PPCBranchSelector.cpp 16 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
//===-- PPCBranchSelector.cpp - Emit long conditional branches ------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains a pass that scans a machine function to determine which
// conditional branches need more than 16 bits of displacement to reach their
// target basic block.  It does this in two passes; a calculation of basic block
// positions pass, and a branch pseudo op to machine branch opcode pass.  This
// pass should be run last, just before the assembly printer.
//
//===----------------------------------------------------------------------===//

#include "MCTargetDesc/PPCPredicates.h"
#include "PPC.h"
#include "PPCInstrBuilder.h"
#include "PPCInstrInfo.h"
#include "PPCSubtarget.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Target/TargetMachine.h"
#include <algorithm>
using namespace llvm;

#define DEBUG_TYPE "ppc-branch-select"

STATISTIC(NumExpanded, "Number of branches expanded to long format");
STATISTIC(NumPrefixed, "Number of prefixed instructions");
STATISTIC(NumPrefixedAligned,
          "Number of prefixed instructions that have been aligned");

namespace {
  struct PPCBSel : public MachineFunctionPass {
    static char ID;
    PPCBSel() : MachineFunctionPass(ID) {
      initializePPCBSelPass(*PassRegistry::getPassRegistry());
    }

    // The sizes of the basic blocks in the function (the first
    // element of the pair); the second element of the pair is the amount of the
    // size that is due to potential padding.
    std::vector<std::pair<unsigned, unsigned>> BlockSizes;

    // The first block number which has imprecise instruction address.
    int FirstImpreciseBlock = -1;

    unsigned GetAlignmentAdjustment(MachineBasicBlock &MBB, unsigned Offset);
    unsigned ComputeBlockSizes(MachineFunction &Fn);
    void modifyAdjustment(MachineFunction &Fn);
    int computeBranchSize(MachineFunction &Fn,
                          const MachineBasicBlock *Src,
                          const MachineBasicBlock *Dest,
                          unsigned BrOffset);

    bool runOnMachineFunction(MachineFunction &Fn) override;

    MachineFunctionProperties getRequiredProperties() const override {
      return MachineFunctionProperties().set(
          MachineFunctionProperties::Property::NoVRegs);
    }

    StringRef getPassName() const override { return "PowerPC Branch Selector"; }
  };
  char PPCBSel::ID = 0;
}

INITIALIZE_PASS(PPCBSel, "ppc-branch-select", "PowerPC Branch Selector",
                false, false)

/// createPPCBranchSelectionPass - returns an instance of the Branch Selection
/// Pass
///
FunctionPass *llvm::createPPCBranchSelectionPass() {
  return new PPCBSel();
}

/// In order to make MBB aligned, we need to add an adjustment value to the
/// original Offset.
unsigned PPCBSel::GetAlignmentAdjustment(MachineBasicBlock &MBB,
                                         unsigned Offset) {
  const Align Alignment = MBB.getAlignment();
  if (Alignment == Align(1))
    return 0;

  const Align ParentAlign = MBB.getParent()->getAlignment();

  if (Alignment <= ParentAlign)
    return offsetToAlignment(Offset, Alignment);

  // The alignment of this MBB is larger than the function's alignment, so we
  // can't tell whether or not it will insert nops. Assume that it will.
  if (FirstImpreciseBlock < 0)
    FirstImpreciseBlock = MBB.getNumber();
  return Alignment.value() + offsetToAlignment(Offset, Alignment);
}

/// We need to be careful about the offset of the first block in the function
/// because it might not have the function's alignment. This happens because,
/// under the ELFv2 ABI, for functions which require a TOC pointer, we add a
/// two-instruction sequence to the start of the function.
/// Note: This needs to be synchronized with the check in
/// PPCLinuxAsmPrinter::EmitFunctionBodyStart.
static inline unsigned GetInitialOffset(MachineFunction &Fn) {
  unsigned InitialOffset = 0;
  if (Fn.getSubtarget<PPCSubtarget>().isELFv2ABI() &&
      !Fn.getRegInfo().use_empty(PPC::X2))
    InitialOffset = 8;
  return InitialOffset;
}

/// Measure each MBB and compute a size for the entire function.
unsigned PPCBSel::ComputeBlockSizes(MachineFunction &Fn) {
  const PPCInstrInfo *TII =
      static_cast<const PPCInstrInfo *>(Fn.getSubtarget().getInstrInfo());
  unsigned FuncSize = GetInitialOffset(Fn);

  for (MachineFunction::iterator MFI = Fn.begin(), E = Fn.end(); MFI != E;
       ++MFI) {
    MachineBasicBlock *MBB = &*MFI;

    // The end of the previous block may have extra nops if this block has an
    // alignment requirement.
    if (MBB->getNumber() > 0) {
      unsigned AlignExtra = GetAlignmentAdjustment(*MBB, FuncSize);

      auto &BS = BlockSizes[MBB->getNumber()-1];
      BS.first += AlignExtra;
      BS.second = AlignExtra;

      FuncSize += AlignExtra;
    }

    unsigned BlockSize = 0;
    unsigned UnalignedBytesRemaining = 0;
    for (MachineInstr &MI : *MBB) {
      unsigned MINumBytes = TII->getInstSizeInBytes(MI);
      if (MI.isInlineAsm() && (FirstImpreciseBlock < 0))
        FirstImpreciseBlock = MBB->getNumber();
      if (TII->isPrefixed(MI.getOpcode())) {
        NumPrefixed++;

        // All 8 byte instructions may require alignment. Each 8 byte
        // instruction may be aligned by another 4 bytes.
        // This means that an 8 byte instruction may require 12 bytes
        // (8 for the instruction itself and 4 for the alignment nop).
        // This will happen if an 8 byte instruction can be aligned to 64 bytes
        // by only adding a 4 byte nop.
        // We don't know the alignment at this point in the code so we have to
        // adopt a more pessimistic approach. If an instruction may need
        // alignment we assume that it does need alignment and add 4 bytes to
        // it. As a result we may end up with more long branches than before
        // but we are in the safe position where if we need a long branch we
        // have one.
        // The if statement checks to make sure that two 8 byte instructions
        // are at least 64 bytes away from each other. It is not possible for
        // two instructions that both need alignment to be within 64 bytes of
        // each other.
        if (!UnalignedBytesRemaining) {
          BlockSize += 4;
          UnalignedBytesRemaining = 60;
          NumPrefixedAligned++;
        }
      }
      UnalignedBytesRemaining -= std::min(UnalignedBytesRemaining, MINumBytes);
      BlockSize += MINumBytes;
    }

    BlockSizes[MBB->getNumber()].first = BlockSize;
    FuncSize += BlockSize;
  }

  return FuncSize;
}

/// Modify the basic block align adjustment.
void PPCBSel::modifyAdjustment(MachineFunction &Fn) {
  unsigned Offset = GetInitialOffset(Fn);
  for (MachineFunction::iterator MFI = Fn.begin(), E = Fn.end(); MFI != E;
       ++MFI) {
    MachineBasicBlock *MBB = &*MFI;

    if (MBB->getNumber() > 0) {
      auto &BS = BlockSizes[MBB->getNumber()-1];
      BS.first -= BS.second;
      Offset -= BS.second;

      unsigned AlignExtra = GetAlignmentAdjustment(*MBB, Offset);

      BS.first += AlignExtra;
      BS.second = AlignExtra;

      Offset += AlignExtra;
    }

    Offset += BlockSizes[MBB->getNumber()].first;
  }
}

/// Determine the offset from the branch in Src block to the Dest block.
/// BrOffset is the offset of the branch instruction inside Src block.
int PPCBSel::computeBranchSize(MachineFunction &Fn,
                               const MachineBasicBlock *Src,
                               const MachineBasicBlock *Dest,
                               unsigned BrOffset) {
  int BranchSize;
  Align MaxAlign = Align(4);
  bool NeedExtraAdjustment = false;
  if (Dest->getNumber() <= Src->getNumber()) {
    // If this is a backwards branch, the delta is the offset from the
    // start of this block to this branch, plus the sizes of all blocks
    // from this block to the dest.
    BranchSize = BrOffset;
    MaxAlign = std::max(MaxAlign, Src->getAlignment());

    int DestBlock = Dest->getNumber();
    BranchSize += BlockSizes[DestBlock].first;
    for (unsigned i = DestBlock+1, e = Src->getNumber(); i < e; ++i) {
      BranchSize += BlockSizes[i].first;
      MaxAlign = std::max(MaxAlign, Fn.getBlockNumbered(i)->getAlignment());
    }

    NeedExtraAdjustment = (FirstImpreciseBlock >= 0) &&
                          (DestBlock >= FirstImpreciseBlock);
  } else {
    // Otherwise, add the size of the blocks between this block and the
    // dest to the number of bytes left in this block.
    unsigned StartBlock = Src->getNumber();
    BranchSize = BlockSizes[StartBlock].first - BrOffset;

    MaxAlign = std::max(MaxAlign, Dest->getAlignment());
    for (unsigned i = StartBlock+1, e = Dest->getNumber(); i != e; ++i) {
      BranchSize += BlockSizes[i].first;
      MaxAlign = std::max(MaxAlign, Fn.getBlockNumbered(i)->getAlignment());
    }

    NeedExtraAdjustment = (FirstImpreciseBlock >= 0) &&
                          (Src->getNumber() >= FirstImpreciseBlock);
  }

  // We tend to over estimate code size due to large alignment and
  // inline assembly. Usually it causes larger computed branch offset.
  // But sometimes it may also causes smaller computed branch offset
  // than actual branch offset. If the offset is close to the limit of
  // encoding, it may cause problem at run time.
  // Following is a simplified example.
  //
  //              actual        estimated
  //              address        address
  //    ...
  //   bne Far      100            10c
  //   .p2align 4
  //   Near:        110            110
  //    ...
  //   Far:        8108           8108
  //
  //   Actual offset:    0x8108 - 0x100 = 0x8008
  //   Computed offset:  0x8108 - 0x10c = 0x7ffc
  //
  // This example also shows when we can get the largest gap between
  // estimated offset and actual offset. If there is an aligned block
  // ABB between branch and target, assume its alignment is <align>
  // bits. Now consider the accumulated function size FSIZE till the end
  // of previous block PBB. If the estimated FSIZE is multiple of
  // 2^<align>, we don't need any padding for the estimated address of
  // ABB. If actual FSIZE at the end of PBB is 4 bytes more than
  // multiple of 2^<align>, then we need (2^<align> - 4) bytes of
  // padding. It also means the actual branch offset is (2^<align> - 4)
  // larger than computed offset. Other actual FSIZE needs less padding
  // bytes, so causes smaller gap between actual and computed offset.
  //
  // On the other hand, if the inline asm or large alignment occurs
  // between the branch block and destination block, the estimated address
  // can be <delta> larger than actual address. If padding bytes are
  // needed for a later aligned block, the actual number of padding bytes
  // is at most <delta> more than estimated padding bytes. So the actual
  // aligned block address is less than or equal to the estimated aligned
  // block address. So the actual branch offset is less than or equal to
  // computed branch offset.
  //
  // The computed offset is at most ((1 << alignment) - 4) bytes smaller
  // than actual offset. So we add this number to the offset for safety.
  if (NeedExtraAdjustment)
    BranchSize += MaxAlign.value() - 4;

  return BranchSize;
}

bool PPCBSel::runOnMachineFunction(MachineFunction &Fn) {
  const PPCInstrInfo *TII =
      static_cast<const PPCInstrInfo *>(Fn.getSubtarget().getInstrInfo());
  // Give the blocks of the function a dense, in-order, numbering.
  Fn.RenumberBlocks();
  BlockSizes.resize(Fn.getNumBlockIDs());
  FirstImpreciseBlock = -1;

  // Measure each MBB and compute a size for the entire function.
  unsigned FuncSize = ComputeBlockSizes(Fn);

  // If the entire function is smaller than the displacement of a branch field,
  // we know we don't need to shrink any branches in this function.  This is a
  // common case.
  if (FuncSize < (1 << 15)) {
    BlockSizes.clear();
    return false;
  }

  // For each conditional branch, if the offset to its destination is larger
  // than the offset field allows, transform it into a long branch sequence
  // like this:
  //   short branch:
  //     bCC MBB
  //   long branch:
  //     b!CC $PC+8
  //     b MBB
  //
  bool MadeChange = true;
  bool EverMadeChange = false;
  while (MadeChange) {
    // Iteratively expand branches until we reach a fixed point.
    MadeChange = false;

    for (MachineFunction::iterator MFI = Fn.begin(), E = Fn.end(); MFI != E;
         ++MFI) {
      MachineBasicBlock &MBB = *MFI;
      unsigned MBBStartOffset = 0;
      for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end();
           I != E; ++I) {
        MachineBasicBlock *Dest = nullptr;
        if (I->getOpcode() == PPC::BCC && !I->getOperand(2).isImm())
          Dest = I->getOperand(2).getMBB();
        else if ((I->getOpcode() == PPC::BC || I->getOpcode() == PPC::BCn) &&
                 !I->getOperand(1).isImm())
          Dest = I->getOperand(1).getMBB();
        else if ((I->getOpcode() == PPC::BDNZ8 || I->getOpcode() == PPC::BDNZ ||
                  I->getOpcode() == PPC::BDZ8  || I->getOpcode() == PPC::BDZ) &&
                 !I->getOperand(0).isImm())
          Dest = I->getOperand(0).getMBB();

        if (!Dest) {
          MBBStartOffset += TII->getInstSizeInBytes(*I);
          continue;
        }

        // Determine the offset from the current branch to the destination
        // block.
        int BranchSize = computeBranchSize(Fn, &MBB, Dest, MBBStartOffset);

        // If this branch is in range, ignore it.
        if (isInt<16>(BranchSize)) {
          MBBStartOffset += 4;
          continue;
        }

        // Otherwise, we have to expand it to a long branch.
        MachineInstr &OldBranch = *I;
        DebugLoc dl = OldBranch.getDebugLoc();

        if (I->getOpcode() == PPC::BCC) {
          // The BCC operands are:
          // 0. PPC branch predicate
          // 1. CR register
          // 2. Target MBB
          PPC::Predicate Pred = (PPC::Predicate)I->getOperand(0).getImm();
          Register CRReg = I->getOperand(1).getReg();

          // Jump over the uncond branch inst (i.e. $PC+8) on opposite condition.
          BuildMI(MBB, I, dl, TII->get(PPC::BCC))
            .addImm(PPC::InvertPredicate(Pred)).addReg(CRReg).addImm(2);
        } else if (I->getOpcode() == PPC::BC) {
          Register CRBit = I->getOperand(0).getReg();
          BuildMI(MBB, I, dl, TII->get(PPC::BCn)).addReg(CRBit).addImm(2);
        } else if (I->getOpcode() == PPC::BCn) {
          Register CRBit = I->getOperand(0).getReg();
          BuildMI(MBB, I, dl, TII->get(PPC::BC)).addReg(CRBit).addImm(2);
        } else if (I->getOpcode() == PPC::BDNZ) {
          BuildMI(MBB, I, dl, TII->get(PPC::BDZ)).addImm(2);
        } else if (I->getOpcode() == PPC::BDNZ8) {
          BuildMI(MBB, I, dl, TII->get(PPC::BDZ8)).addImm(2);
        } else if (I->getOpcode() == PPC::BDZ) {
          BuildMI(MBB, I, dl, TII->get(PPC::BDNZ)).addImm(2);
        } else if (I->getOpcode() == PPC::BDZ8) {
          BuildMI(MBB, I, dl, TII->get(PPC::BDNZ8)).addImm(2);
        } else {
           llvm_unreachable("Unhandled branch type!");
        }

        // Uncond branch to the real destination.
        I = BuildMI(MBB, I, dl, TII->get(PPC::B)).addMBB(Dest);

        // Remove the old branch from the function.
        OldBranch.eraseFromParent();

        // Remember that this instruction is 8-bytes, increase the size of the
        // block by 4, remember to iterate.
        BlockSizes[MBB.getNumber()].first += 4;
        MBBStartOffset += 8;
        ++NumExpanded;
        MadeChange = true;
      }
    }

    if (MadeChange) {
      // If we're going to iterate again, make sure we've updated our
      // padding-based contributions to the block sizes.
      modifyAdjustment(Fn);
    }

    EverMadeChange |= MadeChange;
  }

  BlockSizes.clear();
  return true;
}