ConstantHoisting.cpp 38.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991
//===- ConstantHoisting.cpp - Prepare code for expensive constants --------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass identifies expensive constants to hoist and coalesces them to
// better prepare it for SelectionDAG-based code generation. This works around
// the limitations of the basic-block-at-a-time approach.
//
// First it scans all instructions for integer constants and calculates its
// cost. If the constant can be folded into the instruction (the cost is
// TCC_Free) or the cost is just a simple operation (TCC_BASIC), then we don't
// consider it expensive and leave it alone. This is the default behavior and
// the default implementation of getIntImmCostInst will always return TCC_Free.
//
// If the cost is more than TCC_BASIC, then the integer constant can't be folded
// into the instruction and it might be beneficial to hoist the constant.
// Similar constants are coalesced to reduce register pressure and
// materialization code.
//
// When a constant is hoisted, it is also hidden behind a bitcast to force it to
// be live-out of the basic block. Otherwise the constant would be just
// duplicated and each basic block would have its own copy in the SelectionDAG.
// The SelectionDAG recognizes such constants as opaque and doesn't perform
// certain transformations on them, which would create a new expensive constant.
//
// This optimization is only applied to integer constants in instructions and
// simple (this means not nested) constant cast expressions. For example:
// %0 = load i64* inttoptr (i64 big_constant to i64*)
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Scalar/ConstantHoisting.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/BlockFrequencyInfo.h"
#include "llvm/Analysis/ProfileSummaryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Value.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/BlockFrequency.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/SizeOpts.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <iterator>
#include <tuple>
#include <utility>

using namespace llvm;
using namespace consthoist;

#define DEBUG_TYPE "consthoist"

STATISTIC(NumConstantsHoisted, "Number of constants hoisted");
STATISTIC(NumConstantsRebased, "Number of constants rebased");

static cl::opt<bool> ConstHoistWithBlockFrequency(
    "consthoist-with-block-frequency", cl::init(true), cl::Hidden,
    cl::desc("Enable the use of the block frequency analysis to reduce the "
             "chance to execute const materialization more frequently than "
             "without hoisting."));

static cl::opt<bool> ConstHoistGEP(
    "consthoist-gep", cl::init(false), cl::Hidden,
    cl::desc("Try hoisting constant gep expressions"));

static cl::opt<unsigned>
MinNumOfDependentToRebase("consthoist-min-num-to-rebase",
    cl::desc("Do not rebase if number of dependent constants of a Base is less "
             "than this number."),
    cl::init(0), cl::Hidden);

namespace {

/// The constant hoisting pass.
class ConstantHoistingLegacyPass : public FunctionPass {
public:
  static char ID; // Pass identification, replacement for typeid

  ConstantHoistingLegacyPass() : FunctionPass(ID) {
    initializeConstantHoistingLegacyPassPass(*PassRegistry::getPassRegistry());
  }

  bool runOnFunction(Function &Fn) override;

  StringRef getPassName() const override { return "Constant Hoisting"; }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.setPreservesCFG();
    if (ConstHoistWithBlockFrequency)
      AU.addRequired<BlockFrequencyInfoWrapperPass>();
    AU.addRequired<DominatorTreeWrapperPass>();
    AU.addRequired<ProfileSummaryInfoWrapperPass>();
    AU.addRequired<TargetTransformInfoWrapperPass>();
  }

private:
  ConstantHoistingPass Impl;
};

} // end anonymous namespace

char ConstantHoistingLegacyPass::ID = 0;

INITIALIZE_PASS_BEGIN(ConstantHoistingLegacyPass, "consthoist",
                      "Constant Hoisting", false, false)
INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
INITIALIZE_PASS_END(ConstantHoistingLegacyPass, "consthoist",
                    "Constant Hoisting", false, false)

FunctionPass *llvm::createConstantHoistingPass() {
  return new ConstantHoistingLegacyPass();
}

/// Perform the constant hoisting optimization for the given function.
bool ConstantHoistingLegacyPass::runOnFunction(Function &Fn) {
  if (skipFunction(Fn))
    return false;

  LLVM_DEBUG(dbgs() << "********** Begin Constant Hoisting **********\n");
  LLVM_DEBUG(dbgs() << "********** Function: " << Fn.getName() << '\n');

  bool MadeChange =
      Impl.runImpl(Fn, getAnalysis<TargetTransformInfoWrapperPass>().getTTI(Fn),
                   getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
                   ConstHoistWithBlockFrequency
                       ? &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI()
                       : nullptr,
                   Fn.getEntryBlock(),
                   &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI());

  if (MadeChange) {
    LLVM_DEBUG(dbgs() << "********** Function after Constant Hoisting: "
                      << Fn.getName() << '\n');
    LLVM_DEBUG(dbgs() << Fn);
  }
  LLVM_DEBUG(dbgs() << "********** End Constant Hoisting **********\n");

  return MadeChange;
}

/// Find the constant materialization insertion point.
Instruction *ConstantHoistingPass::findMatInsertPt(Instruction *Inst,
                                                   unsigned Idx) const {
  // If the operand is a cast instruction, then we have to materialize the
  // constant before the cast instruction.
  if (Idx != ~0U) {
    Value *Opnd = Inst->getOperand(Idx);
    if (auto CastInst = dyn_cast<Instruction>(Opnd))
      if (CastInst->isCast())
        return CastInst;
  }

  // The simple and common case. This also includes constant expressions.
  if (!isa<PHINode>(Inst) && !Inst->isEHPad())
    return Inst;

  // We can't insert directly before a phi node or an eh pad. Insert before
  // the terminator of the incoming or dominating block.
  assert(Entry != Inst->getParent() && "PHI or landing pad in entry block!");
  if (Idx != ~0U && isa<PHINode>(Inst))
    return cast<PHINode>(Inst)->getIncomingBlock(Idx)->getTerminator();

  // This must be an EH pad. Iterate over immediate dominators until we find a
  // non-EH pad. We need to skip over catchswitch blocks, which are both EH pads
  // and terminators.
  auto IDom = DT->getNode(Inst->getParent())->getIDom();
  while (IDom->getBlock()->isEHPad()) {
    assert(Entry != IDom->getBlock() && "eh pad in entry block");
    IDom = IDom->getIDom();
  }

  return IDom->getBlock()->getTerminator();
}

/// Given \p BBs as input, find another set of BBs which collectively
/// dominates \p BBs and have the minimal sum of frequencies. Return the BB
/// set found in \p BBs.
static void findBestInsertionSet(DominatorTree &DT, BlockFrequencyInfo &BFI,
                                 BasicBlock *Entry,
                                 SetVector<BasicBlock *> &BBs) {
  assert(!BBs.count(Entry) && "Assume Entry is not in BBs");
  // Nodes on the current path to the root.
  SmallPtrSet<BasicBlock *, 8> Path;
  // Candidates includes any block 'BB' in set 'BBs' that is not strictly
  // dominated by any other blocks in set 'BBs', and all nodes in the path
  // in the dominator tree from Entry to 'BB'.
  SmallPtrSet<BasicBlock *, 16> Candidates;
  for (auto BB : BBs) {
    // Ignore unreachable basic blocks.
    if (!DT.isReachableFromEntry(BB))
      continue;
    Path.clear();
    // Walk up the dominator tree until Entry or another BB in BBs
    // is reached. Insert the nodes on the way to the Path.
    BasicBlock *Node = BB;
    // The "Path" is a candidate path to be added into Candidates set.
    bool isCandidate = false;
    do {
      Path.insert(Node);
      if (Node == Entry || Candidates.count(Node)) {
        isCandidate = true;
        break;
      }
      assert(DT.getNode(Node)->getIDom() &&
             "Entry doens't dominate current Node");
      Node = DT.getNode(Node)->getIDom()->getBlock();
    } while (!BBs.count(Node));

    // If isCandidate is false, Node is another Block in BBs dominating
    // current 'BB'. Drop the nodes on the Path.
    if (!isCandidate)
      continue;

    // Add nodes on the Path into Candidates.
    Candidates.insert(Path.begin(), Path.end());
  }

  // Sort the nodes in Candidates in top-down order and save the nodes
  // in Orders.
  unsigned Idx = 0;
  SmallVector<BasicBlock *, 16> Orders;
  Orders.push_back(Entry);
  while (Idx != Orders.size()) {
    BasicBlock *Node = Orders[Idx++];
    for (auto ChildDomNode : DT.getNode(Node)->children()) {
      if (Candidates.count(ChildDomNode->getBlock()))
        Orders.push_back(ChildDomNode->getBlock());
    }
  }

  // Visit Orders in bottom-up order.
  using InsertPtsCostPair =
      std::pair<SetVector<BasicBlock *>, BlockFrequency>;

  // InsertPtsMap is a map from a BB to the best insertion points for the
  // subtree of BB (subtree not including the BB itself).
  DenseMap<BasicBlock *, InsertPtsCostPair> InsertPtsMap;
  InsertPtsMap.reserve(Orders.size() + 1);
  for (auto RIt = Orders.rbegin(); RIt != Orders.rend(); RIt++) {
    BasicBlock *Node = *RIt;
    bool NodeInBBs = BBs.count(Node);
    auto &InsertPts = InsertPtsMap[Node].first;
    BlockFrequency &InsertPtsFreq = InsertPtsMap[Node].second;

    // Return the optimal insert points in BBs.
    if (Node == Entry) {
      BBs.clear();
      if (InsertPtsFreq > BFI.getBlockFreq(Node) ||
          (InsertPtsFreq == BFI.getBlockFreq(Node) && InsertPts.size() > 1))
        BBs.insert(Entry);
      else
        BBs.insert(InsertPts.begin(), InsertPts.end());
      break;
    }

    BasicBlock *Parent = DT.getNode(Node)->getIDom()->getBlock();
    // Initially, ParentInsertPts is empty and ParentPtsFreq is 0. Every child
    // will update its parent's ParentInsertPts and ParentPtsFreq.
    auto &ParentInsertPts = InsertPtsMap[Parent].first;
    BlockFrequency &ParentPtsFreq = InsertPtsMap[Parent].second;
    // Choose to insert in Node or in subtree of Node.
    // Don't hoist to EHPad because we may not find a proper place to insert
    // in EHPad.
    // If the total frequency of InsertPts is the same as the frequency of the
    // target Node, and InsertPts contains more than one nodes, choose hoisting
    // to reduce code size.
    if (NodeInBBs ||
        (!Node->isEHPad() &&
         (InsertPtsFreq > BFI.getBlockFreq(Node) ||
          (InsertPtsFreq == BFI.getBlockFreq(Node) && InsertPts.size() > 1)))) {
      ParentInsertPts.insert(Node);
      ParentPtsFreq += BFI.getBlockFreq(Node);
    } else {
      ParentInsertPts.insert(InsertPts.begin(), InsertPts.end());
      ParentPtsFreq += InsertPtsFreq;
    }
  }
}

/// Find an insertion point that dominates all uses.
SetVector<Instruction *> ConstantHoistingPass::findConstantInsertionPoint(
    const ConstantInfo &ConstInfo) const {
  assert(!ConstInfo.RebasedConstants.empty() && "Invalid constant info entry.");
  // Collect all basic blocks.
  SetVector<BasicBlock *> BBs;
  SetVector<Instruction *> InsertPts;
  for (auto const &RCI : ConstInfo.RebasedConstants)
    for (auto const &U : RCI.Uses)
      BBs.insert(findMatInsertPt(U.Inst, U.OpndIdx)->getParent());

  if (BBs.count(Entry)) {
    InsertPts.insert(&Entry->front());
    return InsertPts;
  }

  if (BFI) {
    findBestInsertionSet(*DT, *BFI, Entry, BBs);
    for (auto BB : BBs) {
      BasicBlock::iterator InsertPt = BB->begin();
      for (; isa<PHINode>(InsertPt) || InsertPt->isEHPad(); ++InsertPt)
        ;
      InsertPts.insert(&*InsertPt);
    }
    return InsertPts;
  }

  while (BBs.size() >= 2) {
    BasicBlock *BB, *BB1, *BB2;
    BB1 = BBs.pop_back_val();
    BB2 = BBs.pop_back_val();
    BB = DT->findNearestCommonDominator(BB1, BB2);
    if (BB == Entry) {
      InsertPts.insert(&Entry->front());
      return InsertPts;
    }
    BBs.insert(BB);
  }
  assert((BBs.size() == 1) && "Expected only one element.");
  Instruction &FirstInst = (*BBs.begin())->front();
  InsertPts.insert(findMatInsertPt(&FirstInst));
  return InsertPts;
}

/// Record constant integer ConstInt for instruction Inst at operand
/// index Idx.
///
/// The operand at index Idx is not necessarily the constant integer itself. It
/// could also be a cast instruction or a constant expression that uses the
/// constant integer.
void ConstantHoistingPass::collectConstantCandidates(
    ConstCandMapType &ConstCandMap, Instruction *Inst, unsigned Idx,
    ConstantInt *ConstInt) {
  unsigned Cost;
  // Ask the target about the cost of materializing the constant for the given
  // instruction and operand index.
  if (auto IntrInst = dyn_cast<IntrinsicInst>(Inst))
    Cost = TTI->getIntImmCostIntrin(IntrInst->getIntrinsicID(), Idx,
                                    ConstInt->getValue(), ConstInt->getType(),
                                    TargetTransformInfo::TCK_SizeAndLatency);
  else
    Cost = TTI->getIntImmCostInst(
        Inst->getOpcode(), Idx, ConstInt->getValue(), ConstInt->getType(),
        TargetTransformInfo::TCK_SizeAndLatency, Inst);

  // Ignore cheap integer constants.
  if (Cost > TargetTransformInfo::TCC_Basic) {
    ConstCandMapType::iterator Itr;
    bool Inserted;
    ConstPtrUnionType Cand = ConstInt;
    std::tie(Itr, Inserted) = ConstCandMap.insert(std::make_pair(Cand, 0));
    if (Inserted) {
      ConstIntCandVec.push_back(ConstantCandidate(ConstInt));
      Itr->second = ConstIntCandVec.size() - 1;
    }
    ConstIntCandVec[Itr->second].addUser(Inst, Idx, Cost);
    LLVM_DEBUG(if (isa<ConstantInt>(Inst->getOperand(Idx))) dbgs()
                   << "Collect constant " << *ConstInt << " from " << *Inst
                   << " with cost " << Cost << '\n';
               else dbgs() << "Collect constant " << *ConstInt
                           << " indirectly from " << *Inst << " via "
                           << *Inst->getOperand(Idx) << " with cost " << Cost
                           << '\n';);
  }
}

/// Record constant GEP expression for instruction Inst at operand index Idx.
void ConstantHoistingPass::collectConstantCandidates(
    ConstCandMapType &ConstCandMap, Instruction *Inst, unsigned Idx,
    ConstantExpr *ConstExpr) {
  // TODO: Handle vector GEPs
  if (ConstExpr->getType()->isVectorTy())
    return;

  GlobalVariable *BaseGV = dyn_cast<GlobalVariable>(ConstExpr->getOperand(0));
  if (!BaseGV)
    return;

  // Get offset from the base GV.
  PointerType *GVPtrTy = cast<PointerType>(BaseGV->getType());
  IntegerType *PtrIntTy = DL->getIntPtrType(*Ctx, GVPtrTy->getAddressSpace());
  APInt Offset(DL->getTypeSizeInBits(PtrIntTy), /*val*/0, /*isSigned*/true);
  auto *GEPO = cast<GEPOperator>(ConstExpr);
  if (!GEPO->accumulateConstantOffset(*DL, Offset))
    return;

  if (!Offset.isIntN(32))
    return;

  // A constant GEP expression that has a GlobalVariable as base pointer is
  // usually lowered to a load from constant pool. Such operation is unlikely
  // to be cheaper than compute it by <Base + Offset>, which can be lowered to
  // an ADD instruction or folded into Load/Store instruction.
  int Cost =
      TTI->getIntImmCostInst(Instruction::Add, 1, Offset, PtrIntTy,
                             TargetTransformInfo::TCK_SizeAndLatency, Inst);
  ConstCandVecType &ExprCandVec = ConstGEPCandMap[BaseGV];
  ConstCandMapType::iterator Itr;
  bool Inserted;
  ConstPtrUnionType Cand = ConstExpr;
  std::tie(Itr, Inserted) = ConstCandMap.insert(std::make_pair(Cand, 0));
  if (Inserted) {
    ExprCandVec.push_back(ConstantCandidate(
        ConstantInt::get(Type::getInt32Ty(*Ctx), Offset.getLimitedValue()),
        ConstExpr));
    Itr->second = ExprCandVec.size() - 1;
  }
  ExprCandVec[Itr->second].addUser(Inst, Idx, Cost);
}

/// Check the operand for instruction Inst at index Idx.
void ConstantHoistingPass::collectConstantCandidates(
    ConstCandMapType &ConstCandMap, Instruction *Inst, unsigned Idx) {
  Value *Opnd = Inst->getOperand(Idx);

  // Visit constant integers.
  if (auto ConstInt = dyn_cast<ConstantInt>(Opnd)) {
    collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt);
    return;
  }

  // Visit cast instructions that have constant integers.
  if (auto CastInst = dyn_cast<Instruction>(Opnd)) {
    // Only visit cast instructions, which have been skipped. All other
    // instructions should have already been visited.
    if (!CastInst->isCast())
      return;

    if (auto *ConstInt = dyn_cast<ConstantInt>(CastInst->getOperand(0))) {
      // Pretend the constant is directly used by the instruction and ignore
      // the cast instruction.
      collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt);
      return;
    }
  }

  // Visit constant expressions that have constant integers.
  if (auto ConstExpr = dyn_cast<ConstantExpr>(Opnd)) {
    // Handle constant gep expressions.
    if (ConstHoistGEP && ConstExpr->isGEPWithNoNotionalOverIndexing())
      collectConstantCandidates(ConstCandMap, Inst, Idx, ConstExpr);

    // Only visit constant cast expressions.
    if (!ConstExpr->isCast())
      return;

    if (auto ConstInt = dyn_cast<ConstantInt>(ConstExpr->getOperand(0))) {
      // Pretend the constant is directly used by the instruction and ignore
      // the constant expression.
      collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt);
      return;
    }
  }
}

/// Scan the instruction for expensive integer constants and record them
/// in the constant candidate vector.
void ConstantHoistingPass::collectConstantCandidates(
    ConstCandMapType &ConstCandMap, Instruction *Inst) {
  // Skip all cast instructions. They are visited indirectly later on.
  if (Inst->isCast())
    return;

  // Scan all operands.
  for (unsigned Idx = 0, E = Inst->getNumOperands(); Idx != E; ++Idx) {
    // The cost of materializing the constants (defined in
    // `TargetTransformInfo::getIntImmCostInst`) for instructions which only
    // take constant variables is lower than `TargetTransformInfo::TCC_Basic`.
    // So it's safe for us to collect constant candidates from all
    // IntrinsicInsts.
    if (canReplaceOperandWithVariable(Inst, Idx)) {
      collectConstantCandidates(ConstCandMap, Inst, Idx);
    }
  } // end of for all operands
}

/// Collect all integer constants in the function that cannot be folded
/// into an instruction itself.
void ConstantHoistingPass::collectConstantCandidates(Function &Fn) {
  ConstCandMapType ConstCandMap;
  for (BasicBlock &BB : Fn) {
    // Ignore unreachable basic blocks.
    if (!DT->isReachableFromEntry(&BB))
      continue;
    for (Instruction &Inst : BB)
      collectConstantCandidates(ConstCandMap, &Inst);
  }
}

// This helper function is necessary to deal with values that have different
// bit widths (APInt Operator- does not like that). If the value cannot be
// represented in uint64 we return an "empty" APInt. This is then interpreted
// as the value is not in range.
static Optional<APInt> calculateOffsetDiff(const APInt &V1, const APInt &V2) {
  Optional<APInt> Res = None;
  unsigned BW = V1.getBitWidth() > V2.getBitWidth() ?
                V1.getBitWidth() : V2.getBitWidth();
  uint64_t LimVal1 = V1.getLimitedValue();
  uint64_t LimVal2 = V2.getLimitedValue();

  if (LimVal1 == ~0ULL || LimVal2 == ~0ULL)
    return Res;

  uint64_t Diff = LimVal1 - LimVal2;
  return APInt(BW, Diff, true);
}

// From a list of constants, one needs to picked as the base and the other
// constants will be transformed into an offset from that base constant. The
// question is which we can pick best? For example, consider these constants
// and their number of uses:
//
//  Constants| 2 | 4 | 12 | 42 |
//  NumUses  | 3 | 2 |  8 |  7 |
//
// Selecting constant 12 because it has the most uses will generate negative
// offsets for constants 2 and 4 (i.e. -10 and -8 respectively). If negative
// offsets lead to less optimal code generation, then there might be better
// solutions. Suppose immediates in the range of 0..35 are most optimally
// supported by the architecture, then selecting constant 2 is most optimal
// because this will generate offsets: 0, 2, 10, 40. Offsets 0, 2 and 10 are in
// range 0..35, and thus 3 + 2 + 8 = 13 uses are in range. Selecting 12 would
// have only 8 uses in range, so choosing 2 as a base is more optimal. Thus, in
// selecting the base constant the range of the offsets is a very important
// factor too that we take into account here. This algorithm calculates a total
// costs for selecting a constant as the base and substract the costs if
// immediates are out of range. It has quadratic complexity, so we call this
// function only when we're optimising for size and there are less than 100
// constants, we fall back to the straightforward algorithm otherwise
// which does not do all the offset calculations.
unsigned
ConstantHoistingPass::maximizeConstantsInRange(ConstCandVecType::iterator S,
                                           ConstCandVecType::iterator E,
                                           ConstCandVecType::iterator &MaxCostItr) {
  unsigned NumUses = 0;

  bool OptForSize = Entry->getParent()->hasOptSize() ||
                    llvm::shouldOptimizeForSize(Entry->getParent(), PSI, BFI,
                                                PGSOQueryType::IRPass);
  if (!OptForSize || std::distance(S,E) > 100) {
    for (auto ConstCand = S; ConstCand != E; ++ConstCand) {
      NumUses += ConstCand->Uses.size();
      if (ConstCand->CumulativeCost > MaxCostItr->CumulativeCost)
        MaxCostItr = ConstCand;
    }
    return NumUses;
  }

  LLVM_DEBUG(dbgs() << "== Maximize constants in range ==\n");
  int MaxCost = -1;
  for (auto ConstCand = S; ConstCand != E; ++ConstCand) {
    auto Value = ConstCand->ConstInt->getValue();
    Type *Ty = ConstCand->ConstInt->getType();
    int Cost = 0;
    NumUses += ConstCand->Uses.size();
    LLVM_DEBUG(dbgs() << "= Constant: " << ConstCand->ConstInt->getValue()
                      << "\n");

    for (auto User : ConstCand->Uses) {
      unsigned Opcode = User.Inst->getOpcode();
      unsigned OpndIdx = User.OpndIdx;
      Cost += TTI->getIntImmCostInst(Opcode, OpndIdx, Value, Ty,
                                     TargetTransformInfo::TCK_SizeAndLatency);
      LLVM_DEBUG(dbgs() << "Cost: " << Cost << "\n");

      for (auto C2 = S; C2 != E; ++C2) {
        Optional<APInt> Diff = calculateOffsetDiff(
                                   C2->ConstInt->getValue(),
                                   ConstCand->ConstInt->getValue());
        if (Diff) {
          const int ImmCosts =
            TTI->getIntImmCodeSizeCost(Opcode, OpndIdx, Diff.getValue(), Ty);
          Cost -= ImmCosts;
          LLVM_DEBUG(dbgs() << "Offset " << Diff.getValue() << " "
                            << "has penalty: " << ImmCosts << "\n"
                            << "Adjusted cost: " << Cost << "\n");
        }
      }
    }
    LLVM_DEBUG(dbgs() << "Cumulative cost: " << Cost << "\n");
    if (Cost > MaxCost) {
      MaxCost = Cost;
      MaxCostItr = ConstCand;
      LLVM_DEBUG(dbgs() << "New candidate: " << MaxCostItr->ConstInt->getValue()
                        << "\n");
    }
  }
  return NumUses;
}

/// Find the base constant within the given range and rebase all other
/// constants with respect to the base constant.
void ConstantHoistingPass::findAndMakeBaseConstant(
    ConstCandVecType::iterator S, ConstCandVecType::iterator E,
    SmallVectorImpl<consthoist::ConstantInfo> &ConstInfoVec) {
  auto MaxCostItr = S;
  unsigned NumUses = maximizeConstantsInRange(S, E, MaxCostItr);

  // Don't hoist constants that have only one use.
  if (NumUses <= 1)
    return;

  ConstantInt *ConstInt = MaxCostItr->ConstInt;
  ConstantExpr *ConstExpr = MaxCostItr->ConstExpr;
  ConstantInfo ConstInfo;
  ConstInfo.BaseInt = ConstInt;
  ConstInfo.BaseExpr = ConstExpr;
  Type *Ty = ConstInt->getType();

  // Rebase the constants with respect to the base constant.
  for (auto ConstCand = S; ConstCand != E; ++ConstCand) {
    APInt Diff = ConstCand->ConstInt->getValue() - ConstInt->getValue();
    Constant *Offset = Diff == 0 ? nullptr : ConstantInt::get(Ty, Diff);
    Type *ConstTy =
        ConstCand->ConstExpr ? ConstCand->ConstExpr->getType() : nullptr;
    ConstInfo.RebasedConstants.push_back(
      RebasedConstantInfo(std::move(ConstCand->Uses), Offset, ConstTy));
  }
  ConstInfoVec.push_back(std::move(ConstInfo));
}

/// Finds and combines constant candidates that can be easily
/// rematerialized with an add from a common base constant.
void ConstantHoistingPass::findBaseConstants(GlobalVariable *BaseGV) {
  // If BaseGV is nullptr, find base among candidate constant integers;
  // Otherwise find base among constant GEPs that share the same BaseGV.
  ConstCandVecType &ConstCandVec = BaseGV ?
      ConstGEPCandMap[BaseGV] : ConstIntCandVec;
  ConstInfoVecType &ConstInfoVec = BaseGV ?
      ConstGEPInfoMap[BaseGV] : ConstIntInfoVec;

  // Sort the constants by value and type. This invalidates the mapping!
  llvm::stable_sort(ConstCandVec, [](const ConstantCandidate &LHS,
                                     const ConstantCandidate &RHS) {
    if (LHS.ConstInt->getType() != RHS.ConstInt->getType())
      return LHS.ConstInt->getType()->getBitWidth() <
             RHS.ConstInt->getType()->getBitWidth();
    return LHS.ConstInt->getValue().ult(RHS.ConstInt->getValue());
  });

  // Simple linear scan through the sorted constant candidate vector for viable
  // merge candidates.
  auto MinValItr = ConstCandVec.begin();
  for (auto CC = std::next(ConstCandVec.begin()), E = ConstCandVec.end();
       CC != E; ++CC) {
    if (MinValItr->ConstInt->getType() == CC->ConstInt->getType()) {
      Type *MemUseValTy = nullptr;
      for (auto &U : CC->Uses) {
        auto *UI = U.Inst;
        if (LoadInst *LI = dyn_cast<LoadInst>(UI)) {
          MemUseValTy = LI->getType();
          break;
        } else if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
          // Make sure the constant is used as pointer operand of the StoreInst.
          if (SI->getPointerOperand() == SI->getOperand(U.OpndIdx)) {
            MemUseValTy = SI->getValueOperand()->getType();
            break;
          }
        }
      }

      // Check if the constant is in range of an add with immediate.
      APInt Diff = CC->ConstInt->getValue() - MinValItr->ConstInt->getValue();
      if ((Diff.getBitWidth() <= 64) &&
          TTI->isLegalAddImmediate(Diff.getSExtValue()) &&
          // Check if Diff can be used as offset in addressing mode of the user
          // memory instruction.
          (!MemUseValTy || TTI->isLegalAddressingMode(MemUseValTy,
           /*BaseGV*/nullptr, /*BaseOffset*/Diff.getSExtValue(),
           /*HasBaseReg*/true, /*Scale*/0)))
        continue;
    }
    // We either have now a different constant type or the constant is not in
    // range of an add with immediate anymore.
    findAndMakeBaseConstant(MinValItr, CC, ConstInfoVec);
    // Start a new base constant search.
    MinValItr = CC;
  }
  // Finalize the last base constant search.
  findAndMakeBaseConstant(MinValItr, ConstCandVec.end(), ConstInfoVec);
}

/// Updates the operand at Idx in instruction Inst with the result of
///        instruction Mat. If the instruction is a PHI node then special
///        handling for duplicate values form the same incoming basic block is
///        required.
/// \return The update will always succeed, but the return value indicated if
///         Mat was used for the update or not.
static bool updateOperand(Instruction *Inst, unsigned Idx, Instruction *Mat) {
  if (auto PHI = dyn_cast<PHINode>(Inst)) {
    // Check if any previous operand of the PHI node has the same incoming basic
    // block. This is a very odd case that happens when the incoming basic block
    // has a switch statement. In this case use the same value as the previous
    // operand(s), otherwise we will fail verification due to different values.
    // The values are actually the same, but the variable names are different
    // and the verifier doesn't like that.
    BasicBlock *IncomingBB = PHI->getIncomingBlock(Idx);
    for (unsigned i = 0; i < Idx; ++i) {
      if (PHI->getIncomingBlock(i) == IncomingBB) {
        Value *IncomingVal = PHI->getIncomingValue(i);
        Inst->setOperand(Idx, IncomingVal);
        return false;
      }
    }
  }

  Inst->setOperand(Idx, Mat);
  return true;
}

/// Emit materialization code for all rebased constants and update their
/// users.
void ConstantHoistingPass::emitBaseConstants(Instruction *Base,
                                             Constant *Offset,
                                             Type *Ty,
                                             const ConstantUser &ConstUser) {
  Instruction *Mat = Base;

  // The same offset can be dereferenced to different types in nested struct.
  if (!Offset && Ty && Ty != Base->getType())
    Offset = ConstantInt::get(Type::getInt32Ty(*Ctx), 0);

  if (Offset) {
    Instruction *InsertionPt = findMatInsertPt(ConstUser.Inst,
                                               ConstUser.OpndIdx);
    if (Ty) {
      // Constant being rebased is a ConstantExpr.
      PointerType *Int8PtrTy = Type::getInt8PtrTy(*Ctx,
          cast<PointerType>(Ty)->getAddressSpace());
      Base = new BitCastInst(Base, Int8PtrTy, "base_bitcast", InsertionPt);
      Mat = GetElementPtrInst::Create(Int8PtrTy->getElementType(), Base,
          Offset, "mat_gep", InsertionPt);
      Mat = new BitCastInst(Mat, Ty, "mat_bitcast", InsertionPt);
    } else
      // Constant being rebased is a ConstantInt.
      Mat = BinaryOperator::Create(Instruction::Add, Base, Offset,
                                 "const_mat", InsertionPt);

    LLVM_DEBUG(dbgs() << "Materialize constant (" << *Base->getOperand(0)
                      << " + " << *Offset << ") in BB "
                      << Mat->getParent()->getName() << '\n'
                      << *Mat << '\n');
    Mat->setDebugLoc(ConstUser.Inst->getDebugLoc());
  }
  Value *Opnd = ConstUser.Inst->getOperand(ConstUser.OpndIdx);

  // Visit constant integer.
  if (isa<ConstantInt>(Opnd)) {
    LLVM_DEBUG(dbgs() << "Update: " << *ConstUser.Inst << '\n');
    if (!updateOperand(ConstUser.Inst, ConstUser.OpndIdx, Mat) && Offset)
      Mat->eraseFromParent();
    LLVM_DEBUG(dbgs() << "To    : " << *ConstUser.Inst << '\n');
    return;
  }

  // Visit cast instruction.
  if (auto CastInst = dyn_cast<Instruction>(Opnd)) {
    assert(CastInst->isCast() && "Expected an cast instruction!");
    // Check if we already have visited this cast instruction before to avoid
    // unnecessary cloning.
    Instruction *&ClonedCastInst = ClonedCastMap[CastInst];
    if (!ClonedCastInst) {
      ClonedCastInst = CastInst->clone();
      ClonedCastInst->setOperand(0, Mat);
      ClonedCastInst->insertAfter(CastInst);
      // Use the same debug location as the original cast instruction.
      ClonedCastInst->setDebugLoc(CastInst->getDebugLoc());
      LLVM_DEBUG(dbgs() << "Clone instruction: " << *CastInst << '\n'
                        << "To               : " << *ClonedCastInst << '\n');
    }

    LLVM_DEBUG(dbgs() << "Update: " << *ConstUser.Inst << '\n');
    updateOperand(ConstUser.Inst, ConstUser.OpndIdx, ClonedCastInst);
    LLVM_DEBUG(dbgs() << "To    : " << *ConstUser.Inst << '\n');
    return;
  }

  // Visit constant expression.
  if (auto ConstExpr = dyn_cast<ConstantExpr>(Opnd)) {
    if (ConstExpr->isGEPWithNoNotionalOverIndexing()) {
      // Operand is a ConstantGEP, replace it.
      updateOperand(ConstUser.Inst, ConstUser.OpndIdx, Mat);
      return;
    }

    // Aside from constant GEPs, only constant cast expressions are collected.
    assert(ConstExpr->isCast() && "ConstExpr should be a cast");
    Instruction *ConstExprInst = ConstExpr->getAsInstruction();
    ConstExprInst->setOperand(0, Mat);
    ConstExprInst->insertBefore(findMatInsertPt(ConstUser.Inst,
                                                ConstUser.OpndIdx));

    // Use the same debug location as the instruction we are about to update.
    ConstExprInst->setDebugLoc(ConstUser.Inst->getDebugLoc());

    LLVM_DEBUG(dbgs() << "Create instruction: " << *ConstExprInst << '\n'
                      << "From              : " << *ConstExpr << '\n');
    LLVM_DEBUG(dbgs() << "Update: " << *ConstUser.Inst << '\n');
    if (!updateOperand(ConstUser.Inst, ConstUser.OpndIdx, ConstExprInst)) {
      ConstExprInst->eraseFromParent();
      if (Offset)
        Mat->eraseFromParent();
    }
    LLVM_DEBUG(dbgs() << "To    : " << *ConstUser.Inst << '\n');
    return;
  }
}

/// Hoist and hide the base constant behind a bitcast and emit
/// materialization code for derived constants.
bool ConstantHoistingPass::emitBaseConstants(GlobalVariable *BaseGV) {
  bool MadeChange = false;
  SmallVectorImpl<consthoist::ConstantInfo> &ConstInfoVec =
      BaseGV ? ConstGEPInfoMap[BaseGV] : ConstIntInfoVec;
  for (auto const &ConstInfo : ConstInfoVec) {
    SetVector<Instruction *> IPSet = findConstantInsertionPoint(ConstInfo);
    // We can have an empty set if the function contains unreachable blocks.
    if (IPSet.empty())
      continue;

    unsigned UsesNum = 0;
    unsigned ReBasesNum = 0;
    unsigned NotRebasedNum = 0;
    for (Instruction *IP : IPSet) {
      // First, collect constants depending on this IP of the base.
      unsigned Uses = 0;
      using RebasedUse = std::tuple<Constant *, Type *, ConstantUser>;
      SmallVector<RebasedUse, 4> ToBeRebased;
      for (auto const &RCI : ConstInfo.RebasedConstants) {
        for (auto const &U : RCI.Uses) {
          Uses++;
          BasicBlock *OrigMatInsertBB =
              findMatInsertPt(U.Inst, U.OpndIdx)->getParent();
          // If Base constant is to be inserted in multiple places,
          // generate rebase for U using the Base dominating U.
          if (IPSet.size() == 1 ||
              DT->dominates(IP->getParent(), OrigMatInsertBB))
            ToBeRebased.push_back(RebasedUse(RCI.Offset, RCI.Ty, U));
        }
      }
      UsesNum = Uses;

      // If only few constants depend on this IP of base, skip rebasing,
      // assuming the base and the rebased have the same materialization cost.
      if (ToBeRebased.size() < MinNumOfDependentToRebase) {
        NotRebasedNum += ToBeRebased.size();
        continue;
      }

      // Emit an instance of the base at this IP.
      Instruction *Base = nullptr;
      // Hoist and hide the base constant behind a bitcast.
      if (ConstInfo.BaseExpr) {
        assert(BaseGV && "A base constant expression must have an base GV");
        Type *Ty = ConstInfo.BaseExpr->getType();
        Base = new BitCastInst(ConstInfo.BaseExpr, Ty, "const", IP);
      } else {
        IntegerType *Ty = ConstInfo.BaseInt->getType();
        Base = new BitCastInst(ConstInfo.BaseInt, Ty, "const", IP);
      }

      Base->setDebugLoc(IP->getDebugLoc());

      LLVM_DEBUG(dbgs() << "Hoist constant (" << *ConstInfo.BaseInt
                        << ") to BB " << IP->getParent()->getName() << '\n'
                        << *Base << '\n');

      // Emit materialization code for rebased constants depending on this IP.
      for (auto const &R : ToBeRebased) {
        Constant *Off = std::get<0>(R);
        Type *Ty = std::get<1>(R);
        ConstantUser U = std::get<2>(R);
        emitBaseConstants(Base, Off, Ty, U);
        ReBasesNum++;
        // Use the same debug location as the last user of the constant.
        Base->setDebugLoc(DILocation::getMergedLocation(
            Base->getDebugLoc(), U.Inst->getDebugLoc()));
      }
      assert(!Base->use_empty() && "The use list is empty!?");
      assert(isa<Instruction>(Base->user_back()) &&
             "All uses should be instructions.");
    }
    (void)UsesNum;
    (void)ReBasesNum;
    (void)NotRebasedNum;
    // Expect all uses are rebased after rebase is done.
    assert(UsesNum == (ReBasesNum + NotRebasedNum) &&
           "Not all uses are rebased");

    NumConstantsHoisted++;

    // Base constant is also included in ConstInfo.RebasedConstants, so
    // deduct 1 from ConstInfo.RebasedConstants.size().
    NumConstantsRebased += ConstInfo.RebasedConstants.size() - 1;

    MadeChange = true;
  }
  return MadeChange;
}

/// Check all cast instructions we made a copy of and remove them if they
/// have no more users.
void ConstantHoistingPass::deleteDeadCastInst() const {
  for (auto const &I : ClonedCastMap)
    if (I.first->use_empty())
      I.first->eraseFromParent();
}

/// Optimize expensive integer constants in the given function.
bool ConstantHoistingPass::runImpl(Function &Fn, TargetTransformInfo &TTI,
                                   DominatorTree &DT, BlockFrequencyInfo *BFI,
                                   BasicBlock &Entry, ProfileSummaryInfo *PSI) {
  this->TTI = &TTI;
  this->DT = &DT;
  this->BFI = BFI;
  this->DL = &Fn.getParent()->getDataLayout();
  this->Ctx = &Fn.getContext();
  this->Entry = &Entry;
  this->PSI = PSI;
  // Collect all constant candidates.
  collectConstantCandidates(Fn);

  // Combine constants that can be easily materialized with an add from a common
  // base constant.
  if (!ConstIntCandVec.empty())
    findBaseConstants(nullptr);
  for (const auto &MapEntry : ConstGEPCandMap)
    if (!MapEntry.second.empty())
      findBaseConstants(MapEntry.first);

  // Finally hoist the base constant and emit materialization code for dependent
  // constants.
  bool MadeChange = false;
  if (!ConstIntInfoVec.empty())
    MadeChange = emitBaseConstants(nullptr);
  for (const auto &MapEntry : ConstGEPInfoMap)
    if (!MapEntry.second.empty())
      MadeChange |= emitBaseConstants(MapEntry.first);


  // Cleanup dead instructions.
  deleteDeadCastInst();

  cleanup();

  return MadeChange;
}

PreservedAnalyses ConstantHoistingPass::run(Function &F,
                                            FunctionAnalysisManager &AM) {
  auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
  auto &TTI = AM.getResult<TargetIRAnalysis>(F);
  auto BFI = ConstHoistWithBlockFrequency
                 ? &AM.getResult<BlockFrequencyAnalysis>(F)
                 : nullptr;
  auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
  auto *PSI = MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
  if (!runImpl(F, TTI, DT, BFI, F.getEntryBlock(), PSI))
    return PreservedAnalyses::all();

  PreservedAnalyses PA;
  PA.preserveSet<CFGAnalyses>();
  return PA;
}