GVNHoist.cpp 46.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
//===- GVNHoist.cpp - Hoist scalar and load expressions -------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass hoists expressions from branches to a common dominator. It uses
// GVN (global value numbering) to discover expressions computing the same
// values. The primary goals of code-hoisting are:
// 1. To reduce the code size.
// 2. In some cases reduce critical path (by exposing more ILP).
//
// The algorithm factors out the reachability of values such that multiple
// queries to find reachability of values are fast. This is based on finding the
// ANTIC points in the CFG which do not change during hoisting. The ANTIC points
// are basically the dominance-frontiers in the inverse graph. So we introduce a
// data structure (CHI nodes) to keep track of values flowing out of a basic
// block. We only do this for values with multiple occurrences in the function
// as they are the potential hoistable candidates. This approach allows us to
// hoist instructions to a basic block with more than two successors, as well as
// deal with infinite loops in a trivial way.
//
// Limitations: This pass does not hoist fully redundant expressions because
// they are already handled by GVN-PRE. It is advisable to run gvn-hoist before
// and after gvn-pre because gvn-pre creates opportunities for more instructions
// to be hoisted.
//
// Hoisting may affect the performance in some cases. To mitigate that, hoisting
// is disabled in the following cases.
// 1. Scalars across calls.
// 2. geps when corresponding load/store cannot be hoisted.
//===----------------------------------------------------------------------===//

#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/IteratedDominanceFrontier.h"
#include "llvm/Analysis/MemoryDependenceAnalysis.h"
#include "llvm/Analysis/MemorySSA.h"
#include "llvm/Analysis/MemorySSAUpdater.h"
#include "llvm/Analysis/PostDominators.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Scalar/GVN.h"
#include "llvm/Transforms/Utils/Local.h"
#include <algorithm>
#include <cassert>
#include <iterator>
#include <memory>
#include <utility>
#include <vector>

using namespace llvm;

#define DEBUG_TYPE "gvn-hoist"

STATISTIC(NumHoisted, "Number of instructions hoisted");
STATISTIC(NumRemoved, "Number of instructions removed");
STATISTIC(NumLoadsHoisted, "Number of loads hoisted");
STATISTIC(NumLoadsRemoved, "Number of loads removed");
STATISTIC(NumStoresHoisted, "Number of stores hoisted");
STATISTIC(NumStoresRemoved, "Number of stores removed");
STATISTIC(NumCallsHoisted, "Number of calls hoisted");
STATISTIC(NumCallsRemoved, "Number of calls removed");

static cl::opt<int>
    MaxHoistedThreshold("gvn-max-hoisted", cl::Hidden, cl::init(-1),
                        cl::desc("Max number of instructions to hoist "
                                 "(default unlimited = -1)"));

static cl::opt<int> MaxNumberOfBBSInPath(
    "gvn-hoist-max-bbs", cl::Hidden, cl::init(4),
    cl::desc("Max number of basic blocks on the path between "
             "hoisting locations (default = 4, unlimited = -1)"));

static cl::opt<int> MaxDepthInBB(
    "gvn-hoist-max-depth", cl::Hidden, cl::init(100),
    cl::desc("Hoist instructions from the beginning of the BB up to the "
             "maximum specified depth (default = 100, unlimited = -1)"));

static cl::opt<int>
    MaxChainLength("gvn-hoist-max-chain-length", cl::Hidden, cl::init(10),
                   cl::desc("Maximum length of dependent chains to hoist "
                            "(default = 10, unlimited = -1)"));

namespace llvm {

using BBSideEffectsSet = DenseMap<const BasicBlock *, bool>;
using SmallVecInsn = SmallVector<Instruction *, 4>;
using SmallVecImplInsn = SmallVectorImpl<Instruction *>;

// Each element of a hoisting list contains the basic block where to hoist and
// a list of instructions to be hoisted.
using HoistingPointInfo = std::pair<BasicBlock *, SmallVecInsn>;

using HoistingPointList = SmallVector<HoistingPointInfo, 4>;

// A map from a pair of VNs to all the instructions with those VNs.
using VNType = std::pair<unsigned, unsigned>;

using VNtoInsns = DenseMap<VNType, SmallVector<Instruction *, 4>>;

// CHI keeps information about values flowing out of a basic block.  It is
// similar to PHI but in the inverse graph, and used for outgoing values on each
// edge. For conciseness, it is computed only for instructions with multiple
// occurrences in the CFG because they are the only hoistable candidates.
//     A (CHI[{V, B, I1}, {V, C, I2}]
//  /     \
// /       \
// B(I1)  C (I2)
// The Value number for both I1 and I2 is V, the CHI node will save the
// instruction as well as the edge where the value is flowing to.
struct CHIArg {
  VNType VN;

  // Edge destination (shows the direction of flow), may not be where the I is.
  BasicBlock *Dest;

  // The instruction (VN) which uses the values flowing out of CHI.
  Instruction *I;

  bool operator==(const CHIArg &A) { return VN == A.VN; }
  bool operator!=(const CHIArg &A) { return !(*this == A); }
};

using CHIIt = SmallVectorImpl<CHIArg>::iterator;
using CHIArgs = iterator_range<CHIIt>;
using OutValuesType = DenseMap<BasicBlock *, SmallVector<CHIArg, 2>>;
using InValuesType =
    DenseMap<BasicBlock *, SmallVector<std::pair<VNType, Instruction *>, 2>>;

// An invalid value number Used when inserting a single value number into
// VNtoInsns.
enum : unsigned { InvalidVN = ~2U };

// Records all scalar instructions candidate for code hoisting.
class InsnInfo {
  VNtoInsns VNtoScalars;

public:
  // Inserts I and its value number in VNtoScalars.
  void insert(Instruction *I, GVN::ValueTable &VN) {
    // Scalar instruction.
    unsigned V = VN.lookupOrAdd(I);
    VNtoScalars[{V, InvalidVN}].push_back(I);
  }

  const VNtoInsns &getVNTable() const { return VNtoScalars; }
};

// Records all load instructions candidate for code hoisting.
class LoadInfo {
  VNtoInsns VNtoLoads;

public:
  // Insert Load and the value number of its memory address in VNtoLoads.
  void insert(LoadInst *Load, GVN::ValueTable &VN) {
    if (Load->isSimple()) {
      unsigned V = VN.lookupOrAdd(Load->getPointerOperand());
      VNtoLoads[{V, InvalidVN}].push_back(Load);
    }
  }

  const VNtoInsns &getVNTable() const { return VNtoLoads; }
};

// Records all store instructions candidate for code hoisting.
class StoreInfo {
  VNtoInsns VNtoStores;

public:
  // Insert the Store and a hash number of the store address and the stored
  // value in VNtoStores.
  void insert(StoreInst *Store, GVN::ValueTable &VN) {
    if (!Store->isSimple())
      return;
    // Hash the store address and the stored value.
    Value *Ptr = Store->getPointerOperand();
    Value *Val = Store->getValueOperand();
    VNtoStores[{VN.lookupOrAdd(Ptr), VN.lookupOrAdd(Val)}].push_back(Store);
  }

  const VNtoInsns &getVNTable() const { return VNtoStores; }
};

// Records all call instructions candidate for code hoisting.
class CallInfo {
  VNtoInsns VNtoCallsScalars;
  VNtoInsns VNtoCallsLoads;
  VNtoInsns VNtoCallsStores;

public:
  // Insert Call and its value numbering in one of the VNtoCalls* containers.
  void insert(CallInst *Call, GVN::ValueTable &VN) {
    // A call that doesNotAccessMemory is handled as a Scalar,
    // onlyReadsMemory will be handled as a Load instruction,
    // all other calls will be handled as stores.
    unsigned V = VN.lookupOrAdd(Call);
    auto Entry = std::make_pair(V, InvalidVN);

    if (Call->doesNotAccessMemory())
      VNtoCallsScalars[Entry].push_back(Call);
    else if (Call->onlyReadsMemory())
      VNtoCallsLoads[Entry].push_back(Call);
    else
      VNtoCallsStores[Entry].push_back(Call);
  }

  const VNtoInsns &getScalarVNTable() const { return VNtoCallsScalars; }
  const VNtoInsns &getLoadVNTable() const { return VNtoCallsLoads; }
  const VNtoInsns &getStoreVNTable() const { return VNtoCallsStores; }
};

static void combineKnownMetadata(Instruction *ReplInst, Instruction *I) {
  static const unsigned KnownIDs[] = {LLVMContext::MD_tbaa,
                                      LLVMContext::MD_alias_scope,
                                      LLVMContext::MD_noalias,
                                      LLVMContext::MD_range,
                                      LLVMContext::MD_fpmath,
                                      LLVMContext::MD_invariant_load,
                                      LLVMContext::MD_invariant_group,
                                      LLVMContext::MD_access_group};
  combineMetadata(ReplInst, I, KnownIDs, true);
}

// This pass hoists common computations across branches sharing common
// dominator. The primary goal is to reduce the code size, and in some
// cases reduce critical path (by exposing more ILP).
class GVNHoist {
public:
  GVNHoist(DominatorTree *DT, PostDominatorTree *PDT, AliasAnalysis *AA,
           MemoryDependenceResults *MD, MemorySSA *MSSA)
      : DT(DT), PDT(PDT), AA(AA), MD(MD), MSSA(MSSA),
        MSSAUpdater(std::make_unique<MemorySSAUpdater>(MSSA)) {}

  bool run(Function &F);

  // Copied from NewGVN.cpp
  // This function provides global ranking of operations so that we can place
  // them in a canonical order.  Note that rank alone is not necessarily enough
  // for a complete ordering, as constants all have the same rank.  However,
  // generally, we will simplify an operation with all constants so that it
  // doesn't matter what order they appear in.
  unsigned int rank(const Value *V) const;

private:
  GVN::ValueTable VN;
  DominatorTree *DT;
  PostDominatorTree *PDT;
  AliasAnalysis *AA;
  MemoryDependenceResults *MD;
  MemorySSA *MSSA;
  std::unique_ptr<MemorySSAUpdater> MSSAUpdater;
  DenseMap<const Value *, unsigned> DFSNumber;
  BBSideEffectsSet BBSideEffects;
  DenseSet<const BasicBlock *> HoistBarrier;
  SmallVector<BasicBlock *, 32> IDFBlocks;
  unsigned NumFuncArgs;
  const bool HoistingGeps = false;

  enum InsKind { Unknown, Scalar, Load, Store };

  // Return true when there are exception handling in BB.
  bool hasEH(const BasicBlock *BB);

  // Return true when a successor of BB dominates A.
  bool successorDominate(const BasicBlock *BB, const BasicBlock *A) {
    for (const BasicBlock *Succ : successors(BB))
      if (DT->dominates(Succ, A))
        return true;

    return false;
  }

  // Return true when I1 appears before I2 in the instructions of BB.
  bool firstInBB(const Instruction *I1, const Instruction *I2) {
    assert(I1->getParent() == I2->getParent());
    unsigned I1DFS = DFSNumber.lookup(I1);
    unsigned I2DFS = DFSNumber.lookup(I2);
    assert(I1DFS && I2DFS);
    return I1DFS < I2DFS;
  }

  // Return true when there are memory uses of Def in BB.
  bool hasMemoryUse(const Instruction *NewPt, MemoryDef *Def,
                    const BasicBlock *BB);

  bool hasEHhelper(const BasicBlock *BB, const BasicBlock *SrcBB,
                   int &NBBsOnAllPaths);

  // Return true when there are exception handling or loads of memory Def
  // between Def and NewPt.  This function is only called for stores: Def is
  // the MemoryDef of the store to be hoisted.

  // Decrement by 1 NBBsOnAllPaths for each block between HoistPt and BB, and
  // return true when the counter NBBsOnAllPaths reaces 0, except when it is
  // initialized to -1 which is unlimited.
  bool hasEHOrLoadsOnPath(const Instruction *NewPt, MemoryDef *Def,
                          int &NBBsOnAllPaths);

  // Return true when there are exception handling between HoistPt and BB.
  // Decrement by 1 NBBsOnAllPaths for each block between HoistPt and BB, and
  // return true when the counter NBBsOnAllPaths reaches 0, except when it is
  // initialized to -1 which is unlimited.
  bool hasEHOnPath(const BasicBlock *HoistPt, const BasicBlock *SrcBB,
                   int &NBBsOnAllPaths);

  // Return true when it is safe to hoist a memory load or store U from OldPt
  // to NewPt.
  bool safeToHoistLdSt(const Instruction *NewPt, const Instruction *OldPt,
                       MemoryUseOrDef *U, InsKind K, int &NBBsOnAllPaths);

  // Return true when it is safe to hoist scalar instructions from all blocks in
  // WL to HoistBB.
  bool safeToHoistScalar(const BasicBlock *HoistBB, const BasicBlock *BB,
                         int &NBBsOnAllPaths) {
    return !hasEHOnPath(HoistBB, BB, NBBsOnAllPaths);
  }

  // In the inverse CFG, the dominance frontier of basic block (BB) is the
  // point where ANTIC needs to be computed for instructions which are going
  // to be hoisted. Since this point does not change during gvn-hoist,
  // we compute it only once (on demand).
  // The ides is inspired from:
  // "Partial Redundancy Elimination in SSA Form"
  // ROBERT KENNEDY, SUN CHAN, SHIN-MING LIU, RAYMOND LO, PENG TU and FRED CHOW
  // They use similar idea in the forward graph to find fully redundant and
  // partially redundant expressions, here it is used in the inverse graph to
  // find fully anticipable instructions at merge point (post-dominator in
  // the inverse CFG).
  // Returns the edge via which an instruction in BB will get the values from.

  // Returns true when the values are flowing out to each edge.
  bool valueAnticipable(CHIArgs C, Instruction *TI) const;

  // Check if it is safe to hoist values tracked by CHI in the range
  // [Begin, End) and accumulate them in Safe.
  void checkSafety(CHIArgs C, BasicBlock *BB, InsKind K,
                   SmallVectorImpl<CHIArg> &Safe);

  using RenameStackType = DenseMap<VNType, SmallVector<Instruction *, 2>>;

  // Push all the VNs corresponding to BB into RenameStack.
  void fillRenameStack(BasicBlock *BB, InValuesType &ValueBBs,
                       RenameStackType &RenameStack);

  void fillChiArgs(BasicBlock *BB, OutValuesType &CHIBBs,
                   RenameStackType &RenameStack);

  // Walk the post-dominator tree top-down and use a stack for each value to
  // store the last value you see. When you hit a CHI from a given edge, the
  // value to use as the argument is at the top of the stack, add the value to
  // CHI and pop.
  void insertCHI(InValuesType &ValueBBs, OutValuesType &CHIBBs) {
    auto Root = PDT->getNode(nullptr);
    if (!Root)
      return;
    // Depth first walk on PDom tree to fill the CHIargs at each PDF.
    RenameStackType RenameStack;
    for (auto Node : depth_first(Root)) {
      BasicBlock *BB = Node->getBlock();
      if (!BB)
        continue;

      // Collect all values in BB and push to stack.
      fillRenameStack(BB, ValueBBs, RenameStack);

      // Fill outgoing values in each CHI corresponding to BB.
      fillChiArgs(BB, CHIBBs, RenameStack);
    }
  }

  // Walk all the CHI-nodes to find ones which have a empty-entry and remove
  // them Then collect all the instructions which are safe to hoist and see if
  // they form a list of anticipable values. OutValues contains CHIs
  // corresponding to each basic block.
  void findHoistableCandidates(OutValuesType &CHIBBs, InsKind K,
                               HoistingPointList &HPL);

  // Compute insertion points for each values which can be fully anticipated at
  // a dominator. HPL contains all such values.
  void computeInsertionPoints(const VNtoInsns &Map, HoistingPointList &HPL,
                              InsKind K) {
    // Sort VNs based on their rankings
    std::vector<VNType> Ranks;
    for (const auto &Entry : Map) {
      Ranks.push_back(Entry.first);
    }

    // TODO: Remove fully-redundant expressions.
    // Get instruction from the Map, assume that all the Instructions
    // with same VNs have same rank (this is an approximation).
    llvm::sort(Ranks, [this, &Map](const VNType &r1, const VNType &r2) {
      return (rank(*Map.lookup(r1).begin()) < rank(*Map.lookup(r2).begin()));
    });

    // - Sort VNs according to their rank, and start with lowest ranked VN
    // - Take a VN and for each instruction with same VN
    //   - Find the dominance frontier in the inverse graph (PDF)
    //   - Insert the chi-node at PDF
    // - Remove the chi-nodes with missing entries
    // - Remove values from CHI-nodes which do not truly flow out, e.g.,
    //   modified along the path.
    // - Collect the remaining values that are still anticipable
    SmallVector<BasicBlock *, 2> IDFBlocks;
    ReverseIDFCalculator IDFs(*PDT);
    OutValuesType OutValue;
    InValuesType InValue;
    for (const auto &R : Ranks) {
      const SmallVecInsn &V = Map.lookup(R);
      if (V.size() < 2)
        continue;
      const VNType &VN = R;
      SmallPtrSet<BasicBlock *, 2> VNBlocks;
      for (auto &I : V) {
        BasicBlock *BBI = I->getParent();
        if (!hasEH(BBI))
          VNBlocks.insert(BBI);
      }
      // Compute the Post Dominance Frontiers of each basic block
      // The dominance frontier of a live block X in the reverse
      // control graph is the set of blocks upon which X is control
      // dependent. The following sequence computes the set of blocks
      // which currently have dead terminators that are control
      // dependence sources of a block which is in NewLiveBlocks.
      IDFs.setDefiningBlocks(VNBlocks);
      IDFBlocks.clear();
      IDFs.calculate(IDFBlocks);

      // Make a map of BB vs instructions to be hoisted.
      for (unsigned i = 0; i < V.size(); ++i) {
        InValue[V[i]->getParent()].push_back(std::make_pair(VN, V[i]));
      }
      // Insert empty CHI node for this VN. This is used to factor out
      // basic blocks where the ANTIC can potentially change.
      CHIArg EmptyChi = {VN, nullptr, nullptr};
      for (auto *IDFBB : IDFBlocks) {
        for (unsigned i = 0; i < V.size(); ++i) {
          // Ignore spurious PDFs.
          if (DT->properlyDominates(IDFBB, V[i]->getParent())) {
            OutValue[IDFBB].push_back(EmptyChi);
            LLVM_DEBUG(dbgs() << "\nInserting a CHI for BB: "
                              << IDFBB->getName() << ", for Insn: " << *V[i]);
          }
        }
      }
    }

    // Insert CHI args at each PDF to iterate on factored graph of
    // control dependence.
    insertCHI(InValue, OutValue);
    // Using the CHI args inserted at each PDF, find fully anticipable values.
    findHoistableCandidates(OutValue, K, HPL);
  }

  // Return true when all operands of Instr are available at insertion point
  // HoistPt. When limiting the number of hoisted expressions, one could hoist
  // a load without hoisting its access function. So before hoisting any
  // expression, make sure that all its operands are available at insert point.
  bool allOperandsAvailable(const Instruction *I,
                            const BasicBlock *HoistPt) const;

  // Same as allOperandsAvailable with recursive check for GEP operands.
  bool allGepOperandsAvailable(const Instruction *I,
                               const BasicBlock *HoistPt) const;

  // Make all operands of the GEP available.
  void makeGepsAvailable(Instruction *Repl, BasicBlock *HoistPt,
                         const SmallVecInsn &InstructionsToHoist,
                         Instruction *Gep) const;

  void updateAlignment(Instruction *I, Instruction *Repl);

  // Remove all the instructions in Candidates and replace their usage with
  // Repl. Returns the number of instructions removed.
  unsigned rauw(const SmallVecInsn &Candidates, Instruction *Repl,
                MemoryUseOrDef *NewMemAcc);

  // Replace all Memory PHI usage with NewMemAcc.
  void raMPHIuw(MemoryUseOrDef *NewMemAcc);

  // Remove all other instructions and replace them with Repl.
  unsigned removeAndReplace(const SmallVecInsn &Candidates, Instruction *Repl,
                            BasicBlock *DestBB, bool MoveAccess);

  // In the case Repl is a load or a store, we make all their GEPs
  // available: GEPs are not hoisted by default to avoid the address
  // computations to be hoisted without the associated load or store.
  bool makeGepOperandsAvailable(Instruction *Repl, BasicBlock *HoistPt,
                                const SmallVecInsn &InstructionsToHoist) const;

  std::pair<unsigned, unsigned> hoist(HoistingPointList &HPL);

  // Hoist all expressions. Returns Number of scalars hoisted
  // and number of non-scalars hoisted.
  std::pair<unsigned, unsigned> hoistExpressions(Function &F);
};

class GVNHoistLegacyPass : public FunctionPass {
public:
  static char ID;

  GVNHoistLegacyPass() : FunctionPass(ID) {
    initializeGVNHoistLegacyPassPass(*PassRegistry::getPassRegistry());
  }

  bool runOnFunction(Function &F) override {
    if (skipFunction(F))
      return false;
    auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
    auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
    auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
    auto &MD = getAnalysis<MemoryDependenceWrapperPass>().getMemDep();
    auto &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA();

    GVNHoist G(&DT, &PDT, &AA, &MD, &MSSA);
    return G.run(F);
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<DominatorTreeWrapperPass>();
    AU.addRequired<PostDominatorTreeWrapperPass>();
    AU.addRequired<AAResultsWrapperPass>();
    AU.addRequired<MemoryDependenceWrapperPass>();
    AU.addRequired<MemorySSAWrapperPass>();
    AU.addPreserved<DominatorTreeWrapperPass>();
    AU.addPreserved<MemorySSAWrapperPass>();
    AU.addPreserved<GlobalsAAWrapperPass>();
    AU.addPreserved<AAResultsWrapperPass>();
  }
};

bool GVNHoist::run(Function &F) {
  NumFuncArgs = F.arg_size();
  VN.setDomTree(DT);
  VN.setAliasAnalysis(AA);
  VN.setMemDep(MD);
  bool Res = false;
  // Perform DFS Numbering of instructions.
  unsigned BBI = 0;
  for (const BasicBlock *BB : depth_first(&F.getEntryBlock())) {
    DFSNumber[BB] = ++BBI;
    unsigned I = 0;
    for (auto &Inst : *BB)
      DFSNumber[&Inst] = ++I;
  }

  int ChainLength = 0;

  // FIXME: use lazy evaluation of VN to avoid the fix-point computation.
  while (true) {
    if (MaxChainLength != -1 && ++ChainLength >= MaxChainLength)
      return Res;

    auto HoistStat = hoistExpressions(F);
    if (HoistStat.first + HoistStat.second == 0)
      return Res;

    if (HoistStat.second > 0)
      // To address a limitation of the current GVN, we need to rerun the
      // hoisting after we hoisted loads or stores in order to be able to
      // hoist all scalars dependent on the hoisted ld/st.
      VN.clear();

    Res = true;
  }

  return Res;
}

unsigned int GVNHoist::rank(const Value *V) const {
  // Prefer constants to undef to anything else
  // Undef is a constant, have to check it first.
  // Prefer smaller constants to constantexprs
  if (isa<ConstantExpr>(V))
    return 2;
  if (isa<UndefValue>(V))
    return 1;
  if (isa<Constant>(V))
    return 0;
  else if (auto *A = dyn_cast<Argument>(V))
    return 3 + A->getArgNo();

  // Need to shift the instruction DFS by number of arguments + 3 to account
  // for the constant and argument ranking above.
  auto Result = DFSNumber.lookup(V);
  if (Result > 0)
    return 4 + NumFuncArgs + Result;
  // Unreachable or something else, just return a really large number.
  return ~0;
}

bool GVNHoist::hasEH(const BasicBlock *BB) {
  auto It = BBSideEffects.find(BB);
  if (It != BBSideEffects.end())
    return It->second;

  if (BB->isEHPad() || BB->hasAddressTaken()) {
    BBSideEffects[BB] = true;
    return true;
  }

  if (BB->getTerminator()->mayThrow()) {
    BBSideEffects[BB] = true;
    return true;
  }

  BBSideEffects[BB] = false;
  return false;
}

bool GVNHoist::hasMemoryUse(const Instruction *NewPt, MemoryDef *Def,
                            const BasicBlock *BB) {
  const MemorySSA::AccessList *Acc = MSSA->getBlockAccesses(BB);
  if (!Acc)
    return false;

  Instruction *OldPt = Def->getMemoryInst();
  const BasicBlock *OldBB = OldPt->getParent();
  const BasicBlock *NewBB = NewPt->getParent();
  bool ReachedNewPt = false;

  for (const MemoryAccess &MA : *Acc)
    if (const MemoryUse *MU = dyn_cast<MemoryUse>(&MA)) {
      Instruction *Insn = MU->getMemoryInst();

      // Do not check whether MU aliases Def when MU occurs after OldPt.
      if (BB == OldBB && firstInBB(OldPt, Insn))
        break;

      // Do not check whether MU aliases Def when MU occurs before NewPt.
      if (BB == NewBB) {
        if (!ReachedNewPt) {
          if (firstInBB(Insn, NewPt))
            continue;
          ReachedNewPt = true;
        }
      }
      if (MemorySSAUtil::defClobbersUseOrDef(Def, MU, *AA))
        return true;
    }

  return false;
}

bool GVNHoist::hasEHhelper(const BasicBlock *BB, const BasicBlock *SrcBB,
                           int &NBBsOnAllPaths) {
  // Stop walk once the limit is reached.
  if (NBBsOnAllPaths == 0)
    return true;

  // Impossible to hoist with exceptions on the path.
  if (hasEH(BB))
    return true;

  // No such instruction after HoistBarrier in a basic block was
  // selected for hoisting so instructions selected within basic block with
  // a hoist barrier can be hoisted.
  if ((BB != SrcBB) && HoistBarrier.count(BB))
    return true;

  return false;
}

bool GVNHoist::hasEHOrLoadsOnPath(const Instruction *NewPt, MemoryDef *Def,
                                  int &NBBsOnAllPaths) {
  const BasicBlock *NewBB = NewPt->getParent();
  const BasicBlock *OldBB = Def->getBlock();
  assert(DT->dominates(NewBB, OldBB) && "invalid path");
  assert(DT->dominates(Def->getDefiningAccess()->getBlock(), NewBB) &&
         "def does not dominate new hoisting point");

  // Walk all basic blocks reachable in depth-first iteration on the inverse
  // CFG from OldBB to NewBB. These blocks are all the blocks that may be
  // executed between the execution of NewBB and OldBB. Hoisting an expression
  // from OldBB into NewBB has to be safe on all execution paths.
  for (auto I = idf_begin(OldBB), E = idf_end(OldBB); I != E;) {
    const BasicBlock *BB = *I;
    if (BB == NewBB) {
      // Stop traversal when reaching HoistPt.
      I.skipChildren();
      continue;
    }

    if (hasEHhelper(BB, OldBB, NBBsOnAllPaths))
      return true;

    // Check that we do not move a store past loads.
    if (hasMemoryUse(NewPt, Def, BB))
      return true;

    // -1 is unlimited number of blocks on all paths.
    if (NBBsOnAllPaths != -1)
      --NBBsOnAllPaths;

    ++I;
  }

  return false;
}

bool GVNHoist::hasEHOnPath(const BasicBlock *HoistPt, const BasicBlock *SrcBB,
                           int &NBBsOnAllPaths) {
  assert(DT->dominates(HoistPt, SrcBB) && "Invalid path");

  // Walk all basic blocks reachable in depth-first iteration on
  // the inverse CFG from BBInsn to NewHoistPt. These blocks are all the
  // blocks that may be executed between the execution of NewHoistPt and
  // BBInsn. Hoisting an expression from BBInsn into NewHoistPt has to be safe
  // on all execution paths.
  for (auto I = idf_begin(SrcBB), E = idf_end(SrcBB); I != E;) {
    const BasicBlock *BB = *I;
    if (BB == HoistPt) {
      // Stop traversal when reaching NewHoistPt.
      I.skipChildren();
      continue;
    }

    if (hasEHhelper(BB, SrcBB, NBBsOnAllPaths))
      return true;

    // -1 is unlimited number of blocks on all paths.
    if (NBBsOnAllPaths != -1)
      --NBBsOnAllPaths;

    ++I;
  }

  return false;
}

bool GVNHoist::safeToHoistLdSt(const Instruction *NewPt,
                               const Instruction *OldPt, MemoryUseOrDef *U,
                               GVNHoist::InsKind K, int &NBBsOnAllPaths) {
  // In place hoisting is safe.
  if (NewPt == OldPt)
    return true;

  const BasicBlock *NewBB = NewPt->getParent();
  const BasicBlock *OldBB = OldPt->getParent();
  const BasicBlock *UBB = U->getBlock();

  // Check for dependences on the Memory SSA.
  MemoryAccess *D = U->getDefiningAccess();
  BasicBlock *DBB = D->getBlock();
  if (DT->properlyDominates(NewBB, DBB))
    // Cannot move the load or store to NewBB above its definition in DBB.
    return false;

  if (NewBB == DBB && !MSSA->isLiveOnEntryDef(D))
    if (auto *UD = dyn_cast<MemoryUseOrDef>(D))
      if (!firstInBB(UD->getMemoryInst(), NewPt))
        // Cannot move the load or store to NewPt above its definition in D.
        return false;

  // Check for unsafe hoistings due to side effects.
  if (K == InsKind::Store) {
    if (hasEHOrLoadsOnPath(NewPt, cast<MemoryDef>(U), NBBsOnAllPaths))
      return false;
  } else if (hasEHOnPath(NewBB, OldBB, NBBsOnAllPaths))
    return false;

  if (UBB == NewBB) {
    if (DT->properlyDominates(DBB, NewBB))
      return true;
    assert(UBB == DBB);
    assert(MSSA->locallyDominates(D, U));
  }

  // No side effects: it is safe to hoist.
  return true;
}

bool GVNHoist::valueAnticipable(CHIArgs C, Instruction *TI) const {
  if (TI->getNumSuccessors() > (unsigned)size(C))
    return false; // Not enough args in this CHI.

  for (auto CHI : C) {
    BasicBlock *Dest = CHI.Dest;
    // Find if all the edges have values flowing out of BB.
    bool Found = llvm::any_of(
        successors(TI), [Dest](const BasicBlock *BB) { return BB == Dest; });
    if (!Found)
      return false;
  }
  return true;
}

void GVNHoist::checkSafety(CHIArgs C, BasicBlock *BB, GVNHoist::InsKind K,
                           SmallVectorImpl<CHIArg> &Safe) {
  int NumBBsOnAllPaths = MaxNumberOfBBSInPath;
  for (auto CHI : C) {
    Instruction *Insn = CHI.I;
    if (!Insn) // No instruction was inserted in this CHI.
      continue;
    if (K == InsKind::Scalar) {
      if (safeToHoistScalar(BB, Insn->getParent(), NumBBsOnAllPaths))
        Safe.push_back(CHI);
    } else {
      auto *T = BB->getTerminator();
      if (MemoryUseOrDef *UD = MSSA->getMemoryAccess(Insn))
        if (safeToHoistLdSt(T, Insn, UD, K, NumBBsOnAllPaths))
          Safe.push_back(CHI);
    }
  }
}

void GVNHoist::fillRenameStack(BasicBlock *BB, InValuesType &ValueBBs,
                               GVNHoist::RenameStackType &RenameStack) {
  auto it1 = ValueBBs.find(BB);
  if (it1 != ValueBBs.end()) {
    // Iterate in reverse order to keep lower ranked values on the top.
    for (std::pair<VNType, Instruction *> &VI : reverse(it1->second)) {
      // Get the value of instruction I
      LLVM_DEBUG(dbgs() << "\nPushing on stack: " << *VI.second);
      RenameStack[VI.first].push_back(VI.second);
    }
  }
}

void GVNHoist::fillChiArgs(BasicBlock *BB, OutValuesType &CHIBBs,
                           GVNHoist::RenameStackType &RenameStack) {
  // For each *predecessor* (because Post-DOM) of BB check if it has a CHI
  for (auto Pred : predecessors(BB)) {
    auto P = CHIBBs.find(Pred);
    if (P == CHIBBs.end()) {
      continue;
    }
    LLVM_DEBUG(dbgs() << "\nLooking at CHIs in: " << Pred->getName(););
    // A CHI is found (BB -> Pred is an edge in the CFG)
    // Pop the stack until Top(V) = Ve.
    auto &VCHI = P->second;
    for (auto It = VCHI.begin(), E = VCHI.end(); It != E;) {
      CHIArg &C = *It;
      if (!C.Dest) {
        auto si = RenameStack.find(C.VN);
        // The Basic Block where CHI is must dominate the value we want to
        // track in a CHI. In the PDom walk, there can be values in the
        // stack which are not control dependent e.g., nested loop.
        if (si != RenameStack.end() && si->second.size() &&
            DT->properlyDominates(Pred, si->second.back()->getParent())) {
          C.Dest = BB;                     // Assign the edge
          C.I = si->second.pop_back_val(); // Assign the argument
          LLVM_DEBUG(dbgs()
                     << "\nCHI Inserted in BB: " << C.Dest->getName() << *C.I
                     << ", VN: " << C.VN.first << ", " << C.VN.second);
        }
        // Move to next CHI of a different value
        It = std::find_if(It, VCHI.end(), [It](CHIArg &A) { return A != *It; });
      } else
        ++It;
    }
  }
}

void GVNHoist::findHoistableCandidates(OutValuesType &CHIBBs,
                                       GVNHoist::InsKind K,
                                       HoistingPointList &HPL) {
  auto cmpVN = [](const CHIArg &A, const CHIArg &B) { return A.VN < B.VN; };

  // CHIArgs now have the outgoing values, so check for anticipability and
  // accumulate hoistable candidates in HPL.
  for (std::pair<BasicBlock *, SmallVector<CHIArg, 2>> &A : CHIBBs) {
    BasicBlock *BB = A.first;
    SmallVectorImpl<CHIArg> &CHIs = A.second;
    // Vector of PHIs contains PHIs for different instructions.
    // Sort the args according to their VNs, such that identical
    // instructions are together.
    llvm::stable_sort(CHIs, cmpVN);
    auto TI = BB->getTerminator();
    auto B = CHIs.begin();
    // [PreIt, PHIIt) form a range of CHIs which have identical VNs.
    auto PHIIt = std::find_if(CHIs.begin(), CHIs.end(),
                              [B](CHIArg &A) { return A != *B; });
    auto PrevIt = CHIs.begin();
    while (PrevIt != PHIIt) {
      // Collect values which satisfy safety checks.
      SmallVector<CHIArg, 2> Safe;
      // We check for safety first because there might be multiple values in
      // the same path, some of which are not safe to be hoisted, but overall
      // each edge has at least one value which can be hoisted, making the
      // value anticipable along that path.
      checkSafety(make_range(PrevIt, PHIIt), BB, K, Safe);

      // List of safe values should be anticipable at TI.
      if (valueAnticipable(make_range(Safe.begin(), Safe.end()), TI)) {
        HPL.push_back({BB, SmallVecInsn()});
        SmallVecInsn &V = HPL.back().second;
        for (auto B : Safe)
          V.push_back(B.I);
      }

      // Check other VNs
      PrevIt = PHIIt;
      PHIIt = std::find_if(PrevIt, CHIs.end(),
                           [PrevIt](CHIArg &A) { return A != *PrevIt; });
    }
  }
}

bool GVNHoist::allOperandsAvailable(const Instruction *I,
                                    const BasicBlock *HoistPt) const {
  for (const Use &Op : I->operands())
    if (const auto *Inst = dyn_cast<Instruction>(&Op))
      if (!DT->dominates(Inst->getParent(), HoistPt))
        return false;

  return true;
}

bool GVNHoist::allGepOperandsAvailable(const Instruction *I,
                                       const BasicBlock *HoistPt) const {
  for (const Use &Op : I->operands())
    if (const auto *Inst = dyn_cast<Instruction>(&Op))
      if (!DT->dominates(Inst->getParent(), HoistPt)) {
        if (const GetElementPtrInst *GepOp =
                dyn_cast<GetElementPtrInst>(Inst)) {
          if (!allGepOperandsAvailable(GepOp, HoistPt))
            return false;
          // Gep is available if all operands of GepOp are available.
        } else {
          // Gep is not available if it has operands other than GEPs that are
          // defined in blocks not dominating HoistPt.
          return false;
        }
      }
  return true;
}

void GVNHoist::makeGepsAvailable(Instruction *Repl, BasicBlock *HoistPt,
                                 const SmallVecInsn &InstructionsToHoist,
                                 Instruction *Gep) const {
  assert(allGepOperandsAvailable(Gep, HoistPt) && "GEP operands not available");

  Instruction *ClonedGep = Gep->clone();
  for (unsigned i = 0, e = Gep->getNumOperands(); i != e; ++i)
    if (Instruction *Op = dyn_cast<Instruction>(Gep->getOperand(i))) {
      // Check whether the operand is already available.
      if (DT->dominates(Op->getParent(), HoistPt))
        continue;

      // As a GEP can refer to other GEPs, recursively make all the operands
      // of this GEP available at HoistPt.
      if (GetElementPtrInst *GepOp = dyn_cast<GetElementPtrInst>(Op))
        makeGepsAvailable(ClonedGep, HoistPt, InstructionsToHoist, GepOp);
    }

  // Copy Gep and replace its uses in Repl with ClonedGep.
  ClonedGep->insertBefore(HoistPt->getTerminator());

  // Conservatively discard any optimization hints, they may differ on the
  // other paths.
  ClonedGep->dropUnknownNonDebugMetadata();

  // If we have optimization hints which agree with each other along different
  // paths, preserve them.
  for (const Instruction *OtherInst : InstructionsToHoist) {
    const GetElementPtrInst *OtherGep;
    if (auto *OtherLd = dyn_cast<LoadInst>(OtherInst))
      OtherGep = cast<GetElementPtrInst>(OtherLd->getPointerOperand());
    else
      OtherGep = cast<GetElementPtrInst>(
          cast<StoreInst>(OtherInst)->getPointerOperand());
    ClonedGep->andIRFlags(OtherGep);
  }

  // Replace uses of Gep with ClonedGep in Repl.
  Repl->replaceUsesOfWith(Gep, ClonedGep);
}

void GVNHoist::updateAlignment(Instruction *I, Instruction *Repl) {
  if (auto *ReplacementLoad = dyn_cast<LoadInst>(Repl)) {
    ReplacementLoad->setAlignment(
        std::min(ReplacementLoad->getAlign(), cast<LoadInst>(I)->getAlign()));
    ++NumLoadsRemoved;
  } else if (auto *ReplacementStore = dyn_cast<StoreInst>(Repl)) {
    ReplacementStore->setAlignment(
        std::min(ReplacementStore->getAlign(), cast<StoreInst>(I)->getAlign()));
    ++NumStoresRemoved;
  } else if (auto *ReplacementAlloca = dyn_cast<AllocaInst>(Repl)) {
    ReplacementAlloca->setAlignment(std::max(ReplacementAlloca->getAlign(),
                                             cast<AllocaInst>(I)->getAlign()));
  } else if (isa<CallInst>(Repl)) {
    ++NumCallsRemoved;
  }
}

unsigned GVNHoist::rauw(const SmallVecInsn &Candidates, Instruction *Repl,
                        MemoryUseOrDef *NewMemAcc) {
  unsigned NR = 0;
  for (Instruction *I : Candidates) {
    if (I != Repl) {
      ++NR;
      updateAlignment(I, Repl);
      if (NewMemAcc) {
        // Update the uses of the old MSSA access with NewMemAcc.
        MemoryAccess *OldMA = MSSA->getMemoryAccess(I);
        OldMA->replaceAllUsesWith(NewMemAcc);
        MSSAUpdater->removeMemoryAccess(OldMA);
      }

      Repl->andIRFlags(I);
      combineKnownMetadata(Repl, I);
      I->replaceAllUsesWith(Repl);
      // Also invalidate the Alias Analysis cache.
      MD->removeInstruction(I);
      I->eraseFromParent();
    }
  }
  return NR;
}

void GVNHoist::raMPHIuw(MemoryUseOrDef *NewMemAcc) {
  SmallPtrSet<MemoryPhi *, 4> UsePhis;
  for (User *U : NewMemAcc->users())
    if (MemoryPhi *Phi = dyn_cast<MemoryPhi>(U))
      UsePhis.insert(Phi);

  for (MemoryPhi *Phi : UsePhis) {
    auto In = Phi->incoming_values();
    if (llvm::all_of(In, [&](Use &U) { return U == NewMemAcc; })) {
      Phi->replaceAllUsesWith(NewMemAcc);
      MSSAUpdater->removeMemoryAccess(Phi);
    }
  }
}

unsigned GVNHoist::removeAndReplace(const SmallVecInsn &Candidates,
                                    Instruction *Repl, BasicBlock *DestBB,
                                    bool MoveAccess) {
  MemoryUseOrDef *NewMemAcc = MSSA->getMemoryAccess(Repl);
  if (MoveAccess && NewMemAcc) {
    // The definition of this ld/st will not change: ld/st hoisting is
    // legal when the ld/st is not moved past its current definition.
    MSSAUpdater->moveToPlace(NewMemAcc, DestBB, MemorySSA::BeforeTerminator);
  }

  // Replace all other instructions with Repl with memory access NewMemAcc.
  unsigned NR = rauw(Candidates, Repl, NewMemAcc);

  // Remove MemorySSA phi nodes with the same arguments.
  if (NewMemAcc)
    raMPHIuw(NewMemAcc);
  return NR;
}

bool GVNHoist::makeGepOperandsAvailable(
    Instruction *Repl, BasicBlock *HoistPt,
    const SmallVecInsn &InstructionsToHoist) const {
  // Check whether the GEP of a ld/st can be synthesized at HoistPt.
  GetElementPtrInst *Gep = nullptr;
  Instruction *Val = nullptr;
  if (auto *Ld = dyn_cast<LoadInst>(Repl)) {
    Gep = dyn_cast<GetElementPtrInst>(Ld->getPointerOperand());
  } else if (auto *St = dyn_cast<StoreInst>(Repl)) {
    Gep = dyn_cast<GetElementPtrInst>(St->getPointerOperand());
    Val = dyn_cast<Instruction>(St->getValueOperand());
    // Check that the stored value is available.
    if (Val) {
      if (isa<GetElementPtrInst>(Val)) {
        // Check whether we can compute the GEP at HoistPt.
        if (!allGepOperandsAvailable(Val, HoistPt))
          return false;
      } else if (!DT->dominates(Val->getParent(), HoistPt))
        return false;
    }
  }

  // Check whether we can compute the Gep at HoistPt.
  if (!Gep || !allGepOperandsAvailable(Gep, HoistPt))
    return false;

  makeGepsAvailable(Repl, HoistPt, InstructionsToHoist, Gep);

  if (Val && isa<GetElementPtrInst>(Val))
    makeGepsAvailable(Repl, HoistPt, InstructionsToHoist, Val);

  return true;
}

std::pair<unsigned, unsigned> GVNHoist::hoist(HoistingPointList &HPL) {
  unsigned NI = 0, NL = 0, NS = 0, NC = 0, NR = 0;
  for (const HoistingPointInfo &HP : HPL) {
    // Find out whether we already have one of the instructions in HoistPt,
    // in which case we do not have to move it.
    BasicBlock *DestBB = HP.first;
    const SmallVecInsn &InstructionsToHoist = HP.second;
    Instruction *Repl = nullptr;
    for (Instruction *I : InstructionsToHoist)
      if (I->getParent() == DestBB)
        // If there are two instructions in HoistPt to be hoisted in place:
        // update Repl to be the first one, such that we can rename the uses
        // of the second based on the first.
        if (!Repl || firstInBB(I, Repl))
          Repl = I;

    // Keep track of whether we moved the instruction so we know whether we
    // should move the MemoryAccess.
    bool MoveAccess = true;
    if (Repl) {
      // Repl is already in HoistPt: it remains in place.
      assert(allOperandsAvailable(Repl, DestBB) &&
             "instruction depends on operands that are not available");
      MoveAccess = false;
    } else {
      // When we do not find Repl in HoistPt, select the first in the list
      // and move it to HoistPt.
      Repl = InstructionsToHoist.front();

      // We can move Repl in HoistPt only when all operands are available.
      // The order in which hoistings are done may influence the availability
      // of operands.
      if (!allOperandsAvailable(Repl, DestBB)) {
        // When HoistingGeps there is nothing more we can do to make the
        // operands available: just continue.
        if (HoistingGeps)
          continue;

        // When not HoistingGeps we need to copy the GEPs.
        if (!makeGepOperandsAvailable(Repl, DestBB, InstructionsToHoist))
          continue;
      }

      // Move the instruction at the end of HoistPt.
      Instruction *Last = DestBB->getTerminator();
      MD->removeInstruction(Repl);
      Repl->moveBefore(Last);

      DFSNumber[Repl] = DFSNumber[Last]++;
    }

    NR += removeAndReplace(InstructionsToHoist, Repl, DestBB, MoveAccess);

    if (isa<LoadInst>(Repl))
      ++NL;
    else if (isa<StoreInst>(Repl))
      ++NS;
    else if (isa<CallInst>(Repl))
      ++NC;
    else // Scalar
      ++NI;
  }

  if (MSSA && VerifyMemorySSA)
    MSSA->verifyMemorySSA();

  NumHoisted += NL + NS + NC + NI;
  NumRemoved += NR;
  NumLoadsHoisted += NL;
  NumStoresHoisted += NS;
  NumCallsHoisted += NC;
  return {NI, NL + NC + NS};
}

std::pair<unsigned, unsigned> GVNHoist::hoistExpressions(Function &F) {
  InsnInfo II;
  LoadInfo LI;
  StoreInfo SI;
  CallInfo CI;
  for (BasicBlock *BB : depth_first(&F.getEntryBlock())) {
    int InstructionNb = 0;
    for (Instruction &I1 : *BB) {
      // If I1 cannot guarantee progress, subsequent instructions
      // in BB cannot be hoisted anyways.
      if (!isGuaranteedToTransferExecutionToSuccessor(&I1)) {
        HoistBarrier.insert(BB);
        break;
      }
      // Only hoist the first instructions in BB up to MaxDepthInBB. Hoisting
      // deeper may increase the register pressure and compilation time.
      if (MaxDepthInBB != -1 && InstructionNb++ >= MaxDepthInBB)
        break;

      // Do not value number terminator instructions.
      if (I1.isTerminator())
        break;

      if (auto *Load = dyn_cast<LoadInst>(&I1))
        LI.insert(Load, VN);
      else if (auto *Store = dyn_cast<StoreInst>(&I1))
        SI.insert(Store, VN);
      else if (auto *Call = dyn_cast<CallInst>(&I1)) {
        if (auto *Intr = dyn_cast<IntrinsicInst>(Call)) {
          if (isa<DbgInfoIntrinsic>(Intr) ||
              Intr->getIntrinsicID() == Intrinsic::assume ||
              Intr->getIntrinsicID() == Intrinsic::sideeffect)
            continue;
        }
        if (Call->mayHaveSideEffects())
          break;

        if (Call->isConvergent())
          break;

        CI.insert(Call, VN);
      } else if (HoistingGeps || !isa<GetElementPtrInst>(&I1))
        // Do not hoist scalars past calls that may write to memory because
        // that could result in spills later. geps are handled separately.
        // TODO: We can relax this for targets like AArch64 as they have more
        // registers than X86.
        II.insert(&I1, VN);
    }
  }

  HoistingPointList HPL;
  computeInsertionPoints(II.getVNTable(), HPL, InsKind::Scalar);
  computeInsertionPoints(LI.getVNTable(), HPL, InsKind::Load);
  computeInsertionPoints(SI.getVNTable(), HPL, InsKind::Store);
  computeInsertionPoints(CI.getScalarVNTable(), HPL, InsKind::Scalar);
  computeInsertionPoints(CI.getLoadVNTable(), HPL, InsKind::Load);
  computeInsertionPoints(CI.getStoreVNTable(), HPL, InsKind::Store);
  return hoist(HPL);
}

} // end namespace llvm

PreservedAnalyses GVNHoistPass::run(Function &F, FunctionAnalysisManager &AM) {
  DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F);
  PostDominatorTree &PDT = AM.getResult<PostDominatorTreeAnalysis>(F);
  AliasAnalysis &AA = AM.getResult<AAManager>(F);
  MemoryDependenceResults &MD = AM.getResult<MemoryDependenceAnalysis>(F);
  MemorySSA &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA();
  GVNHoist G(&DT, &PDT, &AA, &MD, &MSSA);
  if (!G.run(F))
    return PreservedAnalyses::all();

  PreservedAnalyses PA;
  PA.preserve<DominatorTreeAnalysis>();
  PA.preserve<MemorySSAAnalysis>();
  PA.preserve<GlobalsAA>();
  return PA;
}

char GVNHoistLegacyPass::ID = 0;

INITIALIZE_PASS_BEGIN(GVNHoistLegacyPass, "gvn-hoist",
                      "Early GVN Hoisting of Expressions", false, false)
INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass)
INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
INITIALIZE_PASS_END(GVNHoistLegacyPass, "gvn-hoist",
                    "Early GVN Hoisting of Expressions", false, false)

FunctionPass *llvm::createGVNHoistPass() { return new GVNHoistLegacyPass(); }