AVRAsmParser.cpp
23.5 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
//===---- AVRAsmParser.cpp - Parse AVR assembly to MCInst instructions ----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "AVR.h"
#include "AVRRegisterInfo.h"
#include "MCTargetDesc/AVRMCELFStreamer.h"
#include "MCTargetDesc/AVRMCExpr.h"
#include "MCTargetDesc/AVRMCTargetDesc.h"
#include "TargetInfo/AVRTargetInfo.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstBuilder.h"
#include "llvm/MC/MCParser/MCAsmLexer.h"
#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
#include "llvm/MC/MCParser/MCTargetAsmParser.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/MC/MCValue.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/TargetRegistry.h"
#include <sstream>
#define DEBUG_TYPE "avr-asm-parser"
using namespace llvm;
namespace {
/// Parses AVR assembly from a stream.
class AVRAsmParser : public MCTargetAsmParser {
const MCSubtargetInfo &STI;
MCAsmParser &Parser;
const MCRegisterInfo *MRI;
const std::string GENERATE_STUBS = "gs";
#define GET_ASSEMBLER_HEADER
#include "AVRGenAsmMatcher.inc"
bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
OperandVector &Operands, MCStreamer &Out,
uint64_t &ErrorInfo,
bool MatchingInlineAsm) override;
bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override;
OperandMatchResultTy tryParseRegister(unsigned &RegNo, SMLoc &StartLoc,
SMLoc &EndLoc) override;
bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
SMLoc NameLoc, OperandVector &Operands) override;
bool ParseDirective(AsmToken DirectiveID) override;
OperandMatchResultTy parseMemriOperand(OperandVector &Operands);
bool parseOperand(OperandVector &Operands);
int parseRegisterName(unsigned (*matchFn)(StringRef));
int parseRegisterName();
int parseRegister(bool RestoreOnFailure = false);
bool tryParseRegisterOperand(OperandVector &Operands);
bool tryParseExpression(OperandVector &Operands);
bool tryParseRelocExpression(OperandVector &Operands);
void eatComma();
unsigned validateTargetOperandClass(MCParsedAsmOperand &Op,
unsigned Kind) override;
unsigned toDREG(unsigned Reg, unsigned From = AVR::sub_lo) {
MCRegisterClass const *Class = &AVRMCRegisterClasses[AVR::DREGSRegClassID];
return MRI->getMatchingSuperReg(Reg, From, Class);
}
bool emit(MCInst &Instruction, SMLoc const &Loc, MCStreamer &Out) const;
bool invalidOperand(SMLoc const &Loc, OperandVector const &Operands,
uint64_t const &ErrorInfo);
bool missingFeature(SMLoc const &Loc, uint64_t const &ErrorInfo);
bool parseLiteralValues(unsigned SizeInBytes, SMLoc L);
public:
AVRAsmParser(const MCSubtargetInfo &STI, MCAsmParser &Parser,
const MCInstrInfo &MII, const MCTargetOptions &Options)
: MCTargetAsmParser(Options, STI, MII), STI(STI), Parser(Parser) {
MCAsmParserExtension::Initialize(Parser);
MRI = getContext().getRegisterInfo();
setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
}
MCAsmParser &getParser() const { return Parser; }
MCAsmLexer &getLexer() const { return Parser.getLexer(); }
};
/// An parsed AVR assembly operand.
class AVROperand : public MCParsedAsmOperand {
typedef MCParsedAsmOperand Base;
enum KindTy { k_Immediate, k_Register, k_Token, k_Memri } Kind;
public:
AVROperand(StringRef Tok, SMLoc const &S)
: Base(), Kind(k_Token), Tok(Tok), Start(S), End(S) {}
AVROperand(unsigned Reg, SMLoc const &S, SMLoc const &E)
: Base(), Kind(k_Register), RegImm({Reg, nullptr}), Start(S), End(E) {}
AVROperand(MCExpr const *Imm, SMLoc const &S, SMLoc const &E)
: Base(), Kind(k_Immediate), RegImm({0, Imm}), Start(S), End(E) {}
AVROperand(unsigned Reg, MCExpr const *Imm, SMLoc const &S, SMLoc const &E)
: Base(), Kind(k_Memri), RegImm({Reg, Imm}), Start(S), End(E) {}
struct RegisterImmediate {
unsigned Reg;
MCExpr const *Imm;
};
union {
StringRef Tok;
RegisterImmediate RegImm;
};
SMLoc Start, End;
public:
void addRegOperands(MCInst &Inst, unsigned N) const {
assert(Kind == k_Register && "Unexpected operand kind");
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createReg(getReg()));
}
void addExpr(MCInst &Inst, const MCExpr *Expr) const {
// Add as immediate when possible
if (!Expr)
Inst.addOperand(MCOperand::createImm(0));
else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr))
Inst.addOperand(MCOperand::createImm(CE->getValue()));
else
Inst.addOperand(MCOperand::createExpr(Expr));
}
void addImmOperands(MCInst &Inst, unsigned N) const {
assert(Kind == k_Immediate && "Unexpected operand kind");
assert(N == 1 && "Invalid number of operands!");
const MCExpr *Expr = getImm();
addExpr(Inst, Expr);
}
/// Adds the contained reg+imm operand to an instruction.
void addMemriOperands(MCInst &Inst, unsigned N) const {
assert(Kind == k_Memri && "Unexpected operand kind");
assert(N == 2 && "Invalid number of operands");
Inst.addOperand(MCOperand::createReg(getReg()));
addExpr(Inst, getImm());
}
void addImmCom8Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
// The operand is actually a imm8, but we have its bitwise
// negation in the assembly source, so twiddle it here.
const auto *CE = cast<MCConstantExpr>(getImm());
Inst.addOperand(MCOperand::createImm(~(uint8_t)CE->getValue()));
}
bool isImmCom8() const {
if (!isImm()) return false;
const auto *CE = dyn_cast<MCConstantExpr>(getImm());
if (!CE) return false;
int64_t Value = CE->getValue();
return isUInt<8>(Value);
}
bool isReg() const override { return Kind == k_Register; }
bool isImm() const override { return Kind == k_Immediate; }
bool isToken() const override { return Kind == k_Token; }
bool isMem() const override { return Kind == k_Memri; }
bool isMemri() const { return Kind == k_Memri; }
StringRef getToken() const {
assert(Kind == k_Token && "Invalid access!");
return Tok;
}
unsigned getReg() const override {
assert((Kind == k_Register || Kind == k_Memri) && "Invalid access!");
return RegImm.Reg;
}
const MCExpr *getImm() const {
assert((Kind == k_Immediate || Kind == k_Memri) && "Invalid access!");
return RegImm.Imm;
}
static std::unique_ptr<AVROperand> CreateToken(StringRef Str, SMLoc S) {
return std::make_unique<AVROperand>(Str, S);
}
static std::unique_ptr<AVROperand> CreateReg(unsigned RegNum, SMLoc S,
SMLoc E) {
return std::make_unique<AVROperand>(RegNum, S, E);
}
static std::unique_ptr<AVROperand> CreateImm(const MCExpr *Val, SMLoc S,
SMLoc E) {
return std::make_unique<AVROperand>(Val, S, E);
}
static std::unique_ptr<AVROperand>
CreateMemri(unsigned RegNum, const MCExpr *Val, SMLoc S, SMLoc E) {
return std::make_unique<AVROperand>(RegNum, Val, S, E);
}
void makeToken(StringRef Token) {
Kind = k_Token;
Tok = Token;
}
void makeReg(unsigned RegNo) {
Kind = k_Register;
RegImm = {RegNo, nullptr};
}
void makeImm(MCExpr const *Ex) {
Kind = k_Immediate;
RegImm = {0, Ex};
}
void makeMemri(unsigned RegNo, MCExpr const *Imm) {
Kind = k_Memri;
RegImm = {RegNo, Imm};
}
SMLoc getStartLoc() const override { return Start; }
SMLoc getEndLoc() const override { return End; }
void print(raw_ostream &O) const override {
switch (Kind) {
case k_Token:
O << "Token: \"" << getToken() << "\"";
break;
case k_Register:
O << "Register: " << getReg();
break;
case k_Immediate:
O << "Immediate: \"" << *getImm() << "\"";
break;
case k_Memri: {
// only manually print the size for non-negative values,
// as the sign is inserted automatically.
O << "Memri: \"" << getReg() << '+' << *getImm() << "\"";
break;
}
}
O << "\n";
}
};
} // end anonymous namespace.
// Auto-generated Match Functions
/// Maps from the set of all register names to a register number.
/// \note Generated by TableGen.
static unsigned MatchRegisterName(StringRef Name);
/// Maps from the set of all alternative registernames to a register number.
/// \note Generated by TableGen.
static unsigned MatchRegisterAltName(StringRef Name);
bool AVRAsmParser::invalidOperand(SMLoc const &Loc,
OperandVector const &Operands,
uint64_t const &ErrorInfo) {
SMLoc ErrorLoc = Loc;
char const *Diag = 0;
if (ErrorInfo != ~0U) {
if (ErrorInfo >= Operands.size()) {
Diag = "too few operands for instruction.";
} else {
AVROperand const &Op = (AVROperand const &)*Operands[ErrorInfo];
// TODO: See if we can do a better error than just "invalid ...".
if (Op.getStartLoc() != SMLoc()) {
ErrorLoc = Op.getStartLoc();
}
}
}
if (!Diag) {
Diag = "invalid operand for instruction";
}
return Error(ErrorLoc, Diag);
}
bool AVRAsmParser::missingFeature(llvm::SMLoc const &Loc,
uint64_t const &ErrorInfo) {
return Error(Loc, "instruction requires a CPU feature not currently enabled");
}
bool AVRAsmParser::emit(MCInst &Inst, SMLoc const &Loc, MCStreamer &Out) const {
Inst.setLoc(Loc);
Out.emitInstruction(Inst, STI);
return false;
}
bool AVRAsmParser::MatchAndEmitInstruction(SMLoc Loc, unsigned &Opcode,
OperandVector &Operands,
MCStreamer &Out, uint64_t &ErrorInfo,
bool MatchingInlineAsm) {
MCInst Inst;
unsigned MatchResult =
MatchInstructionImpl(Operands, Inst, ErrorInfo, MatchingInlineAsm);
switch (MatchResult) {
case Match_Success: return emit(Inst, Loc, Out);
case Match_MissingFeature: return missingFeature(Loc, ErrorInfo);
case Match_InvalidOperand: return invalidOperand(Loc, Operands, ErrorInfo);
case Match_MnemonicFail: return Error(Loc, "invalid instruction");
default: return true;
}
}
/// Parses a register name using a given matching function.
/// Checks for lowercase or uppercase if necessary.
int AVRAsmParser::parseRegisterName(unsigned (*matchFn)(StringRef)) {
StringRef Name = Parser.getTok().getString();
int RegNum = matchFn(Name);
// GCC supports case insensitive register names. Some of the AVR registers
// are all lower case, some are all upper case but non are mixed. We prefer
// to use the original names in the register definitions. That is why we
// have to test both upper and lower case here.
if (RegNum == AVR::NoRegister) {
RegNum = matchFn(Name.lower());
}
if (RegNum == AVR::NoRegister) {
RegNum = matchFn(Name.upper());
}
return RegNum;
}
int AVRAsmParser::parseRegisterName() {
int RegNum = parseRegisterName(&MatchRegisterName);
if (RegNum == AVR::NoRegister)
RegNum = parseRegisterName(&MatchRegisterAltName);
return RegNum;
}
int AVRAsmParser::parseRegister(bool RestoreOnFailure) {
int RegNum = AVR::NoRegister;
if (Parser.getTok().is(AsmToken::Identifier)) {
// Check for register pair syntax
if (Parser.getLexer().peekTok().is(AsmToken::Colon)) {
AsmToken HighTok = Parser.getTok();
Parser.Lex();
AsmToken ColonTok = Parser.getTok();
Parser.Lex(); // Eat high (odd) register and colon
if (Parser.getTok().is(AsmToken::Identifier)) {
// Convert lower (even) register to DREG
RegNum = toDREG(parseRegisterName());
}
if (RegNum == AVR::NoRegister && RestoreOnFailure) {
getLexer().UnLex(std::move(ColonTok));
getLexer().UnLex(std::move(HighTok));
}
} else {
RegNum = parseRegisterName();
}
}
return RegNum;
}
bool AVRAsmParser::tryParseRegisterOperand(OperandVector &Operands) {
int RegNo = parseRegister();
if (RegNo == AVR::NoRegister)
return true;
AsmToken const &T = Parser.getTok();
Operands.push_back(AVROperand::CreateReg(RegNo, T.getLoc(), T.getEndLoc()));
Parser.Lex(); // Eat register token.
return false;
}
bool AVRAsmParser::tryParseExpression(OperandVector &Operands) {
SMLoc S = Parser.getTok().getLoc();
if (!tryParseRelocExpression(Operands))
return false;
if ((Parser.getTok().getKind() == AsmToken::Plus ||
Parser.getTok().getKind() == AsmToken::Minus) &&
Parser.getLexer().peekTok().getKind() == AsmToken::Identifier) {
// Don't handle this case - it should be split into two
// separate tokens.
return true;
}
// Parse (potentially inner) expression
MCExpr const *Expression;
if (getParser().parseExpression(Expression))
return true;
SMLoc E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
Operands.push_back(AVROperand::CreateImm(Expression, S, E));
return false;
}
bool AVRAsmParser::tryParseRelocExpression(OperandVector &Operands) {
bool isNegated = false;
AVRMCExpr::VariantKind ModifierKind = AVRMCExpr::VK_AVR_None;
SMLoc S = Parser.getTok().getLoc();
// Check for sign
AsmToken tokens[2];
size_t ReadCount = Parser.getLexer().peekTokens(tokens);
if (ReadCount == 2) {
if ((tokens[0].getKind() == AsmToken::Identifier &&
tokens[1].getKind() == AsmToken::LParen) ||
(tokens[0].getKind() == AsmToken::LParen &&
tokens[1].getKind() == AsmToken::Minus)) {
AsmToken::TokenKind CurTok = Parser.getLexer().getKind();
if (CurTok == AsmToken::Minus ||
tokens[1].getKind() == AsmToken::Minus) {
isNegated = true;
} else {
assert(CurTok == AsmToken::Plus);
isNegated = false;
}
// Eat the sign
if (CurTok == AsmToken::Minus || CurTok == AsmToken::Plus)
Parser.Lex();
}
}
// Check if we have a target specific modifier (lo8, hi8, &c)
if (Parser.getTok().getKind() != AsmToken::Identifier ||
Parser.getLexer().peekTok().getKind() != AsmToken::LParen) {
// Not a reloc expr
return true;
}
StringRef ModifierName = Parser.getTok().getString();
ModifierKind = AVRMCExpr::getKindByName(ModifierName.str().c_str());
if (ModifierKind != AVRMCExpr::VK_AVR_None) {
Parser.Lex();
Parser.Lex(); // Eat modifier name and parenthesis
if (Parser.getTok().getString() == GENERATE_STUBS &&
Parser.getTok().getKind() == AsmToken::Identifier) {
std::string GSModName = ModifierName.str() + "_" + GENERATE_STUBS;
ModifierKind = AVRMCExpr::getKindByName(GSModName.c_str());
if (ModifierKind != AVRMCExpr::VK_AVR_None)
Parser.Lex(); // Eat gs modifier name
}
} else {
return Error(Parser.getTok().getLoc(), "unknown modifier");
}
if (tokens[1].getKind() == AsmToken::Minus ||
tokens[1].getKind() == AsmToken::Plus) {
Parser.Lex();
assert(Parser.getTok().getKind() == AsmToken::LParen);
Parser.Lex(); // Eat the sign and parenthesis
}
MCExpr const *InnerExpression;
if (getParser().parseExpression(InnerExpression))
return true;
if (tokens[1].getKind() == AsmToken::Minus ||
tokens[1].getKind() == AsmToken::Plus) {
assert(Parser.getTok().getKind() == AsmToken::RParen);
Parser.Lex(); // Eat closing parenthesis
}
// If we have a modifier wrap the inner expression
assert(Parser.getTok().getKind() == AsmToken::RParen);
Parser.Lex(); // Eat closing parenthesis
MCExpr const *Expression = AVRMCExpr::create(ModifierKind, InnerExpression,
isNegated, getContext());
SMLoc E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
Operands.push_back(AVROperand::CreateImm(Expression, S, E));
return false;
}
bool AVRAsmParser::parseOperand(OperandVector &Operands) {
LLVM_DEBUG(dbgs() << "parseOperand\n");
switch (getLexer().getKind()) {
default:
return Error(Parser.getTok().getLoc(), "unexpected token in operand");
case AsmToken::Identifier:
// Try to parse a register, if it fails,
// fall through to the next case.
if (!tryParseRegisterOperand(Operands)) {
return false;
}
LLVM_FALLTHROUGH;
case AsmToken::LParen:
case AsmToken::Integer:
case AsmToken::Dot:
return tryParseExpression(Operands);
case AsmToken::Plus:
case AsmToken::Minus: {
// If the sign preceeds a number, parse the number,
// otherwise treat the sign a an independent token.
switch (getLexer().peekTok().getKind()) {
case AsmToken::Integer:
case AsmToken::BigNum:
case AsmToken::Identifier:
case AsmToken::Real:
if (!tryParseExpression(Operands))
return false;
break;
default:
break;
}
// Treat the token as an independent token.
Operands.push_back(AVROperand::CreateToken(Parser.getTok().getString(),
Parser.getTok().getLoc()));
Parser.Lex(); // Eat the token.
return false;
}
}
// Could not parse operand
return true;
}
OperandMatchResultTy
AVRAsmParser::parseMemriOperand(OperandVector &Operands) {
LLVM_DEBUG(dbgs() << "parseMemriOperand()\n");
SMLoc E, S;
MCExpr const *Expression;
int RegNo;
// Parse register.
{
RegNo = parseRegister();
if (RegNo == AVR::NoRegister)
return MatchOperand_ParseFail;
S = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
Parser.Lex(); // Eat register token.
}
// Parse immediate;
{
if (getParser().parseExpression(Expression))
return MatchOperand_ParseFail;
E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
}
Operands.push_back(AVROperand::CreateMemri(RegNo, Expression, S, E));
return MatchOperand_Success;
}
bool AVRAsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc,
SMLoc &EndLoc) {
StartLoc = Parser.getTok().getLoc();
RegNo = parseRegister(/*RestoreOnFailure=*/false);
EndLoc = Parser.getTok().getLoc();
return (RegNo == AVR::NoRegister);
}
OperandMatchResultTy AVRAsmParser::tryParseRegister(unsigned &RegNo,
SMLoc &StartLoc,
SMLoc &EndLoc) {
StartLoc = Parser.getTok().getLoc();
RegNo = parseRegister(/*RestoreOnFailure=*/true);
EndLoc = Parser.getTok().getLoc();
if (RegNo == AVR::NoRegister)
return MatchOperand_NoMatch;
return MatchOperand_Success;
}
void AVRAsmParser::eatComma() {
if (getLexer().is(AsmToken::Comma)) {
Parser.Lex();
} else {
// GCC allows commas to be omitted.
}
}
bool AVRAsmParser::ParseInstruction(ParseInstructionInfo &Info,
StringRef Mnemonic, SMLoc NameLoc,
OperandVector &Operands) {
Operands.push_back(AVROperand::CreateToken(Mnemonic, NameLoc));
bool first = true;
while (getLexer().isNot(AsmToken::EndOfStatement)) {
if (!first) eatComma();
first = false;
auto MatchResult = MatchOperandParserImpl(Operands, Mnemonic);
if (MatchResult == MatchOperand_Success) {
continue;
}
if (MatchResult == MatchOperand_ParseFail) {
SMLoc Loc = getLexer().getLoc();
Parser.eatToEndOfStatement();
return Error(Loc, "failed to parse register and immediate pair");
}
if (parseOperand(Operands)) {
SMLoc Loc = getLexer().getLoc();
Parser.eatToEndOfStatement();
return Error(Loc, "unexpected token in argument list");
}
}
Parser.Lex(); // Consume the EndOfStatement
return false;
}
bool AVRAsmParser::ParseDirective(llvm::AsmToken DirectiveID) {
StringRef IDVal = DirectiveID.getIdentifier();
if (IDVal.lower() == ".long") {
parseLiteralValues(SIZE_LONG, DirectiveID.getLoc());
} else if (IDVal.lower() == ".word" || IDVal.lower() == ".short") {
parseLiteralValues(SIZE_WORD, DirectiveID.getLoc());
} else if (IDVal.lower() == ".byte") {
parseLiteralValues(1, DirectiveID.getLoc());
}
return true;
}
bool AVRAsmParser::parseLiteralValues(unsigned SizeInBytes, SMLoc L) {
MCAsmParser &Parser = getParser();
AVRMCELFStreamer &AVRStreamer =
static_cast<AVRMCELFStreamer &>(Parser.getStreamer());
AsmToken Tokens[2];
size_t ReadCount = Parser.getLexer().peekTokens(Tokens);
if (ReadCount == 2 && Parser.getTok().getKind() == AsmToken::Identifier &&
Tokens[0].getKind() == AsmToken::Minus &&
Tokens[1].getKind() == AsmToken::Identifier) {
MCSymbol *Symbol = getContext().getOrCreateSymbol(".text");
AVRStreamer.emitValueForModiferKind(Symbol, SizeInBytes, L,
AVRMCExpr::VK_AVR_None);
return false;
}
if (Parser.getTok().getKind() == AsmToken::Identifier &&
Parser.getLexer().peekTok().getKind() == AsmToken::LParen) {
StringRef ModifierName = Parser.getTok().getString();
AVRMCExpr::VariantKind ModifierKind =
AVRMCExpr::getKindByName(ModifierName.str().c_str());
if (ModifierKind != AVRMCExpr::VK_AVR_None) {
Parser.Lex();
Parser.Lex(); // Eat the modifier and parenthesis
} else {
return Error(Parser.getTok().getLoc(), "unknown modifier");
}
MCSymbol *Symbol =
getContext().getOrCreateSymbol(Parser.getTok().getString());
AVRStreamer.emitValueForModiferKind(Symbol, SizeInBytes, L, ModifierKind);
return false;
}
auto parseOne = [&]() -> bool {
const MCExpr *Value;
if (Parser.parseExpression(Value))
return true;
Parser.getStreamer().emitValue(Value, SizeInBytes, L);
return false;
};
return (parseMany(parseOne));
}
extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAVRAsmParser() {
RegisterMCAsmParser<AVRAsmParser> X(getTheAVRTarget());
}
#define GET_REGISTER_MATCHER
#define GET_MATCHER_IMPLEMENTATION
#include "AVRGenAsmMatcher.inc"
// Uses enums defined in AVRGenAsmMatcher.inc
unsigned AVRAsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp,
unsigned ExpectedKind) {
AVROperand &Op = static_cast<AVROperand &>(AsmOp);
MatchClassKind Expected = static_cast<MatchClassKind>(ExpectedKind);
// If need be, GCC converts bare numbers to register names
// It's ugly, but GCC supports it.
if (Op.isImm()) {
if (MCConstantExpr const *Const = dyn_cast<MCConstantExpr>(Op.getImm())) {
int64_t RegNum = Const->getValue();
std::ostringstream RegName;
RegName << "r" << RegNum;
RegNum = MatchRegisterName(RegName.str().c_str());
if (RegNum != AVR::NoRegister) {
Op.makeReg(RegNum);
if (validateOperandClass(Op, Expected) == Match_Success) {
return Match_Success;
}
}
// Let the other quirks try their magic.
}
}
if (Op.isReg()) {
// If the instruction uses a register pair but we got a single, lower
// register we perform a "class cast".
if (isSubclass(Expected, MCK_DREGS)) {
unsigned correspondingDREG = toDREG(Op.getReg());
if (correspondingDREG != AVR::NoRegister) {
Op.makeReg(correspondingDREG);
return validateOperandClass(Op, Expected);
}
}
}
return Match_InvalidOperand;
}