt<unsigned>
ImplicationSearchThreshold(
  "jump-threading-implication-search-threshold",
  cl::desc("The number of predecessors to search for a stronger "
           "condition to use to thread over a weaker condition"),
  cl::init(3), cl::Hidden);

static cl::opt<bool> PrintLVIAfterJumpThreading(
    "print-lvi-after-jump-threading",
    cl::desc("Print the LazyValueInfo cache after JumpThreading"), cl::init(false),
    cl::Hidden);

static cl::opt<bool> JumpThreadingFreezeSelectCond(
    "jump-threading-freeze-select-cond",
    cl::desc("Freeze the condition when unfolding select"), cl::init(false),
    cl::Hidden);

static cl::opt<bool> ThreadAcrossLoopHeaders(
    "jump-threading-across-loop-headers",
    cl::desc("Allow JumpThreading to thread across loop headers, for testing"),
    cl::init(false), cl::Hidden);


namespace {

  /// This pass performs 'jump threading', which looks at blocks that have
  /// multiple predecessors and multiple successors.  If one or more of the
  /// predecessors of the block can be proven to always jump to one of the
  /// successors, we forward the edge from the predecessor to the successor by
  /// duplicating the contents of this block.
  ///
  /// An example of when this can occur is code like this:
  ///
  ///   if () { ...
  ///     X = 4;
  ///   }
  ///   if (X < 3) {
  ///
  /// In this case, the unconditional branch at the end of the first if can be
  /// revectored to the false side of the second if.
  class JumpThreading : public FunctionPass {
    JumpThreadingPass Impl;

  public:
    static char ID; // Pass identification

    JumpThreading(bool InsertFreezeWhenUnfoldingSelect = false, int T = -1)
        : FunctionPass(ID), Impl(InsertFreezeWhenUnfoldingSelect, T) {
      initializeJumpThreadingPass(*PassRegistry::getPassRegistry());
    }

    bool runOnFunction(Function &F) override;

    void getAnalysisUsage(AnalysisUsage &AU) const override {
      AU.addRequired<DominatorTreeWrapperPass>();
      AU.addPreserved<DominatorTreeWrapperPass>();
      AU.addRequired<AAResultsWrapperPass>();
      AU.addRequired<LazyValueInfoWrapperPass>();
      AU.addPreserved<LazyValueInfoWrapperPass>();
      AU.addPreserved<GlobalsAAWrapperPass>();
      AU.addRequired<TargetLibraryInfoWrapperPass>();
    }

    void releaseMemory() override { Impl.releaseMemory(); }
  };

} // end anonymous namespace

char JumpThreading::ID = 0;

INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading",
                "Jump Threading", false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
INITIALIZE_PASS_END(JumpThreading, "jump-threading",
                "Jump Threading", false, false)

// Public interface to the Jump Threading pass
FunctionPass *llvm::createJumpThreadingPass(bool InsertFr, int Threshold) {
  return new JumpThreading(InsertFr, Threshold);
}

JumpThreadingPass::JumpThreadingPass(bool InsertFr, int T) {
  InsertFreezeWhenUnfoldingSelect = JumpThreadingFreezeSelectCond | InsertFr;
  DefaultBBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T);
}

// Update branch probability information according to conditional
// branch probability. This is usually made possible for cloned branches
// in inline instances by the context specific profile in the caller.
// For instance,
//
//  [Block PredBB]
//  [Branch PredBr]
//  if (t) {
//     Block A;
//  } else {
//     Block B;
//  }
//
//  [Block BB]
//  cond = PN([true, %A], [..., %B]); // PHI node
//  [Branch CondBr]
//  if (cond) {
//    ...  // P(cond == true) = 1%
//  }
//
//  Here we know that when block A is taken, cond must be true, which means
//      P(cond == true | A) = 1
//
//  Given that P(cond == true) = P(cond == true | A) * P(A) +
//                               P(cond == true | B) * P(B)
//  we get:
//     P(cond == true ) = P(A) + P(cond == true | B) * P(B)
//
//  which gives us:
//     P(A) is less than P(cond == true), i.e.
//     P(t == true) <= P(cond == true)
//
//  In other words, if we know P(cond == true) is unlikely, we know
//  that P(t == true) is also unlikely.
//
static void updatePredecessorProfileMetadata(PHINode *PN, BasicBlock *BB) {
  BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
  if (!CondBr)
    return;

  uint64_t TrueWeight, FalseWeight;
  if (!CondBr->extractProfMetadata(TrueWeight, FalseWeight))
    return;

  if (TrueWeight + FalseWeight == 0)
    // Zero branch_weights do not give a hint for getting branch probabilities.
    // Technically it would result in division by zero denominator, which is
    // TrueWeight + FalseWeight.
    return;

  // Returns the outgoing edge of the dominating predecessor block
  // that leads to the PhiNode's incoming block:
  auto GetPredOutEdge =
      [](BasicBlock *IncomingBB,
         BasicBlock *PhiBB) -> std::pair<BasicBlock *, BasicBlock *> {
    auto *PredBB = IncomingBB;
    auto *SuccBB = PhiBB;
    SmallPtrSet<BasicBlock *, 16> Visited;
    while (true) {
      BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
      if (PredBr && PredBr->isConditional())
        return {PredBB, SuccBB};
      Visited.insert(PredBB);
      auto *SinglePredBB = PredBB->getSinglePredecessor();
      if (!SinglePredBB)
        return {nullptr, nullptr};

      // Stop searching when SinglePredBB has been visited. It means we see
      // an unreachable loop.
      if (Visited.count(SinglePredBB))
        return {nullptr, nullptr};

      SuccBB = PredBB;
      PredBB = SinglePredBB;
    }
  };

  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
    Value *PhiOpnd = PN->getIncomingValue(i);
    ConstantInt *CI = dyn_cast<ConstantInt>(PhiOpnd);

    if (!CI || !CI->getType()->isIntegerTy(1))
      continue;

    BranchProbability BP =
        (CI->isOne() ? BranchProbability::getBranchProbability(
                           TrueWeight, TrueWeight + FalseWeight)
                     : BranchProbability::getBranchProbability(
                           FalseWeight, TrueWeight + FalseWeight));

    auto PredOutEdge = GetPredOutEdge(PN->getIncomingBlock(i), BB);
    if (!PredOutEdge.first)
      return;

    BasicBlock *PredBB = PredOutEdge.first;
    BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
    if (!PredBr)
      return;

    uint64_t PredTrueWeight, PredFalseWeight;
    // FIXME: We currently only set the profile data when it is missing.
    // With PGO, this can be used to refine even existing profile data with
    // context information. This needs to be done after more performance
    // testing.
    if (PredBr->extractProfMetadata(PredTrueWeight, PredFalseWeight))
      continue;

    // We can not infer anything useful when BP >= 50%, because BP is the
    // upper bound probability value.
    if (BP >= BranchProbability(50, 100))
      continue;

    SmallVector<uint32_t, 2> Weights;
    if (PredBr->getSuccessor(0) == PredOutEdge.second) {
      Weights.push_back(BP.getNumerator());
      Weights.push_back(BP.getCompl().getNumerator());
    } else {
      Weights.push_back(BP.getCompl().getNumerator());
      Weights.push_back(BP.getNumerator());
    }
    PredBr->setMetadata(LLVMContext::MD_prof,
                        MDBuilder(PredBr->getParent()->getContext())
                            .createBranchWeights(Weights));
  }
}

/// runOnFunction - Toplevel algorithm.
bool JumpThreading::runOnFunction(Function &F) {
  if (skipFunction(F))
    return false;
  auto TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
  auto DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
  auto LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI();
  auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
  DomTreeUpdater DTU(*DT, DomTreeUpdater::UpdateStrategy::Lazy);
  std::unique_ptr<BlockFrequencyInfo> BFI;
  std::unique_ptr<BranchProbabilityInfo> BPI;
  if (F.hasProfileData()) {
    LoopInfo LI{DominatorTree(F)};
    BPI.reset(new BranchProbabilityInfo(F, LI, TLI));
    BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
  }

  bool Changed = Impl.runImpl(F, TLI, LVI, AA, &DTU, F.hasProfileData(),
                              std::move(BFI), std::move(BPI));
  if (PrintLVIAfterJumpThreading) {
    dbgs() << "LVI for function '" << F.getName() << "':\n";
    LVI->printLVI(F, DTU.getDomTree(), dbgs());
  }
  return Changed;
}

PreservedAnalyses JumpThreadingPass::run(Function &F,
                                         FunctionAnalysisManager &AM) {
  auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
  auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
  auto &LVI = AM.getResult<LazyValueAnalysis>(F);
  auto &AA = AM.getResult<AAManager>(F);
  DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);

  std::unique_ptr<BlockFrequencyInfo> BFI;
  std::unique_ptr<BranchProbabilityInfo> BPI;
  if (F.hasProfileData()) {
    LoopInfo LI{DominatorTree(F)};
    BPI.reset(new BranchProbabilityInfo(F, LI, &TLI));
    BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
  }

  bool Changed = runImpl(F, &TLI, &LVI, &AA, &DTU, F.hasProfileData(),
                         std::move(BFI), std::move(BPI));

  if (!Changed)
    return PreservedAnalyses::all();
  PreservedAnalyses PA;
  PA.preserve<GlobalsAA>();
  PA.preserve<DominatorTreeAnalysis>();
  PA.preserve<LazyValueAnalysis>();
  return PA;
}

bool JumpThreadingPass::runImpl(Function &F, TargetLibraryInfo *TLI_,
                                LazyValueInfo *LVI_, AliasAnalysis *AA_,
                                DomTreeUpdater *DTU_, bool HasProfileData_,
                                std::unique_ptr<BlockFrequencyInfo> BFI_,
                                std::unique_ptr<BranchProbabilityInfo> BPI_) {
  LLVM_DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
  TLI = TLI_;
  LVI = LVI_;
  AA = AA_;
  DTU = DTU_;
  BFI.reset();
  BPI.reset();
  // When profile data is available, we need to update edge weights after
  // successful jump threading, which requires both BPI and BFI being available.
  HasProfileData = HasProfileData_;
  auto *GuardDecl = F.getParent()->getFunction(
      Intrinsic::getName(Intrinsic::experimental_guard));
  HasGuards = GuardDecl && !GuardDecl->use_empty();
  if (HasProfileData) {
    BPI = std::move(BPI_);
    BFI = std::move(BFI_);
  }

  // Reduce the number of instructions duplicated when optimizing strictly for
  // size.
  if (BBDuplicateThreshold.getNumOccurrences())
    BBDupThreshold = BBDuplicateThreshold;
  else if (F.hasFnAttribute(Attribute::MinSize))
    BBDupThreshold = 3;
  else
    BBDupThreshold = DefaultBBDupThreshold;

  // JumpThreading must not processes blocks unreachable from entry. It's a
  // waste of compute time and can potentially lead to hangs.
  SmallPtrSet<BasicBlock *, 16> Unreachable;
  assert(DTU && "DTU isn't passed into JumpThreading before using it.");
  assert(DTU->hasDomTree() && "JumpThreading relies on DomTree to proceed.");
  DominatorTree &DT = DTU->getDomTree();
  for (auto &BB : F)
    if (!DT.isReachableFromEntry(&BB))
      Unreachable.insert(&BB);

  if (!ThreadAcrossLoopHeaders)
    FindLoopHeaders(F);

  bool EverChanged = false;
  bool Changed;
  do {
    Changed = false;
    for (auto &BB : F) {
      if (Unreachable.count(&BB))
        continue;
      while (ProcessBlock(&BB)) // Thread all of the branches we can over BB.
        Changed = true;

      // Jump threading may have introduced redundant debug values into BB
      // which should be removed.
      if (Changed)
        RemoveRedundantDbgInstrs(&BB);

      // Stop processing BB if it's the entry or is now deleted. The following
      // routines attempt to eliminate BB and locating a suitable replacement
      // for the entry is non-trivial.
      if (&BB == &F.getEntryBlock() || DTU->isBBPendingDeletion(&BB))
        continue;

      if (pred_empty(&BB)) {
        // When ProcessBlock makes BB unreachable it doesn't bother to fix up
        // the instructions in it. We must remove BB to prevent invalid IR.
        LLVM_DEBUG(dbgs() << "  JT: Deleting dead block '" << BB.getName()
                          << "' with terminator: " << *BB.getTerminator()
                          << '\n');
        LoopHeaders.erase(&BB);
        LVI->eraseBlock(&BB);
        DeleteDeadBlock(&BB, DTU);
        Changed = true;
        continue;
      }

      // ProcessBlock doesn't thread BBs with unconditional TIs. However, if BB
      // is "almost empty", we attempt to merge BB with its sole successor.
      auto *BI = dyn_cast<BranchInst>(BB.getTerminator());
      if (BI && BI->isUnconditional()) {
        BasicBlock *Succ = BI->getSuccessor(0);
        if (
            // The terminator must be the only non-phi instruction in BB.
            BB.getFirstNonPHIOrDbg()->isTerminator() &&
            // Don't alter Loop headers and latches to ensure another pass can
            // detect and transform nested loops later.
            !LoopHeaders.count(&BB) && !LoopHeaders.count(Succ) &&
            TryToSimplifyUncondBranchFromEmptyBlock(&BB, DTU)) {
          RemoveRedundantDbgInstrs(Succ);
          // BB is valid for cleanup here because we passed in DTU. F remains
          // BB's parent until a DTU->getDomTree() event.
          LVI->eraseBlock(&BB);
          Changed = true;
        }
      }
    }
    EverChanged |= Changed;
  } while (Changed);

  LoopHeaders.clear();
  return EverChanged;
}

// Replace uses of Cond with ToVal when safe to do so. If all uses are
// replaced, we can remove Cond. We cannot blindly replace all uses of Cond
// because we may incorrectly replace uses when guards/assumes are uses of
// of `Cond` and we used the guards/assume to reason about the `Cond` value
// at the end of block. RAUW unconditionally replaces all uses
// including the guards/assumes themselves and the uses before the
// guard/assume.
static void ReplaceFoldableUses(Instruction *Cond, Value *ToVal) {
  assert(Cond->getType() == ToVal->getType());
  auto *BB = Cond->getParent();
  // We can unconditionally replace all uses in non-local blocks (i.e. uses
  // strictly dominated by BB), since LVI information is true from the
  // terminator of BB.
  replaceNonLocalUsesWith(Cond, ToVal);
  for (Instruction &I : reverse(*BB)) {
    // Reached the Cond whose uses we are trying to replace, so there are no
    // more uses.
    if (&I == Cond)
      break;
    // We only replace uses in instructions that are guaranteed to reach the end
    // of BB, where we know Cond is ToVal.
    if (!isGuaranteedToTransferExecutionToSuccessor(&I))
      break;
    I.replaceUsesOfWith(Cond, ToVal);
  }
  if (Cond->use_empty() && !Cond->mayHaveSideEffects())
    Cond->eraseFromParent();
}

/// Return the cost of duplicating a piece of this block from first non-phi
/// and before StopAt instruction to thread across it. Stop scanning the block
/// when exceeding the threshold. If duplication is impossible, returns ~0U.
static unsigned getJumpThreadDuplicationCost(BasicBlock *BB,
                                             Instruction *StopAt,
                                             unsigned Threshold) {
  assert(StopAt->getParent() == BB && "Not an instruction from proper BB?");
  /// Ignore PHI nodes, these will be flattened when duplication happens.
  BasicBlock::const_iterator I(BB->getFirstNonPHI());

  // FIXME: THREADING will delete values that are just used to compute the
  // branch, so they shouldn't count against the duplication cost.

  unsigned Bonus = 0;
  if (BB->getTerminator() == StopAt) {
    // Threading through a switch statement is particularly profitable.  If this
    // block ends in a switch, decrease its cost to make it more likely to
    // happen.
    if (isa<SwitchInst>(StopAt))
      Bonus = 6;

    // The same holds for indirect branches, but slightly more so.
    if (isa<IndirectBrInst>(StopAt))
      Bonus = 8;
  }

  // Bump the threshold up so the early exit from the loop doesn't skip the
  // terminator-based Size adjustment at the end.
  Threshold += Bonus;

  // Sum up the cost of each instruction until we get to the terminator.  Don't
  // include the terminator because the copy won't include it.
  unsigned Size = 0;
  for (; &*I != StopAt; ++I) {

    // Stop scanning the block if we've reached the threshold.
    if (Size > Threshold)
      return Size;

    // Debugger intrinsics don't incur code size.
    if (isa<DbgInfoIntrinsic>(I)) continue;

    // If this is a pointer->pointer bitcast, it is free.
    if (isa<BitCastInst>(I) && I->getType()->isPointerTy())
      continue;

    // Freeze instruction is free, too.
    if (isa<FreezeInst>(I))
      continue;

    // Bail out if this instruction gives back a token type, it is not possible
    // to duplicate it if it is used outside this BB.
    if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB))
      return ~0U;

    // All other instructions count for at least one unit.
    ++Size;

    // Calls are more expensive.  If they are non-intrinsic calls, we model them
    // as having cost of 4.  If they are a non-vector intrinsic, we model them
    // as having cost of 2 total, and if they are a vector intrinsic, we model
    // them as having cost 1.
    if (const CallInst *CI = dyn_cast<CallInst>(I)) {
      if (CI->cannotDuplicate() || CI->isConvergent())
        // Blocks with NoDuplicate are modelled as having infinite cost, so they
        // are never duplicated.
        return ~0U;
      else if (!isa<IntrinsicInst>(CI))
        Size += 3;
      else if (!CI->getType()->isVectorTy())
        Size += 1;
    }
  }

  return Size > Bonus ? Size - Bonus : 0;
}

/// FindLoopHeaders - We do not want jump threading to turn proper loop
/// structures into irreducible loops.  Doing this breaks up the loop nesting
/// hierarchy and pessimizes later transformations.  To prevent this from
/// happening, we first have to find the loop headers.  Here we approximate this
/// by finding targets of backedges in the CFG.
///
/// Note that there definitely are cases when we want to allow threading of
/// edges across a loop header.  For example, threading a jump from outside the
/// loop (the preheader) to an exit block of the loop is definitely profitable.
/// It is also almost always profitable to thread backedges from within the loop
/// to exit blocks, and is often profitable to thread backedges to other blocks
/// within the loop (forming a nested loop).  This simple analysis is not rich
/// enough to track all of these properties and keep it up-to-date as the CFG
/// mutates, so we don't allow any of these transformations.
void JumpThreadingPass::FindLoopHeaders(Function &F) {
  SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
  FindFunctionBackedges(F, Edges);

  for (const auto &Edge : Edges)
    LoopHeaders.insert(Edge.second);
}

/// getKnownConstant - Helper method to determine if we can thread over a
/// terminator with the given value as its condition, and if so what value to
/// use for that. What kind of value this is depends on whether we want an
/// integer or a block address, but an undef is always accepted.
/// Returns null if Val is null or not an appropriate constant.
static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) {
  if (!Val)
    return nullptr;

  // Undef is "known" enough.
  if (UndefValue *U = dyn_cast<UndefValue>(Val))
    return U;

  if (Preference == WantBlockAddress)
    return dyn_cast<BlockAddress>(Val->stripPointerCasts());

  return dyn_cast<ConstantInt>(Val);
}

/// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
/// if we can infer that the value is a known ConstantInt/BlockAddress or undef
/// in any of our predecessors.  If so, return the known list of value and pred
/// BB in the result vector.
///
/// This returns true if there were any known values.
bool JumpThreadingPass::ComputeValueKnownInPredecessorsImpl(
    Value *V, BasicBlock *BB, PredValueInfo &Result,
    ConstantPreference Preference, DenseSet<Value *> &RecursionSet,
    Instruction *CxtI) {
  // This method walks up use-def chains recursively.  Because of this, we could
  // get into an infinite loop going around loops in the use-def chain.  To
  // prevent this, keep track of what (value, block) pairs we've already visited
  // and terminate the search if we loop back to them
  if (!RecursionSet.insert(V).second)
    return false;

  // If V is a constant, then it is known in all predecessors.
  if (Constant *KC = getKnownConstant(V, Preference)) {
    for (BasicBlock *Pred : predecessors(BB))
      Result.emplace_back(KC, Pred);

    return !Result.empty();
  }

  // If V is a non-instruction value, or an instruction in a different block,
  // then it can't be derived from a PHI.
  Instruction *I = dyn_cast<Instruction>(V);
  if (!I || I->getParent() != BB) {

    // Okay, if this is a live-in value, see if it has a known value at the end
    // of any of our predecessors.
    //
    // FIXME: This should be an edge property, not a block end property.
    /// TODO: Per PR2563, we could infer value range information about a
    /// predecessor based on its terminator.
    //
    // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
    // "I" is a non-local compare-with-a-constant instruction.  This would be
    // able to handle value inequalities better, for example if the compare is
    // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
    // Perhaps getConstantOnEdge should be smart enough to do this?
    for (BasicBlock *P : predecessors(BB)) {
      // If the value is known by LazyValueInfo to be a constant in a
      // predecessor, use that information to try to thread this block.
      Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI);
      if (Constant *KC = getKnownConstant(PredCst, Preference))
        Result.emplace_back(KC, P);
    }

    return !Result.empty();
  }

  /// If I is a PHI node, then we know the incoming values for any constants.
  if (PHINode *PN = dyn_cast<PHINode>(I)) {
    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
      Value *InVal = PN->getIncomingValue(i);
      if (Constant *KC = getKnownConstant(InVal, Preference)) {
        Result.emplace_back(KC, PN->getIncomingBlock(i));
      } else {
        Constant *CI = LVI->getConstantOnEdge(InVal,
                                              PN->getIncomingBlock(i),
                                              BB, CxtI);
        if (Constant *KC = getKnownConstant(CI, Preference))
          Result.emplace_back(KC, PN->getIncomingBlock(i));
      }
    }

    return !Result.empty();
  }

  // Handle Cast instructions.
  if (CastInst *CI = dyn_cast<CastInst>(I)) {
    Value *Source = CI->getOperand(0);
    ComputeValueKnownInPredecessorsImpl(Source, BB, Result, Preference,
                                        RecursionSet, CxtI);
    if (Result.empty())
      return false;

    // Convert the known values.
    for (auto &R : Result)
      R.first = ConstantExpr::getCast(CI->getOpcode(), R.first, CI->getType());

    return true;
  }

  if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) {
    Value *Source = FI->getOperand(0);
    ComputeValueKnownInPredecessorsImpl(Source, BB, Result, Preference,
                                        RecursionSet, CxtI);

    erase_if(Result, [](auto &Pair) {
      return !isGuaranteedNotToBeUndefOrPoison(Pair.first);
    });

    return !Result.empty();
  }

  // Handle some boolean conditions.
  if (I->getType()->getPrimitiveSizeInBits() == 1) {
    assert(Preference == WantInteger && "One-bit non-integer type?");
    // X | true -> true
    // X & false -> false
    if (I->getOpcode() == Instruction::Or ||
        I->getOpcode() == Instruction::And) {
      PredValueInfoTy LHSVals, RHSVals;

      ComputeValueKnownInPredecessorsImpl(I->getOperand(0), BB, LHSVals,
                                      WantInteger, RecursionSet, CxtI);
      ComputeValueKnownInPredecessorsImpl(I->getOperand(1), BB, RHSVals,
                                          WantInteger, RecursionSet, CxtI);

      if (LHSVals.empty() && RHSVals.empty())
        return false;

      ConstantInt *InterestingVal;
      if (I->getOpcode() == Instruction::Or)
        InterestingVal = ConstantInt::getTrue(I->getContext());
      else
        InterestingVal = ConstantInt::getFalse(I->getContext());

      SmallPtrSet<BasicBlock*, 4> LHSKnownBBs;

      // Scan for the sentinel.  If we find an undef, force it to the
      // interesting value: x|undef -> true and x&undef -> false.
      for (const auto &LHSVal : LHSVals)
        if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) {
          Result.emplace_back(InterestingVal, LHSVal.second);
          LHSKnownBBs.insert(LHSVal.second);
        }
      for (const auto &RHSVal : RHSVals)
        if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) {
          // If we already inferred a value for this block on the LHS, don't
          // re-add it.
          if (!LHSKnownBBs.count(RHSVal.second))
            Result.emplace_back(InterestingVal, RHSVal.second);
        }

      return !Result.empty();
    }

    // Handle the NOT form of XOR.
    if (I->getOpcode() == Instruction::Xor &&
        isa<ConstantInt>(I->getOperand(1)) &&
        cast<ConstantInt>(I->getOperand(1))->isOne()) {
      ComputeValueKnownInPredecessorsImpl(I->getOperand(0), BB, Result,
                                          WantInteger, RecursionSet, CxtI);
      if (Result.empty())
        return false;

      // Invert the known values.
      for (auto &R : Result)
        R.first = ConstantExpr::getNot(R.first);

      return true;
    }

  // Try to simplify some other binary operator values.
  } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
    assert(Preference != WantBlockAddress
            && "A binary operator creating a block address?");
    if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
      PredValueInfoTy LHSVals;
      ComputeValueKnownInPredecessorsImpl(BO->getOperand(0), BB, LHSVals,
                                          WantInteger, RecursionSet, CxtI);

      // Try to use constant folding to simplify the binary operator.
      for (const auto &LHSVal : LHSVals) {
        Constant *V = LHSVal.first;
        Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI);

        if (Constant *KC = getKnownConstant(Folded, WantInteger))
          Result.emplace_back(KC, LHSVal.second);
      }
    }

    return !Result.empty();
  }

  // Handle compare with phi operand, where the PHI is defined in this block.
  if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
    assert(Preference == WantInteger && "Compares only produce integers");
    Type *CmpType = Cmp->getType();
    Value *CmpLHS = Cmp->getOperand(0);
    Value *CmpRHS = Cmp->getOperand(1);
    CmpInst::Predicate Pred = Cmp->getPredicate();

    PHINode *PN = dyn_cast<PHINode>(CmpLHS);
    if (!PN)
      PN = dyn_cast<PHINode>(CmpRHS);
    if (PN && PN->getParent() == BB) {
      const DataLayout &DL = PN->getModule()->getDataLayout();
      // We can do this simplification if any comparisons fold to true or false.
      // See if any do.
      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
        BasicBlock *PredBB = PN->getIncomingBlock(i);
        Value *LHS, *RHS;
        if (PN == CmpLHS) {
          LHS = PN->getIncomingValue(i);
          RHS = CmpRHS->DoPHITranslation(BB, PredBB);
        } else {
          LHS = CmpLHS->DoPHITranslation(BB, PredBB);
          RHS = PN->getIncomingValue(i);
        }
        Value *Res = SimplifyCmpInst(Pred, LHS, RHS, {DL});
        if (!Res) {
          if (!isa<Constant>(RHS))
            continue;

          // getPredicateOnEdge call will make no sense if LHS is defined in BB.
          auto LHSInst = dyn_cast<Instruction>(LHS);
          if (LHSInst && LHSInst->getParent() == BB)
            continue;

          LazyValueInfo::Tristate
            ResT = LVI->getPredicateOnEdge(Pred, LHS,
                                           cast<Constant>(RHS), PredBB, BB,
                                           CxtI ? CxtI : Cmp);
          if (ResT == LazyValueInfo::Unknown)
            continue;
          Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
        }

        if (Constant *KC = getKnownConstant(Res, WantInteger))
          Result.emplace_back(KC, PredBB);
      }

      return !Result.empty();
    }

    // If comparing a live-in value against a constant, see if we know the
    // live-in value on any predecessors.
    if (isa<Constant>(CmpRHS) && !CmpType->isVectorTy()) {
      Constant *CmpConst = cast<Constant>(CmpRHS);

      if (!isa<Instruction>(CmpLHS) ||
          cast<Instruction>(CmpLHS)->getParent() != BB) {
        for (BasicBlock *P : predecessors(BB)) {
          // If the value is known by LazyValueInfo to be a constant in a
          // predecessor, use that information to try to thread this block.
          LazyValueInfo::Tristate Res =
            LVI->getPredicateOnEdge(Pred, CmpLHS,
                                    CmpConst, P, BB, CxtI ? CxtI : Cmp);
          if (Res == LazyValueInfo::Unknown)
            continue;

          Constant *ResC = ConstantInt::get(CmpType, Res);
          Result.emplace_back(ResC, P);
        }

        return !Result.empty();
      }

      // InstCombine can fold some forms of constant range checks into
      // (icmp (add (x, C1)), C2). See if we have we have such a thing with
      // x as a live-in.
      {
        using namespace PatternMatch;

        Value *AddLHS;
        ConstantInt *AddConst;
        if (isa<ConstantInt>(CmpConst) &&
            match(CmpLHS, m_Add(m_Value(AddLHS), m_ConstantInt(AddConst)))) {
          if (!isa<Instruction>(AddLHS) ||
              cast<Instruction>(AddLHS)->getParent() != BB) {
            for (BasicBlock *P : predecessors(BB)) {
              // If the value is known by LazyValueInfo to be a ConstantRange in
              // a predecessor, use that information to try to thread this
              // block.
              ConstantRange CR = LVI->getConstantRangeOnEdge(
                  AddLHS, P, BB, CxtI ? CxtI : cast<Instruction>(CmpLHS));
              // Propagate the range through the addition.
              CR = CR.add(AddConst->getValue());

              // Get the range where the compare returns true.
              ConstantRange CmpRange = ConstantRange::makeExactICmpRegion(
                  Pred, cast<ConstantInt>(CmpConst)->getValue());

              Constant *ResC;
              if (CmpRange.contains(CR))
                ResC = ConstantInt::getTrue(CmpType);
              else if (CmpRange.inverse().contains(CR))
                ResC = ConstantInt::getFalse(CmpType);
              else
                continue;

              Result.emplace_back(ResC, P);
            }

            return !Result.empty();
          }
        }
      }

      // Try to find a constant value for the LHS of a comparison,
      // and evaluate it statically if we can.
      PredValueInfoTy LHSVals;
      ComputeValueKnownInPredecessorsImpl(I->getOperand(0), BB, LHSVals,
                                          WantInteger, RecursionSet, CxtI);

      for (const auto &LHSVal : LHSVals) {
        Constant *V = LHSVal.first;
        Constant *Folded = ConstantExpr::getCompare(Pred, V, CmpConst);
        if (Constant *KC = getKnownConstant(Folded, WantInteger))
          Result.emplace_back(KC, LHSVal.second);
      }

      return !Result.empty();
    }
  }

  if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
    // Handle select instructions where at least one operand is a known constant
    // and we can figure out the condition value for any predecessor block.
    Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference);
    Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference);
    PredValueInfoTy Conds;
    if ((TrueVal || FalseVal) &&
        ComputeValueKnownInPredecessorsImpl(SI->getCondition(), BB, Conds,
                                            WantInteger, RecursionSet, CxtI)) {
      for (auto &C : Conds) {
        Constant *Cond = C.first;

        // Figure out what value to use for the condition.
        bool KnownCond;
        if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) {
          // A known boolean.
          KnownCond = CI->isOne();
        } else {
          assert(isa<UndefValue>(Cond) && "Unexpected condition value");
          // Either operand will do, so be sure to pick the one that's a known
          // constant.
          // FIXME: Do this more cleverly if both values are known constants?
          KnownCond = (TrueVal != nullptr);
        }

        // See if the select has a known constant value for this predecessor.
        if (Constant *Val = KnownCond ? TrueVal : FalseVal)
          Result.emplace_back(Val, C.second);
      }

      return !Result.empty();
    }
  }

  // If all else fails, see if LVI can figure out a constant value for us.
  assert(CxtI->getParent() == BB && "CxtI should be in BB");
  Constant *CI = LVI->getConstant(V, CxtI);
  if (Constant *KC = getKnownConstant(CI, Preference)) {
    for (BasicBlock *Pred : predecessors(BB))
      Result.emplace_back(KC, Pred);
  }

  return !Result.empty();
}

/// GetBestDestForBranchOnUndef - If we determine that the specified block ends
/// in an undefined jump, decide which block is best to revector to.
///
/// Since we can pick an arbitrary destination, we pick the successor with the
/// fewest predecessors.  This should reduce the in-degree of the others.
static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
  Instruction *BBTerm = BB->getTerminator();
  unsigned MinSucc = 0;
  BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
  // Compute the successor with the minimum number of predecessors.
  unsigned MinNumPreds = pred_size(TestBB);
  for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
    TestBB = BBTerm->getSuccessor(i);
    unsigned NumPreds = pred_size(TestBB);
    if (NumPreds < MinNumPreds) {
      MinSucc = i;
      MinNumPreds = NumPreds;
    }
  }

  return MinSucc;
}

static bool hasAddressTakenAndUsed(BasicBlock *BB) {
  if (!BB->hasAddressTaken()) return false;

  // If the block has its address taken, it may be a tree of dead constants
  // hanging off of it.  These shouldn't keep the block alive.
  BlockAddress *BA = BlockAddress::get(BB);
  BA->removeDeadConstantUsers();
  return !BA->use_empty();
}

/// ProcessBlock - If there are any predecessors whose control can be threaded
/// through to a successor, transform them now.
bool JumpThreadingPass::ProcessBlock(BasicBlock *BB) {
  // If the block is trivially dead, just return and let the caller nuke it.
  // This simplifies other transformations.
  if (DTU->isBBPendingDeletion(BB) ||
      (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()))
    return false;

  // If this block has a single predecessor, and if that pred has a single
  // successor, merge the blocks.  This encourages recursive jump threading
  // because now the condition in this block can be threaded through
  // predecessors of our predecessor block.
  if (MaybeMergeBasicBlockIntoOnlyPred(BB))
    return true;

  if (TryToUnfoldSelectInCurrBB(BB))
    return true;

  // Look if we can propagate guards to predecessors.
  if (HasGuards && ProcessGuards(BB))
    return true;

  // What kind of constant we're looking for.
  ConstantPreference Preference = WantInteger;

  // Look to see if the terminator is a conditional branch, switch or indirect
  // branch, if not we can't thread it.
  Value *Condition;
  Instruction *Terminator = BB->getTerminator();
  if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) {
    // Can't thread an unconditional jump.
    if (BI->isUnconditional()) return false;
    Condition = BI->getCondition();
  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) {
    Condition = SI->getCondition();
  } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) {
    // Can't thread indirect branch with no successors.
    if (IB->getNumSuccessors() == 0) return false;
    Condition = IB->getAddress()->stripPointerCasts();
    Preference = WantBlockAddress;
  } else {
    return false; // Must be an invoke or callbr.
  }

  // Keep track if we constant folded the condition in this invocation.
  bool ConstantFolded = false;

  // Run constant folding to see if we can reduce the condition to a simple
  // constant.
  if (Instruction *I = dyn_cast<Instruction>(Condition)) {
    Value *SimpleVal =
        ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI);
    if (SimpleVal) {
      I->replaceAllUsesWith(SimpleVal);
      if (isInstructionTriviallyDead(I, TLI))
        I->eraseFromParent();
      Condition = SimpleVal;
      ConstantFolded = true;
    }
  }

  // If the terminator is branching on an undef or freeze undef, we can pick any
  // of the successors to branch to.  Let GetBestDestForJumpOnUndef decide.
  auto *FI = dyn_cast<FreezeInst>(Condition);
  if (isa<UndefValue>(Condition) ||
      (FI && isa<UndefValue>(FI->getOperand(0)) && FI->hasOneUse())) {
    unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
    std::vector<DominatorTree::UpdateType> Updates;

    // Fold the branch/switch.
    Instruction *BBTerm = BB->getTerminator();
    Updates.reserve(BBTerm->getNumSuccessors());
    for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
      if (i == BestSucc) continue;
      BasicBlock *Succ = BBTerm->getSuccessor(i);
      Succ->removePredecessor(BB, true);
      Updates.push_back({DominatorTree::Delete, BB, Succ});
    }

    LLVM_DEBUG(dbgs() << "  In block '" << BB->getName()
                      << "' folding undef terminator: " << *BBTerm << '\n');
    BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
    BBTerm->eraseFromParent();
    DTU->applyUpdatesPermissive(Updates);
    if (FI)
      FI->eraseFromParent();
    return true;
  }

  // If the terminator of this block is branching on a constant, simplify the
  // terminator to an unconditional branch.  This can occur due to threading in
  // other blocks.
  if (getKnownConstant(Condition, Preference)) {
    LLVM_DEBUG(dbgs() << "  In block '" << BB->getName()
                      << "' folding terminator: " << *BB->getTerminator()
                      << '\n');
    ++NumFolds;
    ConstantFoldTerminator(BB, true, nullptr, DTU);
    return true;
  }

  Instruction *CondInst = dyn_cast<Instruction>(Condition);

  // All the rest of our checks depend on the condition being an instruction.
  if (!CondInst) {
    // FIXME: Unify this with code below.
    if (ProcessThreadableEdges(Condition, BB, Preference, Terminator))
      return true;
    return ConstantFolded;
  }

  if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
    // If we're branching on a conditional, LVI might be able to determine
    // it's value at the branch instruction.  We only handle comparisons
    // against a constant at this time.
    // TODO: This should be extended to handle switches as well.
    BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
    Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1));
    if (CondBr && CondConst) {
      // We should have returned as soon as we turn a conditional branch to
      // unconditional. Because its no longer interesting as far as jump
      // threading is concerned.
      assert(CondBr->isConditional() && "Threading on unconditional terminator");

      LazyValueInfo::Tristate Ret =
        LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0),
                            CondConst, CondBr);
      if (Ret != LazyValueInfo::Unknown) {
        unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0;
        unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1;
        BasicBlock *ToRemoveSucc = CondBr->getSuccessor(ToRemove);
        ToRemoveSucc->removePredecessor(BB, true);
        BranchInst *UncondBr =
          BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr);
        UncondBr->setDebugLoc(CondBr->getDebugLoc());
        CondBr->eraseFromParent();
        if (CondCmp->use_empty())
          CondCmp->eraseFromParent();
        // We can safely replace *some* uses of the CondInst if it has
        // exactly one value as returned by LVI. RAUW is incorrect in the
        // presence of guards and assumes, that have the `Cond` as the use. This
        // is because we use the guards/assume to reason about the `Cond` value
        // at the end of block, but RAUW unconditionally replaces all uses
        // including the guards/assumes themselves and the uses before the
        // guard/assume.
        else if (CondCmp->getParent() == BB) {
          auto *CI = Ret == LazyValueInfo::True ?
            ConstantInt::getTrue(CondCmp->getType()) :
            ConstantInt::getFalse(CondCmp->getType());
          ReplaceFoldableUses(CondCmp, CI);
        }
        DTU->applyUpdatesPermissive(
            {{DominatorTree::Delete, BB, ToRemoveSucc}});
        return true;
      }

      // We did not manage to simplify this branch, try to see whether
      // CondCmp depends on a known phi-select pattern.
      if (TryToUnfoldSelect(CondCmp, BB))
        return true;
    }
  }

  if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
    if (TryToUnfoldSelect(SI, BB))
      return true;

  // Check for some cases that are worth simplifying.  Right now we want to look
  // for loads that are used by a switch or by the condition for the branch.  If
  // we see one, check to see if it's partially redundant.  If so, insert a PHI
  // which can then be used to thread the values.
  Value *SimplifyValue = CondInst;

  if (auto *FI = dyn_cast<FreezeInst>(SimplifyValue))
    // Look into freeze's operand
    SimplifyValue = FI->getOperand(0);

  if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
    if (isa<Constant>(CondCmp->getOperand(1)))
      SimplifyValue = CondCmp->getOperand(0);

  // TODO: There are other places where load PRE would be profitable, such as
  // more complex comparisons.
  if (LoadInst *LoadI = dyn_cast<LoadInst>(SimplifyValue))
    if (SimplifyPartiallyRedundantLoad(LoadI))
      return true;

  // Before threading, try to propagate profile data backwards:
  if (PHINode *PN = dyn_cast<PHINode>(CondInst))
    if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
      updatePredecessorProfileMetadata(PN, BB);

  // Handle a variety of cases where we are branching on something derived from
  // a PHI node in the current block.  If we can prove that any predecessors
  // compute a predictable value based on a PHI node, thread those predecessors.
  if (ProcessThreadableEdges(CondInst, BB, Preference, Terminator))
    return true;

  // If this is an otherwise-unfoldable branch on a phi node or freeze(phi) in
  // the current block, see if we can simplify.
  PHINode *PN = dyn_cast<PHINode>(
      isa<FreezeInst>(CondInst) ? cast<FreezeInst>(CondInst)->getOperand(0)
                                : CondInst);

  if (PN && PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
    return ProcessBranchOnPHI(PN);

  // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
  if (CondInst->getOpcode() == Instruction::Xor &&
      CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
    return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst));

  // Search for a stronger dominating condition that can be used to simplify a
  // conditional branch leaving BB.
  if (ProcessImpliedCondition(BB))
    return true;

  return false;
}

bool JumpThreadingPass::ProcessImpliedCondition(BasicBlock *BB) {
  auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
  if (!BI || !BI->isConditional())
    return false;

  Value *Cond = BI->getCondition();
  BasicBlock *CurrentBB = BB;
  BasicBlock *CurrentPred = BB->getSinglePredecessor();
  unsigned Iter = 0;

  auto &DL = BB->getModule()->getDataLayout();

  while (CurrentPred && Iter++ < ImplicationSearchThreshold) {
    auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator());
    if (!PBI || !PBI->isConditional())
      return false;
    if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB)
      return false;

    bool CondIsTrue = PBI->getSuccessor(0) == CurrentBB;
    Optional<bool> Implication =
        isImpliedCondition(PBI->getCondition(), Cond, DL, CondIsTrue);
    if (Implication) {
      BasicBlock *KeepSucc = BI->getSuccessor(*Implication ? 0 : 1);
      BasicBlock *RemoveSucc = BI->getSuccessor(*Implication ? 1 : 0);
      RemoveSucc->removePredecessor(BB);
      BranchInst *UncondBI = BranchInst::Create(KeepSucc, BI);
      UncondBI->setDebugLoc(BI->getDebugLoc());
      BI->eraseFromParent();
      DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, RemoveSucc}});
      return true;
    }
    CurrentBB = CurrentPred;
    CurrentPred = CurrentBB->getSinglePredecessor();
  }

  return false;
}

/// Return true if Op is an instruction defined in the given block.
static bool isOpDefinedInBlock(Value *Op, BasicBlock *BB) {
  if (Instruction *OpInst = dyn_cast<Instruction>(Op))
    if (OpInst->getParent() == BB)
      return true;
  return false;
}

/// SimplifyPartiallyRedundantLoad - If LoadI is an obviously partially
/// redundant load instruction, eliminate it by replacing it with a PHI node.
/// This is an important optimization that encourages jump threading, and needs
/// to be run interlaced with other jump threading tasks.
bool JumpThreadingPass::SimplifyPartiallyRedundantLoad(LoadInst *LoadI) {
  // Don't hack volatile and ordered loads.
  if (!LoadI->isUnordered()) return false;

  // If the load is defined in a block with exactly one predecessor, it can't be
  // partially redundant.
  BasicBlock *LoadBB = LoadI->getParent();
  if (LoadBB->getSinglePredecessor())
    return false;

  // If the load is defined in an EH pad, it can't be partially redundant,
  // because the edges between the invoke and the EH pad cannot have other
  // instructions between them.
  if (LoadBB->isEHPad())
    return false;

  Value *LoadedPtr = LoadI->getOperand(0);

  // If the loaded operand is defined in the LoadBB and its not a phi,
  // it can't be available in predecessors.
  if (isOpDefinedInBlock(LoadedPtr, LoadBB) && !isa<PHINode>(LoadedPtr))
    return false;

  // Scan a few instructions up from the load, to see if it is obviously live at
  // the entry to its block.
  BasicBlock::iterator BBIt(LoadI);
  bool IsLoadCSE;
  if (Value *AvailableVal = FindAvailableLoadedValue(
          LoadI, LoadBB, BBIt, DefMaxInstsToScan, AA, &IsLoadCSE)) {
    // If the value of the load is locally available within the block, just use
    // it.  This frequently occurs for reg2mem'd allocas.

    if (IsLoadCSE) {
      LoadInst *NLoadI = cast<LoadInst>(AvailableVal);
      combineMetadataForCSE(NLoadI, LoadI, false);
    };

    // If the returned value is the load itself, replace with an undef. This can
    // only happen in dead loops.
    if (AvailableVal == LoadI)
      AvailableVal = UndefValue::get(LoadI->getType());
    if (AvailableVal->getType() != LoadI->getType())
      AvailableVal = CastInst::CreateBitOrPointerCast(
          AvailableVal, LoadI->getType(), "", LoadI);
    LoadI->replaceAllUsesWith(AvailableVal);
    LoadI->eraseFromParent();
    return true;
  }

  // Otherwise, if we scanned the whole block and got to the top of the block,
  // we know the block is locally transparent to the load.  If not, something
  // might clobber its value.
  if (BBIt != LoadBB->begin())
    return false;

  // If all of the loads and stores that feed the value have the same AA tags,
  // then we can propagate them onto any newly inserted loads.
  AAMDNodes AATags;
  LoadI->getAAMetadata(AATags);

  SmallPtrSet<BasicBlock*, 8> PredsScanned;

  using AvailablePredsTy = SmallVector<std::pair<BasicBlock *, Value *>, 8>;

  AvailablePredsTy AvailablePreds;
  BasicBlock *OneUnavailablePred = nullptr;
  SmallVector<LoadInst*, 8> CSELoads;

  // If we got here, the loaded value is transparent through to the start of the
  // block.  Check to see if it is available in any of the predecessor blocks.
  for (BasicBlock *PredBB : predecessors(LoadBB)) {
    // If we already scanned this predecessor, skip it.
    if (!PredsScanned.insert(PredBB).second)
      continue;

    BBIt = PredBB->end();
    unsigned NumScanedInst = 0;
    Value *PredAvailable = nullptr;
    // NOTE: We don't CSE load that is volatile or anything stronger than
    // unordered, that should have been checked when we entered the function.
    assert(LoadI->isUnordered() &&
           "Attempting to CSE volatile or atomic loads");
    // If this is a load on a phi pointer, phi-translate it and search
    // for available load/store to the pointer in predecessors.
    Value *Ptr = LoadedPtr->DoPHITranslation(LoadBB, PredBB);
    PredAvailable = FindAvailablePtrLoadStore(
        Ptr, LoadI->getType(), LoadI->isAtomic(), PredBB, BBIt,
        DefMaxInstsToScan, AA, &IsLoadCSE, &NumScanedInst);

    // If PredBB has a single predecessor, continue scanning through the
    // single predecessor.
    BasicBlock *SinglePredBB = PredBB;
    while (!PredAvailable && SinglePredBB && BBIt == SinglePredBB->begin() &&
           NumScanedInst < DefMaxInstsToScan) {
      SinglePredBB = SinglePredBB->getSinglePredecessor();
      if (SinglePredBB) {
        BBIt = SinglePredBB->end();
        PredAvailable = FindAvailablePtrLoadStore(
            Ptr, LoadI->getType(), LoadI->isAtomic(), SinglePredBB, BBIt,
            (DefMaxInstsToScan - NumScanedInst), AA, &IsLoadCSE,
            &NumScanedInst);
      }
    }

    if (!PredAvailable) {
      OneUnavailablePred = PredBB;
      continue;
    }

    if (IsLoadCSE)
      CSELoads.push_back(cast<LoadInst>(PredAvailable));

    // If so, this load is partially redundant.  Remember this info so that we
    // can create a PHI node.
    AvailablePreds.emplace_back(PredBB, PredAvailable);
  }

  // If the loaded value isn't available in any predecessor, it isn't partially
  // redundant.
  if (AvailablePreds.empty()) return false;

  // Okay, the loaded value is available in at least one (and maybe all!)
  // predecessors.  If the value is unavailable in more than one unique
  // predecessor, we want to insert a merge block for those common predecessors.
  // This ensures that we only have to insert one reload, thus not increasing
  // code size.
  BasicBlock *UnavailablePred = nullptr;

  // If the value is unavailable in one of predecessors, we will end up
  // inserting a new instruction into them. It is only valid if all the
  // instructions before LoadI are guaranteed to pass execution to its
  // successor, or if LoadI is safe to speculate.
  // TODO: If this logic becomes more complex, and we will perform PRE insertion
  // farther than to a predecessor, we need to reuse the code from GVN's PRE.
  // It requires domination tree analysis, so for this simple case it is an
  // overkill.
  if (PredsScanned.size() != AvailablePreds.size() &&
      !isSafeToSpeculativelyExecute(LoadI))
    for (auto I = LoadBB->begin(); &*I != LoadI; ++I)
      if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
        return false;

  // If there is exactly one predecessor where the value is unavailable, the
  // already computed 'OneUnavailablePred' block is it.  If it ends in an
  // unconditional branch, we know that it isn't a critical edge.
  if (PredsScanned.size() == AvailablePreds.size()+1 &&
      OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
    UnavailablePred = OneUnavailablePred;
  } else if (PredsScanned.size() != AvailablePreds.size()) {
    // Otherwise, we had multiple unavailable predecessors or we had a critical
    // edge from the one.
    SmallVector<BasicBlock*, 8> PredsToSplit;
    SmallPtrSet<BasicBlock*, 8> AvailablePredSet;

    for (const auto &AvailablePred : AvailablePreds)
      AvailablePredSet.insert(AvailablePred.first);

    // Add all the unavailable predecessors to the PredsToSplit list.
    for (BasicBlock *P : predecessors(LoadBB)) {
      // If the predecessor is an indirect goto, we can't split the edge.
      // Same for CallBr.
      if (isa<IndirectBrInst>(P->getTerminator()) ||
          isa<CallBrInst>(P->getTerminator()))
        return false;

      if (!AvailablePredSet.count(P))
        PredsToSplit.push_back(P);
    }

    // Split them out to their own block.
    UnavailablePred = SplitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split");
  }

  // If the value isn't available in all predecessors, then there will be
  // exactly one where it isn't available.  Insert a load on that edge and add
  // it to the AvailablePreds list.
  if (UnavailablePred) {
    assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
           "Can't handle critical edge here!");
    LoadInst *NewVal = new LoadInst(
        LoadI->getType(), LoadedPtr->DoPHITranslation(LoadBB, UnavailablePred),
        LoadI->getName() + ".pr", false, LoadI->getAlign(),
        LoadI->getOrdering(), LoadI->getSyncScopeID(),
        UnavailablePred->getTerminator());
    NewVal->setDebugLoc(LoadI->getDebugLoc());
    if (AATags)
      NewVal->setAAMetadata(AATags);

    AvailablePreds.emplace_back(UnavailablePred, NewVal);
  }

  // Now we know that each predecessor of this block has a value in
  // AvailablePreds, sort them for efficient access as we're walking the preds.
  array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());

  // Create a PHI node at the start of the block for the PRE'd load value.
  pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB);
  PHINode *PN = PHINode::Create(LoadI->getType(), std::distance(PB, PE), "",
                                &LoadBB->front());
  PN->takeName(LoadI);
  PN->setDebugLoc(LoadI->getDebugLoc());

  // Insert new entries into the PHI for each predecessor.  A single block may
  // have multiple entries here.
  for (pred_iterator PI = PB; PI != PE; ++PI) {
    BasicBlock *P = *PI;
    AvailablePredsTy::iterator I =
        llvm::lower_bound(AvailablePreds, std::make_pair(P, (Value *)nullptr));

    assert(I != AvailablePreds.end() && I->first == P &&
           "Didn't find entry for predecessor!");

    // If we have an available predecessor but it requires casting, insert the
    // cast in the predecessor and use the cast. Note that we have to update the
    // AvailablePreds vector as we go so that all of the PHI entries for this
    // predecessor use the same bitcast.
    Value *&PredV = I->second;
    if (PredV->getType() != LoadI->getType())
      PredV = CastInst::CreateBitOrPointerCast(PredV, LoadI->getType(), "",
                                               P->getTerminator());

    PN->addIncoming(PredV, I->first);
  }

  for (LoadInst *PredLoadI : CSELoads) {
    combineMetadataForCSE(PredLoadI, LoadI, true);
  }

  LoadI->replaceAllUsesWith(PN);
  LoadI->eraseFromParent();

  return true;
}

/// FindMostPopularDest - The specified list contains multiple possible
/// threadable destinations.  Pick the one that occurs the most frequently in
/// the list.
static BasicBlock *
FindMostPopularDest(BasicBlock *BB,
                    const SmallVectorImpl<std::pair<BasicBlock *,
                                          BasicBlock *>> &PredToDestList) {
  assert(!PredToDestList.empty());

  // Determine popularity.  If there are multiple possible destinations, we
  // explicitly choose to ignore 'undef' destinations.  We prefer to thread
  // blocks with known and real destinations to threading undef.  We'll handle
  // them later if interesting.
  MapVector<BasicBlock *, unsigned> DestPopularity;

  // Populate DestPopularity with the successors in the order they appear in the
  // successor list.  This way, we ensure determinism by iterating it in the
  // same order in std::max_element below.  We map nullptr to 0 so that we can
  // return nullptr when PredToDestList contains nullptr only.
  DestPopularity[nullptr] = 0;
  for (auto *SuccBB : successors(BB))
    DestPopularity[SuccBB] = 0;

  for (const auto &PredToDest : PredToDestList)
    if (PredToDest.second)
      DestPopularity[PredToDest.second]++;

  // Find the most popular dest.
  using VT = decltype(DestPopularity)::value_type;
  auto MostPopular = std::max_element(
      DestPopularity.begin(), DestPopularity.end(),
      [](const VT &L, const VT &R) { return L.second < R.second; });

  // Okay, we have finally picked the most popular destination.
  return MostPopular->first;
}

// Try to evaluate the value of V when the control flows from PredPredBB to
// BB->getSinglePredecessor() and then on to BB.
Constant *JumpThreadingPass::EvaluateOnPredecessorEdge(BasicBlock *BB,
                                                       BasicBlock *PredPredBB,
                                                       Value *V) {
  BasicBlock *PredBB = BB->getSinglePredecessor();
  assert(PredBB && "Expected a single predecessor");

  if (Constant *Cst = dyn_cast<Constant>(V)) {
    return Cst;
  }

  // Consult LVI if V is not an instruction in BB or PredBB.
  Instruction *I = dyn_cast<Instruction>(V);
  if (!I || (I->getParent() != BB && I->getParent() != PredBB)) {
    return LVI->getConstantOnEdge(V, PredPredBB, PredBB, nullptr);
  }

  // Look into a PHI argument.
  if (PHINode *PHI = dyn_cast<PHINode>(V)) {
    if (PHI->getParent() == PredBB)
      return dyn_cast<Constant>(PHI->getIncomingValueForBlock(PredPredBB));
    return nullptr;
  }

  // If we have a CmpInst, try to fold it for each incoming edge into PredBB.
  if (CmpInst *CondCmp = dyn_cast<CmpInst>(V)) {
    if (CondCmp->getParent() == BB) {
      Constant *Op0 =
          EvaluateOnPredecessorEdge(BB, PredPredBB, CondCmp->getOperand(0));
      Constant *Op1 =
          EvaluateOnPredecessorEdge(BB, PredPredBB, CondCmp->getOperand(1));
      if (Op0 && Op1) {
        return ConstantExpr::getCompare(CondCmp->getPredicate(), Op0, Op1);
      }
    }
    return nullptr;
  }

  return nullptr;
}

bool JumpThreadingPass::ProcessThreadableEdges(Value *Cond, BasicBlock *BB,
                                               ConstantPreference Preference,
                                               Instruction *CxtI) {
  // If threading this would thread across a loop header, don't even try to
  // thread the edge.
  if (LoopHeaders.count(BB))
    return false;

  PredValueInfoTy PredValues;
  if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference,
                                       CxtI)) {
    // We don't have known values in predecessors.  See if we can thread through
    // BB and its sole predecessor.
    return MaybeThreadThroughTwoBasicBlocks(BB, Cond);
  }

  assert(!PredValues.empty() &&
         "ComputeValueKnownInPredecessors returned true with no values");

  LLVM_DEBUG(dbgs() << "IN BB: " << *BB;
             for (const auto &PredValue : PredValues) {
               dbgs() << "  BB '" << BB->getName()
                      << "': FOUND condition = " << *PredValue.first
                      << " for pred '" << PredValue.second->getName() << "'.\n";
  });

  // Decide what we want to thread through.  Convert our list of known values to
  // a list of known destinations for each pred.  This also discards duplicate
  // predecessors and keeps track of the undefined inputs (which are represented
  // as a null dest in the PredToDestList).
  SmallPtrSet<BasicBlock*, 16> SeenPreds;
  SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;

  BasicBlock *OnlyDest = nullptr;
  BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
  Constant *OnlyVal = nullptr;
  Constant *MultipleVal = (Constant *)(intptr_t)~0ULL;

  for (const auto &PredValue : PredValues) {
    BasicBlock *Pred = PredValue.second;
    if (!SeenPreds.insert(Pred).second)
      continue;  // Duplicate predecessor entry.

    Constant *Val = PredValue.first;

    BasicBlock *DestBB;
    if (isa<UndefValue>(Val))
      DestBB = nullptr;
    else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
      assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
      DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero());
    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
      assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
      DestBB = SI->findCaseValue(cast<ConstantInt>(Val))->getCaseSuccessor();
    } else {
      assert(isa<IndirectBrInst>(BB->getTerminator())
              && "Unexpected terminator");
      assert(isa<BlockAddress>(Val) && "Expecting a constant blockaddress");
      DestBB = cast<BlockAddress>(Val)->getBasicBlock();
    }

    // If we have exactly one destination, remember it for efficiency below.
    if (PredToDestList.empty()) {
      OnlyDest = DestBB;
      OnlyVal = Val;
    } else {
      if (OnlyDest != DestBB)
        OnlyDest = MultipleDestSentinel;
      // It possible we have same destination, but different value, e.g. default
      // case in switchinst.
      if (Val != OnlyVal)
        OnlyVal = MultipleVal;
    }

    // If the predecessor ends with an indirect goto, we can't change its
    // destination. Same for CallBr.
    if (isa<IndirectBrInst>(Pred->getTerminator()) ||
        isa<CallBrInst>(Pred->getTerminator()))
      continue;

    PredToDestList.emplace_back(Pred, DestBB);
  }

  // If all edges were unthreadable, we fail.
  if (PredToDestList.empty())
    return false;

  // If all the predecessors go to a single known successor, we want to fold,
  // not thread. By doing so, we do not need to duplicate the current block and
  // also miss potential opportunities in case we dont/cant duplicate.
  if (OnlyDest && OnlyDest != MultipleDestSentinel) {
    if (BB->hasNPredecessors(PredToDestList.size())) {
      bool SeenFirstBranchToOnlyDest = false;
      std::vector <DominatorTree::UpdateType> Updates;
      Updates.reserve(BB->getTerminator()->getNumSuccessors() - 1);
      for (BasicBlock *SuccBB : successors(BB)) {
        if (SuccBB == OnlyDest && !SeenFirstBranchToOnlyDest) {
          SeenFirstBranchToOnlyDest = true; // Don't modify the first branch.
        } else {
          SuccBB->removePredecessor(BB, true); // This is unreachable successor.
          Updates.push_back({DominatorTree::Delete, BB, SuccBB});
        }
      }

      // Finally update the terminator.
      Instruction *Term = BB->getTerminator();
      BranchInst::Create(OnlyDest, Term);
      Term->eraseFromParent();
      DTU->applyUpdatesPermissive(Updates);

      // If the condition is now dead due to the removal of the old terminator,
      // erase it.
      if (auto *CondInst = dyn_cast<Instruction>(Cond)) {
        if (CondInst->use_empty() && !CondInst->mayHaveSideEffects())
          CondInst->eraseFromParent();
        // We can safely replace *some* uses of the CondInst if it has
        // exactly one value as returned by LVI. RAUW is incorrect in the
        // presence of guards and assumes, that have the `Cond` as the use. This
        // is because we use the guards/assume to reason about the `Cond` value
        // at the end of block, but RAUW unconditionally replaces all uses
        // including the guards/assumes themselves and the uses before the
        // guard/assume.
        else if (OnlyVal && OnlyVal != MultipleVal &&
                 CondInst->getParent() == BB)
          ReplaceFoldableUses(CondInst, OnlyVal);
      }
      return true;
    }
  }

  // Determine which is the most common successor.  If we have many inputs and
  // this block is a switch, we want to start by threading the batch that goes
  // to the most popular destination first.  If we only know about one
  // threadable destination (the common case) we can avoid this.
  BasicBlock *MostPopularDest = OnlyDest;

  if (MostPopularDest == MultipleDestSentinel) {
    // Remove any loop headers from the Dest list, ThreadEdge conservatively
    // won't process them, but we might have other destination that are eligible
    // and we still want to process.
    erase_if(PredToDestList,
             [&](const std::pair<BasicBlock *, BasicBlock *> &PredToDest) {
               return LoopHeaders.count(PredToDest.second) != 0;
             });

    if (PredToDestList.empty())
      return false;

    MostPopularDest = FindMostPopularDest(BB, PredToDestList);
  }

  // Now that we know what the most popular destination is, factor all
  // predecessors that will jump to it into a single predecessor.
  SmallVector<BasicBlock*, 16> PredsToFactor;
  for (const auto &PredToDest : PredToDestList)
    if (PredToDest.second == MostPopularDest) {
      BasicBlock *Pred = PredToDest.first;

      // This predecessor may be a switch or something else that has multiple
      // edges to the block.  Factor each of these edges by listing them
      // according to # occurrences in PredsToFactor.
      for (BasicBlock *Succ : successors(Pred))
        if (Succ == BB)
          PredsToFactor.push_back(Pred);
    }

  // If the threadable edges are branching on an undefined value, we get to pick
  // the destination that these predecessors should get to.
  if (!MostPopularDest)
    MostPopularDest = BB->getTerminator()->
                            getSuccessor(GetBestDestForJumpOnUndef(BB));

  // Ok, try to thread it!
  return TryThreadEdge(BB, PredsToFactor, MostPopularDest);
}

/// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on
/// a PHI node (or freeze PHI) in the current block.  See if there are any
/// simplifications we can do based on inputs to the phi node.
bool JumpThreadingPass::ProcessBranchOnPHI(PHINode *PN) {
  BasicBlock *BB = PN->getParent();

  // TODO: We could make use of this to do it once for blocks with common PHI
  // values.
  SmallVector<BasicBlock*, 1> PredBBs;
  PredBBs.resize(1);

  // If any of the predecessor blocks end in an unconditional branch, we can
  // *duplicate* the conditional branch into that block in order to further
  // encourage jump threading and to eliminate cases where we have branch on a
  // phi of an icmp (branch on icmp is much better).
  // This is still beneficial when a frozen phi is used as the branch condition
  // because it allows CodeGenPrepare to further canonicalize br(freeze(icmp))
  // to br(icmp(freeze ...)).
  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
    BasicBlock *PredBB = PN->getIncomingBlock(i);
    if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
      if (PredBr->isUnconditional()) {
        PredBBs[0] = PredBB;
        // Try to duplicate BB into PredBB.
        if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs))
          return true;
      }
  }

  return false;
}

/// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on
/// a xor instruction in the current block.  See if there are any
/// simplifications we can do based on inputs to the xor.
bool JumpThreadingPass::ProcessBranchOnXOR(BinaryOperator *BO) {
  BasicBlock *BB = BO->getParent();

  // If either the LHS or RHS of the xor is a constant, don't do this
  // optimization.
  if (isa<ConstantInt>(BO->getOperand(0)) ||
      isa<ConstantInt>(BO->getOperand(1)))
    return false;

  // If the first instruction in BB isn't a phi, we won't be able to infer
  // anything special about any particular predecessor.
  if (!isa<PHINode>(BB->front()))
    return false;

  // If this BB is a landing pad, we won't be able to split the edge into it.
  if (BB->isEHPad())
    return false;

  // If we have a xor as the branch input to this block, and we know that the
  // LHS or RHS of the xor in any predecessor is true/false, then we can clone
  // the condition into the predecessor and fix that value to true, saving some
  // logical ops on that path and encouraging other paths to simplify.
  //
  // This copies something like this:
  //
  //  BB:
  //    %X = phi i1 [1],  [%X']
  //    %Y = icmp eq i32 %A, %B
  //    %Z = xor i1 %X, %Y
  //    br i1 %Z, ...
  //
  // Into:
  //  BB':
  //    %Y = icmp ne i32 %A, %B
  //    br i1 %Y, ...

  PredValueInfoTy XorOpValues;
  bool isLHS = true;
  if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues,
                                       WantInteger, BO)) {
    assert(XorOpValues.empty());
    if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues,
                                         WantInteger, BO))
      return false;
    isLHS = false;
  }

  assert(!XorOpValues.empty() &&
         "ComputeValueKnownInPredecessors returned true with no values");

  // Scan the information to see which is most popular: true or false.  The
  // predecessors can be of the set true, false, or undef.
  unsigned NumTrue = 0, NumFalse = 0;
  for (const auto &XorOpValue : XorOpValues) {
    if (isa<UndefValue>(XorOpValue.first))
      // Ignore undefs for the count.
      continue;
    if (cast<ConstantInt>(XorOpValue.first)->isZero())
      ++NumFalse;
    else
      ++NumTrue;
  }

  // Determine which value to split on, true, false, or undef if neither.
  ConstantInt *SplitVal = nullptr;
  if (NumTrue > NumFalse)
    SplitVal = ConstantInt::getTrue(BB->getContext());
  else if (NumTrue != 0 || NumFalse != 0)
    SplitVal = ConstantInt::getFalse(BB->getContext());

  // Collect all of the blocks that this can be folded into so that we can
  // factor this once and clone it once.
  SmallVector<BasicBlock*, 8> BlocksToFoldInto;
  for (const auto &XorOpValue : XorOpValues) {
    if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first))
      continue;

    BlocksToFoldInto.push_back(XorOpValue.second);
  }

  // If we inferred a value for all of the predecessors, then duplication won't
  // help us.  However, we can just replace the LHS or RHS with the constant.
  if (BlocksToFoldInto.size() ==
      cast<PHINode>(BB->front()).getNumIncomingValues()) {
    if (!SplitVal) {
      // If all preds provide undef, just nuke the xor, because it is undef too.
      BO->replaceAllUsesWith(UndefValue::get(BO->getType()));
      BO->eraseFromParent();
    } else if (SplitVal->isZero()) {
      // If all preds provide 0, replace the xor with the other input.
      BO->replaceAllUsesWith(BO->getOperand(isLHS));
      BO->eraseFromParent();
    } else {
      // If all preds provide 1, set the computed value to 1.
      BO->setOperand(!isLHS, SplitVal);
    }

    return true;
  }

  // If any of predecessors end with an indirect goto, we can't change its
  // destination. Same for CallBr.
  if (any_of(BlocksToFoldInto, [](BasicBlock *Pred) {
        return isa<IndirectBrInst>(Pred->getTerminator()) ||
               isa<CallBrInst>(Pred->getTerminator());
      }))
    return false;

  // Try to duplicate BB into PredBB.
  return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
}

/// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
/// predecessor to the PHIBB block.  If it has PHI nodes, add entries for
/// NewPred using the entries from OldPred (suitably mapped).
static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
                                            BasicBlock *OldPred,
                                            BasicBlock *NewPred,
                                     DenseMap<Instruction*, Value*> &ValueMap) {
  for (PHINode &PN : PHIBB->phis()) {
    // Ok, we have a PHI node.  Figure out what the incoming value was for the
    // DestBlock.
    Value *IV = PN.getIncomingValueForBlock(OldPred);

    // Remap the value if necessary.
    if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
      DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
      if (I != ValueMap.end())
        IV = I->second;
    }

    PN.addIncoming(IV, NewPred);
  }
}

/// Merge basic block BB into its sole predecessor if possible.
bool JumpThreadingPass::MaybeMergeBasicBlockIntoOnlyPred(BasicBlock *BB) {
  BasicBlock *SinglePred = BB->getSinglePredecessor();
  if (!SinglePred)
    return false;

  const Instruction *TI = SinglePred->getTerminator();
  if (TI->isExceptionalTerminator() || TI->getNumSuccessors() != 1 ||
      SinglePred == BB || hasAddressTakenAndUsed(BB))
    return false;

  // If SinglePred was a loop header, BB becomes one.
  if (LoopHeaders.erase(SinglePred))
    LoopHeaders.insert(BB);

  LVI->eraseBlock(SinglePred);
  MergeBasicBlockIntoOnlyPred(BB, DTU);

  // Now that BB is merged into SinglePred (i.e. SinglePred code followed by
  // BB code within one basic block `BB`), we need to invalidate the LVI
  // information associated with BB, because the LVI information need not be
  // true for all of BB after the merge. For example,
  // Before the merge, LVI info and code is as follows:
  // SinglePred: <LVI info1 for %p val>
  // %y = use of %p
  // call @exit() // need not transfer execution to successor.
  // assume(%p) // from this point on %p is true
  // br label %BB
  // BB: <LVI info2 for %p val, i.e. %p is true>
  // %x = use of %p
  // br label exit
  //
  // Note that this LVI info for blocks BB and SinglPred is correct for %p
  // (info2 and info1 respectively). After the merge and the deletion of the
  // LVI info1 for SinglePred. We have the following code:
  // BB: <LVI info2 for %p val>
  // %y = use of %p
  // call @exit()
  // assume(%p)
  // %x = use of %p <-- LVI info2 is correct from here onwards.
  // br label exit
  // LVI info2 for BB is incorrect at the beginning of BB.

  // Invalidate LVI information for BB if the LVI is not provably true for
  // all of BB.
  if (!isGuaranteedToTransferExecutionToSuccessor(BB))
    LVI->eraseBlock(BB);
  return true;
}

/// Update the SSA form.  NewBB contains instructions that are copied from BB.
/// ValueMapping maps old values in BB to new ones in NewBB.
void JumpThreadingPass::UpdateSSA(
    BasicBlock *BB, BasicBlock *NewBB,
    DenseMap<Instruction *, Value *> &ValueMapping) {
  // If there were values defined in BB that are used outside the block, then we
  // now have to update all uses of the value to use either the original value,
  // the cloned value, or some PHI derived value.  This can require arbitrary
  // PHI insertion, of which we are prepared to do, clean these up now.
  SSAUpdater SSAUpdate;
  SmallVector<Use *, 16> UsesToRename;

  for (Instruction &I : *BB) {
    // Scan all uses of this instruction to see if it is used outside of its
    // block, and if so, record them in UsesToRename.
    for (Use &U : I.uses()) {
      Instruction *User = cast<Instruction>(U.getUser());
      if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
        if (UserPN->getIncomingBlock(U) == BB)
          continue;
      } else if (User->getParent() == BB)
        continue;

      UsesToRename.push_back(&U);
    }

    // If there are no uses outside the block, we're done with this instruction.
    if (UsesToRename.empty())
      continue;
    LLVM_DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n");

    // We found a use of I outside of BB.  Rename all uses of I that are outside
    // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
    // with the two values we know.
    SSAUpdate.Initialize(I.getType(), I.getName());
    SSAUpdate.AddAvailableValue(BB, &I);
    SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]);

    while (!UsesToRename.empty())
      SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
    LLVM_DEBUG(dbgs() << "\n");
  }
}

/// Clone instructions in range [BI, BE) to NewBB.  For PHI nodes, we only clone
/// arguments that come from PredBB.  Return the map from the variables in the
/// source basic block to the variables in the newly created basic block.
DenseMap<Instruction *, Value *>
JumpThreadingPass::CloneInstructions(BasicBlock::iterator BI,
                                     BasicBlock::iterator BE, BasicBlock *NewBB,
                                     BasicBlock *PredBB) {
  // We are going to have to map operands from the source basic block to the new
  // copy of the block 'NewBB'.  If there are PHI nodes in the source basic
  // block, evaluate them to account for entry from PredBB.
  DenseMap<Instruction *, Value *> ValueMapping;

  // Clone the phi nodes of the source basic block into NewBB.  The resulting
  // phi nodes are trivial since NewBB only has one predecessor, but SSAUpdater
  // might need to rewrite the operand of the cloned phi.
  for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) {
    PHINode *NewPN = PHINode::Create(PN->getType(), 1, PN->getName(), NewBB);
    NewPN->addIncoming(PN->getIncomingValueForBlock(PredBB), PredBB);
    ValueMapping[PN] = NewPN;
  }

  // Clone the non-phi instructions of the source basic block into NewBB,
  // keeping track of the mapping and using it to remap operands in the cloned
  // instructions.
  for (; BI != BE; ++BI) {
    Instruction *New = BI->clone();
    New->setName(BI->getName());
    NewBB->getInstList().push_back(New);
    ValueMapping[&*BI] = New;

    // Remap operands to patch up intra-block references.
    for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
      if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
        DenseMap<Instruction *, Value *>::iterator I = ValueMapping.find(Inst);
        if (I != ValueMapping.end())
          New->setOperand(i, I->second);
      }
  }

  return ValueMapping;
}

/// Attempt to thread through two successive basic blocks.
bool JumpThreadingPass::MaybeThreadThroughTwoBasicBlocks(BasicBlock *BB,
                                                         Value *Cond) {
  // Consider:
  //
  // PredBB:
  //   %var = phi i32* [ null, %bb1 ], [ @a, %bb2 ]
  //   %tobool = icmp eq i32 %cond, 0
  //   br i1 %tobool, label %BB, label ...
  //
  // BB:
  //   %cmp = icmp eq i32* %var, null
  //   br i1 %cmp, label ..., label ...
  //
  // We don't know the value of %var at BB even if we know which incoming edge
  // we take to BB.  However, once we duplicate PredBB for each of its incoming
  // edges (say, PredBB1 and PredBB2), we know the value of %var in each copy of
  // PredBB.  Then we can thread edges PredBB1->BB and PredBB2->BB through BB.

  // Require that BB end with a Branch for simplicity.
  BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
  if (!CondBr)
    return false;

  // BB must have exactly one predecessor.
  BasicBlock *PredBB = BB->getSinglePredecessor();
  if (!PredBB)
    return false;

  // Require that PredBB end with a conditional Branch. If PredBB ends with an
  // unconditional branch, we should be merging PredBB and BB instead. For
  // simplicity, we don't deal with a switch.
  BranchInst *PredBBBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
  if (!PredBBBranch || PredBBBranch->isUnconditional())
    return false;

  // If PredBB has exactly one incoming edge, we don't gain anything by copying
  // PredBB.
  if (PredBB->getSinglePredecessor())
    return false;

  // Don't thread through PredBB if it contains a successor edge to itself, in
  // which case we would infinite loop.  Suppose we are threading an edge from
  // PredPredBB through PredBB and BB to SuccBB with PredBB containing a
  // successor edge to itself.  If we allowed jump threading in this case, we
  // could duplicate PredBB and BB as, say, PredBB.thread and BB.thread.  Since
  // PredBB.thread has a successor edge to PredBB, we would immediately come up
  // with another jump threading opportunity from PredBB.thread through PredBB
  // and BB to SuccBB.  This jump threading would repeatedly occur.  That is, we
  // would keep peeling one iteration from PredBB.
  if (llvm::is_contained(successors(PredBB), PredBB))
    return false;

  // Don't thread across a loop header.
  if (LoopHeaders.count(PredBB))
    return false;

  // Avoid complication with duplicating EH pads.
  if (PredBB->isEHPad())
    return false;

  // Find a predecessor that we can thread.  For simplicity, we only consider a
  // successor edge out of BB to which we thread exactly one incoming edge into
  // PredBB.
  unsigned ZeroCount = 0;
  unsigned OneCount = 0;
  BasicBlock *ZeroPred = nullptr;
  BasicBlock *OnePred = nullptr;
  for (BasicBlock *P : predecessors(PredBB)) {
    if (ConstantInt *CI = dyn_cast_or_null<ConstantInt>(
            EvaluateOnPredecessorEdge(BB, P, Cond))) {
      if (CI->isZero()) {
        ZeroCount++;
        ZeroPred = P;
      } else if (CI->isOne()) {
        OneCount++;
        OnePred = P;
      }
    }
  }

  // Disregard complicated cases where we have to thread multiple edges.
  BasicBlock *PredPredBB;
  if (ZeroCount == 1) {
    PredPredBB = ZeroPred;
  } else if (OneCount == 1) {
    PredPredBB = OnePred;
  } else {
    return false;
  }

  BasicBlock *SuccBB = CondBr->getSuccessor(PredPredBB == ZeroPred);

  // If threading to the same block as we come from, we would infinite loop.
  if (SuccBB == BB) {
    LLVM_DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
                      << "' - would thread to self!\n");
    return false;
  }

  // If threading this would thread across a loop header, don't thread the edge.
  // See the comments above FindLoopHeaders for justifications and caveats.
  if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) {
    LLVM_DEBUG({
      bool BBIsHeader = LoopHeaders.count(BB);
      bool SuccIsHeader = LoopHeaders.count(SuccBB);
      dbgs() << "  Not threading across "
             << (BBIsHeader ? "loop header BB '" : "block BB '")
             << BB->getName() << "' to dest "
             << (SuccIsHeader ? "loop header BB '" : "block BB '")
             << SuccBB->getName()
             << "' - it might create an irreducible loop!\n";
    });
    return false;
  }

  // Compute the cost of duplicating BB and PredBB.
  unsigned BBCost =
      getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold);
  unsigned PredBBCost = getJumpThreadDuplicationCost(
      PredBB, PredBB->getTerminator(), BBDupThreshold);

  // Give up if costs are too high.  We need to check BBCost and PredBBCost
  // individually before checking their sum because getJumpThreadDuplicationCost
  // return (unsigned)~0 for those basic blocks that cannot be duplicated.
  if (BBCost > BBDupThreshold || PredBBCost > BBDupThreshold ||
      BBCost + PredBBCost > BBDupThreshold) {
    LLVM_DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
                      << "' - Cost is too high: " << PredBBCost
                      << " for PredBB, " << BBCost << "for BB\n");
    return false;
  }

  // Now we are ready to duplicate PredBB.
  ThreadThroughTwoBasicBlocks(PredPredBB, PredBB, BB, SuccBB);
  return true;
}

void JumpThreadingPass::ThreadThroughTwoBasicBlocks(BasicBlock *PredPredBB,
                                                    BasicBlock *PredBB,
                                                    BasicBlock *BB,
                                                    BasicBlock *SuccBB) {
  LLVM_DEBUG(dbgs() << "  Threading through '" << PredBB->getName() << "' and '"
                    << BB->getName() << "'\n");

  BranchInst *CondBr = cast<BranchInst>(BB->getTerminator());
  BranchInst *PredBBBranch = cast<BranchInst>(PredBB->getTerminator());

  BasicBlock *NewBB =
      BasicBlock::Create(PredBB->getContext(), PredBB->getName() + ".thread",
                         PredBB->getParent(), PredBB);
  NewBB->moveAfter(PredBB);

  // Set the block frequency of NewBB.
  if (HasProfileData) {
    auto NewBBFreq = BFI->getBlockFreq(PredPredBB) *
                     BPI->getEdgeProbability(PredPredBB, PredBB);
    BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
  }

  // We are going to have to map operands from the original BB block to the new
  // copy of the block 'NewBB'.  If there are PHI nodes in PredBB, evaluate them
  // to account for entry from PredPredBB.
  DenseMap<Instruction *, Value *> ValueMapping =
      CloneInstructions(PredBB->begin(), PredBB->end(), NewBB, PredPredBB);

  // Update the terminator of PredPredBB to jump to NewBB instead of PredBB.
  // This eliminates predecessors from PredPredBB, which requires us to simplify
  // any PHI nodes in PredBB.
  Instruction *PredPredTerm = PredPredBB->getTerminator();
  for (unsigned i = 0, e = PredPredTerm->getNumSuccessors(); i != e; ++i)
    if (PredPredTerm->getSuccessor(i) == PredBB) {
      PredBB->removePredecessor(PredPredBB, true);
      PredPredTerm->setSuccessor(i, NewBB);
    }

  AddPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(0), PredBB, NewBB,
                                  ValueMapping);
  AddPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(1), PredBB, NewBB,
                                  ValueMapping);

  DTU->applyUpdatesPermissive(
      {{DominatorTree::Insert, NewBB, CondBr->getSuccessor(0)},
       {DominatorTree::Insert, NewBB, CondBr->getSuccessor(1)},
       {DominatorTree::Insert, PredPredBB, NewBB},
       {DominatorTree::Delete, PredPredBB, PredBB}});

  UpdateSSA(PredBB, NewBB, ValueMapping);

  // Clean up things like PHI nodes with single operands, dead instructions,
  // etc.
  SimplifyInstructionsInBlock(NewBB, TLI);
  SimplifyInstructionsInBlock(PredBB, TLI);

  SmallVector<BasicBlock *, 1> PredsToFactor;
  PredsToFactor.push_back(NewBB);
  ThreadEdge(BB, PredsToFactor, SuccBB);
}

/// TryThreadEdge - Thread an edge if it's safe and profitable to do so.
bool JumpThreadingPass::TryThreadEdge(
    BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs,
    BasicBlock *SuccBB) {
  // If threading to the same block as we come from, we would infinite loop.
  if (SuccBB == BB) {
    LLVM_DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
                      << "' - would thread to self!\n");
    return false;
  }

  // If threading this would thread across a loop header, don't thread the edge.
  // See the comments above FindLoopHeaders for justifications and caveats.
  if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) {
    LLVM_DEBUG({
      bool BBIsHeader = LoopHeaders.count(BB);
      bool SuccIsHeader = LoopHeaders.count(SuccBB);
      dbgs() << "  Not threading across "
          << (BBIsHeader ? "loop header BB '" : "block BB '") << BB->getName()
          << "' to dest " << (SuccIsHeader ? "loop header BB '" : "block BB '")
          << SuccBB->getName() << "' - it might create an irreducible loop!\n";
    });
    return false;
  }

  unsigned JumpThreadCost =
      getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold);
  if (JumpThreadCost > BBDupThreshold) {
    LLVM_DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
                      << "' - Cost is too high: " << JumpThreadCost << "\n");
    return false;
  }

  ThreadEdge(BB, PredBBs, SuccBB);
  return true;
}

/// ThreadEdge - We have decided that it is safe and profitable to factor the
/// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
/// across BB.  Transform the IR to reflect this change.
void JumpThreadingPass::ThreadEdge(BasicBlock *BB,
                                   const SmallVectorImpl<BasicBlock *> &PredBBs,
                                   BasicBlock *SuccBB) {
  assert(SuccBB != BB && "Don't create an infinite loop");

  assert(!LoopHeaders.count(BB) && !LoopHeaders.count(SuccBB) &&
         "Don't thread across loop headers");

  // And finally, do it!  Start by factoring the predecessors if needed.
  BasicBlock *PredBB;
  if (PredBBs.size() == 1)
    PredBB = PredBBs[0];
  else {
    LLVM_DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
                      << " common predecessors.\n");
    PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm");
  }

  // And finally, do it!
  LLVM_DEBUG(dbgs() << "  Threading edge from '" << PredBB->getName()
                    << "' to '" << SuccBB->getName()
                    << ", across block:\n    " << *BB << "\n");

  LVI->threadEdge(PredBB, BB, SuccBB);

  BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
                                         BB->getName()+".thread",
                                         BB->getParent(), BB);
  NewBB->moveAfter(PredBB);

  // Set the block frequency of NewBB.
  if (HasProfileData) {
    auto NewBBFreq =
        BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB);
    BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
  }

  // Copy all the instructions from BB to NewBB except the terminator.
  DenseMap<Instruction *, Value *> ValueMapping =
      CloneInstructions(BB->begin(), std::prev(BB->end()), NewBB, PredBB);

  // We didn't copy the terminator from BB over to NewBB, because there is now
  // an unconditional jump to SuccBB.  Insert the unconditional jump.
  BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB);
  NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc());

  // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
  // PHI nodes for NewBB now.
  AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);

  // Update the terminator of PredBB to jump to NewBB instead of BB.  This
  // eliminates predecessors from BB, which requires us to simplify any PHI
  // nodes in BB.
  Instruction *PredTerm = PredBB->getTerminator();
  for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
    if (PredTerm->getSuccessor(i) == BB) {
      BB->removePredecessor(PredBB, true);
      PredTerm->setSuccessor(i, NewBB);
    }

  // Enqueue required DT updates.
  DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, SuccBB},
                               {DominatorTree::Insert, PredBB, NewBB},
                               {DominatorTree::Delete, PredBB, BB}});

  UpdateSSA(BB, NewBB, ValueMapping);

  // At this point, the IR is fully up to date and consistent.  Do a quick scan
  // over the new instructions and zap any that are constants or dead.  This
  // frequently happens because of phi translation.
  SimplifyInstructionsInBlock(NewBB, TLI);

  // Update the edge weight from BB to SuccBB, which should be less than before.
  UpdateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB);

  // Threaded an edge!
  ++NumThreads;
}

/// Create a new basic block that will be the predecessor of BB and successor of
/// all blocks in Preds. When profile data is available, update the frequency of
/// this new block.
BasicBlock *JumpThreadingPass::SplitBlockPreds(BasicBlock *BB,
                                               ArrayRef<BasicBlock *> Preds,
                                               const char *Suffix) {
  SmallVector<BasicBlock *, 2> NewBBs;

  // Collect the frequencies of all predecessors of BB, which will be used to
  // update the edge weight of the result of splitting predecessors.
  DenseMap<BasicBlock *, BlockFrequency> FreqMap;
  if (HasProfileData)
    for (auto Pred : Preds)
      FreqMap.insert(std::make_pair(
          Pred, BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB)));

  // In the case when BB is a LandingPad block we create 2 new predecessors
  // instead of just one.
  if (BB->isLandingPad()) {
    std::string NewName = std::string(Suffix) + ".split-lp";
    SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs);
  } else {
    NewBBs.push_back(SplitBlockPredecessors(BB, Preds, Suffix));
  }

  std::vector<DominatorTree::UpdateType> Updates;
  Updates.reserve((2 * Preds.size()) + NewBBs.size());
  for (auto NewBB : NewBBs) {
    BlockFrequency NewBBFreq(0);
    Updates.push_back({DominatorTree::Insert, NewBB, BB});
    for (auto Pred : predecessors(NewBB)) {
      Updates.push_back({DominatorTree::Delete, Pred, BB});
      Updates.push_back({DominatorTree::Insert, Pred, NewBB});
      if (HasProfileData) // Update frequencies between Pred -> NewBB.
        NewBBFreq += FreqMap.lookup(Pred);
    }
    if (HasProfileData) // Apply the summed frequency to NewBB.
      BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
  }

  DTU->applyUpdatesPermissive(Updates);
  return NewBBs[0];
}

bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock *BB) {
  const Instruction *TI = BB->getTerminator();
  assert(TI->getNumSuccessors() > 1 && "not a split");

  MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof);
  if (!WeightsNode)
    return false;

  MDString *MDName = cast<MDString>(WeightsNode->getOperand(0));
  if (MDName->getString() != "branch_weights")
    return false;

  // Ensure there are weights for all of the successors. Note that the first
  // operand to the metadata node is a name, not a weight.
  return WeightsNode->getNumOperands() == TI->getNumSuccessors() + 1;
}

/// Update the block frequency of BB and branch weight and the metadata on the
/// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 -
/// Freq(PredBB->BB) / Freq(BB->SuccBB).
void JumpThreadingPass::UpdateBlockFreqAndEdgeWeight(BasicBlock *PredBB,
                                                     BasicBlock *BB,
                                                     BasicBlock *NewBB,
                                                     BasicBlock *SuccBB) {
  if (!HasProfileData)
    return;

  assert(BFI && BPI && "BFI & BPI should have been created here");

  // As the edge from PredBB to BB is deleted, we have to update the block
  // frequency of BB.
  auto BBOrigFreq = BFI->getBlockFreq(BB);
  auto NewBBFreq = BFI->getBlockFreq(NewBB);
  auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB);
  auto BBNewFreq = BBOrigFreq - NewBBFreq;
  BFI->setBlockFreq(BB, BBNewFreq.getFrequency());

  // Collect updated outgoing edges' frequencies from BB and use them to update
  // edge probabilities.
  SmallVector<uint64_t, 4> BBSuccFreq;
  for (BasicBlock *Succ : successors(BB)) {
    auto SuccFreq = (Succ == SuccBB)
                        ? BB2SuccBBFreq - NewBBFreq
                        : BBOrigFreq * BPI->getEdgeProbability(BB, Succ);
    BBSuccFreq.push_back(SuccFreq.getFrequency());
  }

  uint64_t MaxBBSuccFreq =
      *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end());

  SmallVector<BranchProbability, 4> BBSuccProbs;
  if (MaxBBSuccFreq == 0)
    BBSuccProbs.assign(BBSuccFreq.size(),
                       {1, static_cast<unsigned>(BBSuccFreq.size())});
  else {
    for (uint64_t Freq : BBSuccFreq)
      BBSuccProbs.push_back(
          BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq));
    // Normalize edge probabilities so that they sum up to one.
    BranchProbability::normalizeProbabilities(BBSuccProbs.begin(),
                                              BBSuccProbs.end());
  }

  // Update edge probabilities in BPI.
  BPI->setEdgeProbability(BB, BBSuccProbs);

  // Update the profile metadata as well.
  //
  // Don't do this if the profile of the transformed blocks was statically
  // estimated.  (This could occur despite the function having an entry
  // frequency in completely cold parts of the CFG.)
  //
  // In this case we don't want to suggest to subsequent passes that the
  // calculated weights are fully consistent.  Consider this graph:
  //
  //                 check_1
  //             50% /  |
  //             eq_1   | 50%
  //                 \  |
  //                 check_2
  //             50% /  |
  //             eq_2   | 50%
  //                 \  |
  //                 check_3
  //             50% /  |
  //             eq_3   | 50%
  //                 \  |
  //
  // Assuming the blocks check_* all compare the same value against 1, 2 and 3,
  // the overall probabilities are inconsistent; the total probability that the
  // value is either 1, 2 or 3 is 150%.
  //
  // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3
  // becomes 0%.  This is even worse if the edge whose probability becomes 0% is
  // the loop exit edge.  Then based solely on static estimation we would assume
  // the loop was extremely hot.
  //
  // FIXME this locally as well so that BPI and BFI are consistent as well.  We
  // shouldn't make edges extremely likely or unlikely based solely on static
  // estimation.
  if (BBSuccProbs.size() >= 2 && doesBlockHaveProfileData(BB)) {
    SmallVector<uint32_t, 4> Weights;
    for (auto Prob : BBSuccProbs)
      Weights.push_back(Prob.getNumerator());

    auto TI = BB->getTerminator();
    TI->setMetadata(
        LLVMContext::MD_prof,
        MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights));
  }
}

/// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
/// to BB which contains an i1 PHI node and a conditional branch on that PHI.
/// If we can duplicate the contents of BB up into PredBB do so now, this
/// improves the odds that the branch will be on an analyzable instruction like
/// a compare.
bool JumpThreadingPass::DuplicateCondBranchOnPHIIntoPred(
    BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) {
  assert(!PredBBs.empty() && "Can't handle an empty set");

  // If BB is a loop header, then duplicating this block outside the loop would
  // cause us to transform this into an irreducible loop, don't do this.
  // See the comments above FindLoopHeaders for justifications and caveats.
  if (LoopHeaders.count(BB)) {
    LLVM_DEBUG(dbgs() << "  Not duplicating loop header '" << BB->getName()
                      << "' into predecessor block '" << PredBBs[0]->getName()
                      << "' - it might create an irreducible loop!\n");
    return false;
  }

  unsigned DuplicationCost =
      getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold);
  if (DuplicationCost > BBDupThreshold) {
    LLVM_DEBUG(dbgs() << "  Not duplicating BB '" << BB->getName()
                      << "' - Cost is too high: " << DuplicationCost << "\n");
    return false;
  }

  // And finally, do it!  Start by factoring the predecessors if needed.
  std::vector<DominatorTree::UpdateType> Updates;
  BasicBlock *PredBB;
  if (PredBBs.size() == 1)
    PredBB = PredBBs[0];
  else {
    LLVM_DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
                      << " common predecessors.\n");
    PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm");
  }
  Updates.push_back({DominatorTree::Delete, PredBB, BB});

  // Okay, we decided to do this!  Clone all the instructions in BB onto the end
  // of PredBB.
  LLVM_DEBUG(dbgs() << "  Duplicating block '" << BB->getName()
                    << "' into end of '" << PredBB->getName()
                    << "' to eliminate branch on phi.  Cost: "
                    << DuplicationCost << " block is:" << *BB << "\n");

  // Unless PredBB ends with an unconditional branch, split the edge so that we
  // can just clone the bits from BB into the end of the new PredBB.
  BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());

  if (!OldPredBranch || !OldPredBranch->isUnconditional()) {
    BasicBlock *OldPredBB = PredBB;
    PredBB = SplitEdge(OldPredBB, BB);
    Updates.push_back({DominatorTree::Insert, OldPredBB, PredBB});
    Updates.push_back({DominatorTree::Insert, PredBB, BB});
    Updates.push_back({DominatorTree::Delete, OldPredBB, BB});
    OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
  }

  // We are going to have to map operands from the original BB block into the
  // PredBB block.  Evaluate PHI nodes in BB.
  DenseMap<Instruction*, Value*> ValueMapping;

  BasicBlock::iterator BI = BB->begin();
  for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
    ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
  // Clone the non-phi instructions of BB into PredBB, keeping track of the
  // mapping and using it to remap operands in the cloned instructions.
  for (; BI != BB->end(); ++BI) {
    Instruction *New = BI->clone();

    // Remap operands to patch up intra-block references.
    for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
      if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
        DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
        if (I != ValueMapping.end())
          New->setOperand(i, I->second);
      }

    // If this instruction can be simplified after the operands are updated,
    // just use the simplified value instead.  This frequently happens due to
    // phi translation.
    if (Value *IV = SimplifyInstruction(
            New,
            {BB->getModule()->getDataLayout(), TLI, nullptr, nullptr, New})) {
      ValueMapping[&*BI] = IV;
      if (!New->mayHaveSideEffects()) {
        New->deleteValue();
        New = nullptr;
      }
    } else {
      ValueMapping[&*BI] = New;
    }
    if (New) {
      // Otherwise, insert the new instruction into the block.
      New->setName(BI->getName());
      PredBB->getInstList().insert(OldPredBranch->getIterator(), New);
      // Update Dominance from simplified New instruction operands.
      for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
        if (BasicBlock *SuccBB = dyn_cast<BasicBlock>(New->getOperand(i)))
          Updates.push_back({DominatorTree::Insert, PredBB, SuccBB});
    }
  }

  // Check to see if the targets of the branch had PHI nodes. If so, we need to
  // add entries to the PHI nodes for branch from PredBB now.
  BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
  AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
                                  ValueMapping);
  AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
                                  ValueMapping);

  UpdateSSA(BB, PredBB, ValueMapping);

  // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
  // that we nuked.
  BB->removePredecessor(PredBB, true);

  // Remove the unconditional branch at the end of the PredBB block.
  OldPredBranch->eraseFromParent();
  DTU->applyUpdatesPermissive(Updates);

  ++NumDupes;
  return true;
}

// Pred is a predecessor of BB with an unconditional branch to BB. SI is
// a Select instruction in Pred. BB has other predecessors and SI is used in
// a PHI node in BB. SI has no other use.
// A new basic block, NewBB, is created and SI is converted to compare and 
// conditional branch. SI is erased from parent.
void JumpThreadingPass::UnfoldSelectInstr(BasicBlock *Pred, BasicBlock *BB,
                                          SelectInst *SI, PHINode *SIUse,
                                          unsigned Idx) {
  // Expand the select.
  //
  // Pred --
  //  |    v
  //  |  NewBB
  //  |    |
  //  |-----
  //  v
  // BB
  BranchInst *PredTerm = cast<BranchInst>(Pred->getTerminator());
  BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold",
                                         BB->getParent(), BB);
  // Move the unconditional branch to NewBB.
  PredTerm->removeFromParent();
  NewBB->getInstList().insert(NewBB->end(), PredTerm);
  // Create a conditional branch and update PHI nodes.
  BranchInst::Create(NewBB, BB, SI->getCondition(), Pred);
  SIUse->setIncomingValue(Idx, SI->getFalseValue());
  SIUse->addIncoming(SI->getTrueValue(), NewBB);

  // The select is now dead.
  SI->eraseFromParent();
  DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, BB},
                               {DominatorTree::Insert, Pred, NewBB}});

  // Update any other PHI nodes in BB.
  for (BasicBlock::iterator BI = BB->begin();
       PHINode *Phi = dyn_cast<PHINode>(BI); ++BI)
    if (Phi != SIUse)
      Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB);
}

bool JumpThreadingPass::TryToUnfoldSelect(SwitchInst *SI, BasicBlock *BB) {
  PHINode *CondPHI = dyn_cast<PHINode>(SI->getCondition());

  if (!CondPHI || CondPHI->getParent() != BB)
    return false;

  for (unsigned I = 0, E = CondPHI->getNumIncomingValues(); I != E; ++I) {
    BasicBlock *Pred = CondPHI->getIncomingBlock(I);
    SelectInst *PredSI = dyn_cast<SelectInst>(CondPHI->getIncomingValue(I));

    // The second and third condition can be potentially relaxed. Currently
    // the conditions help to simplify the code and allow us to reuse existing
    // code, developed for TryToUnfoldSelect(CmpInst *, BasicBlock *)
    if (!PredSI || PredSI->getParent() != Pred || !PredSI->hasOneUse())
      continue;

    BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
    if (!PredTerm || !PredTerm->isUnconditional())
      continue;

    UnfoldSelectInstr(Pred, BB, PredSI, CondPHI, I);
    return true;
  }
  return false;
}

/// TryToUnfoldSelect - Look for blocks of the form
/// bb1:
///   %a = select
///   br bb2
///
/// bb2:
///   %p = phi [%a, %bb1] ...
///   %c = icmp %p
///   br i1 %c
///
/// And expand the select into a branch structure if one of its arms allows %c
/// to be folded. This later enables threading from bb1 over bb2.
bool JumpThreadingPass::TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) {
  BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
  PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0));
  Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1));

  if (!CondBr || !CondBr->isConditional() || !CondLHS ||
      CondLHS->getParent() != BB)
    return false;

  for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) {
    BasicBlock *Pred = CondLHS->getIncomingBlock(I);
    SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I));

    // Look if one of the incoming values is a select in the corresponding
    // predecessor.
    if (!SI || SI->getParent() != Pred || !SI->hasOneUse())
      continue;

    BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
    if (!PredTerm || !PredTerm->isUnconditional())
      continue;

    // Now check if one of the select values would allow us to constant fold the
    // terminator in BB. We don't do the transform if both sides fold, those
    // cases will be threaded in any case.
    LazyValueInfo::Tristate LHSFolds =
        LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1),
                                CondRHS, Pred, BB, CondCmp);
    LazyValueInfo::Tristate RHSFolds =
        LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2),
                                CondRHS, Pred, BB, CondCmp);
    if ((LHSFolds != LazyValueInfo::Unknown ||
         RHSFolds != LazyValueInfo::Unknown) &&
        LHSFolds != RHSFolds) {
      UnfoldSelectInstr(Pred, BB, SI, CondLHS, I);
      return true;
    }
  }
  return false;
}

/// TryToUnfoldSelectInCurrBB - Look for PHI/Select or PHI/CMP/Select in the
/// same BB in the form
/// bb:
///   %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ...
///   %s = select %p, trueval, falseval
///
/// or
///
/// bb:
///   %p = phi [0, %bb1], [1, %bb2], [0, %bb3], [1, %bb4], ...
///   %c = cmp %p, 0
///   %s = select %c, trueval, falseval
///
/// And expand the select into a branch structure. This later enables
/// jump-threading over bb in this pass.
///
/// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold
/// select if the associated PHI has at least one constant.  If the unfolded
/// select is not jump-threaded, it will be folded again in the later
/// optimizations.
bool JumpThreadingPass::TryToUnfoldSelectInCurrBB(BasicBlock *BB) {
  // This transform would reduce the quality of msan diagnostics.
  // Disable this transform under MemorySanitizer.
  if (BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory))
    return false;

  // If threading this would thread across a loop header, don't thread the edge.
  // See the comments above FindLoopHeaders for justifications and caveats.
  if (LoopHeaders.count(BB))
    return false;

  for (BasicBlock::iterator BI = BB->begin();
       PHINode *PN = dyn_cast<PHINode>(BI); ++BI) {
    // Look for a Phi having at least one constant incoming value.
    if (llvm::all_of(PN->incoming_values(),
                     [](Value *V) { return !isa<ConstantInt>(V); }))
      continue;

    auto isUnfoldCandidate = [BB](SelectInst *SI, Value *V) {
      // Check if SI is in BB and use V as condition.
      if (SI->getParent() != BB)
        return false;
      Value *Cond = SI->getCondition();
      return (Cond && Cond == V && Cond->getType()->isIntegerTy(1));
    };

    SelectInst *SI = nullptr;
    for (Use &U : PN->uses()) {
      if (ICmpInst *Cmp = dyn_cast<ICmpInst>(U.getUser())) {
        // Look for a ICmp in BB that compares PN with a constant and is the
        // condition of a Select.
        if (Cmp->getParent() == BB && Cmp->hasOneUse() &&
            isa<ConstantInt>(Cmp->getOperand(1 - U.getOperandNo())))
          if (SelectInst *SelectI = dyn_cast<SelectInst>(Cmp->user_back()))
            if (isUnfoldCandidate(SelectI, Cmp->use_begin()->get())) {
              SI = SelectI;
              break;
            }
      } else if (SelectInst *SelectI = dyn_cast<SelectInst>(U.getUser())) {
        // Look for a Select in BB that uses PN as condition.
        if (isUnfoldCandidate(SelectI, U.get())) {
          SI = SelectI;
          break;
        }
      }
    }

    if (!SI)
      continue;
    // Expand the select.
    Value *Cond = SI->getCondition();
    if (InsertFreezeWhenUnfoldingSelect &&
        !isGuaranteedNotToBeUndefOrPoison(Cond, SI, &DTU->getDomTree()))
      Cond = new FreezeInst(Cond, "cond.fr", SI);
    Instruction *Term = SplitBlockAndInsertIfThen(Cond, SI, false);
    BasicBlock *SplitBB = SI->getParent();
    BasicBlock *NewBB = Term->getParent();
    PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI);
    NewPN->addIncoming(SI->getTrueValue(), Term->getParent());
    NewPN->addIncoming(SI->getFalseValue(), BB);
    SI->replaceAllUsesWith(NewPN);
    SI->eraseFromParent();
    // NewBB and SplitBB are newly created blocks which require insertion.
    std::vector<DominatorTree::UpdateType> Updates;
    Updates.reserve((2 * SplitBB->getTerminator()->getNumSuccessors()) + 3);
    Updates.push_back({DominatorTree::Insert, BB, SplitBB});
    Updates.push_back({DominatorTree::Insert, BB, NewBB});
    Updates.push_back({DominatorTree::Insert, NewBB, SplitBB});
    // BB's successors were moved to SplitBB, update DTU accordingly.
    for (auto *Succ : successors(SplitBB)) {
      Updates.push_back({DominatorTree::Delete, BB, Succ});
      Updates.push_back({DominatorTree::Insert, SplitBB, Succ});
    }
    DTU->applyUpdatesPermissive(Updates);
    return true;
  }
  return false;
}

/// Try to propagate a guard from the current BB into one of its predecessors
/// in case if another branch of execution implies that the condition of this
/// guard is always true. Currently we only process the simplest case that
/// looks like:
///
/// Start:
///   %cond = ...
///   br i1 %cond, label %T1, label %F1
/// T1:
///   br label %Merge
/// F1:
///   br label %Merge
/// Merge:
///   %condGuard = ...
///   call void(i1, ...) @llvm.experimental.guard( i1 %condGuard )[ "deopt"() ]
///
/// And cond either implies condGuard or !condGuard. In this case all the
/// instructions before the guard can be duplicated in both branches, and the
/// guard is then threaded to one of them.
bool JumpThreadingPass::ProcessGuards(BasicBlock *BB) {
  using namespace PatternMatch;

  // We only want to deal with two predecessors.
  BasicBlock *Pred1, *Pred2;
  auto PI = pred_begin(BB), PE = pred_end(BB);
  if (PI == PE)
    return false;
  Pred1 = *PI++;
  if (PI == PE)
    return false;
  Pred2 = *PI++;
  if (PI != PE)
    return false;
  if (Pred1 == Pred2)
    return false;

  // Try to thread one of the guards of the block.
  // TODO: Look up deeper than to immediate predecessor?
  auto *Parent = Pred1->getSinglePredecessor();
  if (!Parent || Parent != Pred2->getSinglePredecessor())
    return false;

  if (auto *BI = dyn_cast<BranchInst>(Parent->getTerminator()))
    for (auto &I : *BB)
      if (isGuard(&I) && ThreadGuard(BB, cast<IntrinsicInst>(&I), BI))
        return true;

  return false;
}

/// Try to propagate the guard from BB which is the lower block of a diamond
/// to one of its branches, in case if diamond's condition implies guard's
/// condition.
bool JumpThreadingPass::ThreadGuard(BasicBlock *BB, IntrinsicInst *Guard,
                                    BranchInst *BI) {
  assert(BI->getNumSuccessors() == 2 && "Wrong number of successors?");
  assert(BI->isConditional() && "Unconditional branch has 2 successors?");
  Value *GuardCond = Guard->getArgOperand(0);
  Value *BranchCond = BI->getCondition();
  BasicBlock *TrueDest = BI->getSuccessor(0);
  BasicBlock *FalseDest = BI->getSuccessor(1);

  auto &DL = BB->getModule()->getDataLayout();
  bool TrueDestIsSafe = false;
  bool FalseDestIsSafe = false;

  // True dest is safe if BranchCond => GuardCond.
  auto Impl = isImpliedCondition(BranchCond, GuardCond, DL);
  if (Impl && *Impl)
    TrueDestIsSafe = true;
  else {
    // False dest is safe if !BranchCond => GuardCond.
    Impl = isImpliedCondition(BranchCond, GuardCond, DL, /* LHSIsTrue */ false);
    if (Impl && *Impl)
      FalseDestIsSafe = true;
  }

  if (!TrueDestIsSafe && !FalseDestIsSafe)
    return false;

  BasicBlock *PredUnguardedBlock = TrueDestIsSafe ? TrueDest : FalseDest;
  BasicBlock *PredGuardedBlock = FalseDestIsSafe ? TrueDest : FalseDest;

  ValueToValueMapTy UnguardedMapping, GuardedMapping;
  Instruction *AfterGuard = Guard->getNextNode();
  unsigned Cost = getJumpThreadDuplicationCost(BB, AfterGuard, BBDupThreshold);
  if (Cost > BBDupThreshold)
    return false;
  // Duplicate all instructions before the guard and the guard itself to the
  // branch where implication is not proved.
  BasicBlock *GuardedBlock = DuplicateInstructionsInSplitBetween(
      BB, PredGuardedBlock, AfterGuard, GuardedMapping, *DTU);
  assert(GuardedBlock && "Could not create the guarded block?");
  // Duplicate all instructions before the guard in the unguarded branch.
  // Since we have successfully duplicated the guarded block and this block
  // has fewer instructions, we expect it to succeed.
  BasicBlock *UnguardedBlock = DuplicateInstructionsInSplitBetween(
      BB, PredUnguardedBlock, Guard, UnguardedMapping, *DTU);
  assert(UnguardedBlock && "Could not create the unguarded block?");
  LLVM_DEBUG(dbgs() << "Moved guard " << *Guard << " to block "
                    << GuardedBlock->getName() << "\n");
  // Some instructions before the guard may still have uses. For them, we need
  // to create Phi nodes merging their copies in both guarded and unguarded
  // branches. Those instructions that have no uses can be just removed.
  SmallVector<Instruction *, 4> ToRemove;
  for (auto BI = BB->begin(); &*BI != AfterGuard; ++BI)
    if (!isa<PHINode>(&*BI))
      ToRemove.push_back(&*BI);

  Instruction *InsertionPoint = &*BB->getFirstInsertionPt();
  assert(InsertionPoint && "Empty block?");
  // Substitute with Phis & remove.
  for (auto *Inst : reverse(ToRemove)) {
    if (!Inst->use_empty()) {
      PHINode *NewPN = PHINode::Create(Inst->getType(), 2);
      NewPN->addIncoming(UnguardedMapping[Inst], UnguardedBlock);
      NewPN->addIncoming(GuardedMapping[Inst], GuardedBlock);
      NewPN->insertBefore(InsertionPoint);
      Inst->replaceAllUsesWith(NewPN);
    }
    Inst->eraseFromParent();
  }
  return true;
}