SIShrinkInstructions.cpp 26.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807
//===-- SIShrinkInstructions.cpp - Shrink Instructions --------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
/// The pass tries to use the 32-bit encoding for instructions when possible.
//===----------------------------------------------------------------------===//
//

#include "AMDGPU.h"
#include "AMDGPUSubtarget.h"
#include "SIInstrInfo.h"
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"

#define DEBUG_TYPE "si-shrink-instructions"

STATISTIC(NumInstructionsShrunk,
          "Number of 64-bit instruction reduced to 32-bit.");
STATISTIC(NumLiteralConstantsFolded,
          "Number of literal constants folded into 32-bit instructions.");

using namespace llvm;

namespace {

class SIShrinkInstructions : public MachineFunctionPass {
public:
  static char ID;

  void shrinkMIMG(MachineInstr &MI);

public:
  SIShrinkInstructions() : MachineFunctionPass(ID) {
  }

  bool runOnMachineFunction(MachineFunction &MF) override;

  StringRef getPassName() const override { return "SI Shrink Instructions"; }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.setPreservesCFG();
    MachineFunctionPass::getAnalysisUsage(AU);
  }
};

} // End anonymous namespace.

INITIALIZE_PASS(SIShrinkInstructions, DEBUG_TYPE,
                "SI Shrink Instructions", false, false)

char SIShrinkInstructions::ID = 0;

FunctionPass *llvm::createSIShrinkInstructionsPass() {
  return new SIShrinkInstructions();
}

/// This function checks \p MI for operands defined by a move immediate
/// instruction and then folds the literal constant into the instruction if it
/// can. This function assumes that \p MI is a VOP1, VOP2, or VOPC instructions.
static bool foldImmediates(MachineInstr &MI, const SIInstrInfo *TII,
                           MachineRegisterInfo &MRI, bool TryToCommute = true) {
  assert(TII->isVOP1(MI) || TII->isVOP2(MI) || TII->isVOPC(MI));

  int Src0Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::src0);

  // Try to fold Src0
  MachineOperand &Src0 = MI.getOperand(Src0Idx);
  if (Src0.isReg()) {
    Register Reg = Src0.getReg();
    if (Reg.isVirtual() && MRI.hasOneUse(Reg)) {
      MachineInstr *Def = MRI.getUniqueVRegDef(Reg);
      if (Def && Def->isMoveImmediate()) {
        MachineOperand &MovSrc = Def->getOperand(1);
        bool ConstantFolded = false;

        if (MovSrc.isImm() && (isInt<32>(MovSrc.getImm()) ||
                               isUInt<32>(MovSrc.getImm()))) {
          Src0.ChangeToImmediate(MovSrc.getImm());
          ConstantFolded = true;
        } else if (MovSrc.isFI()) {
          Src0.ChangeToFrameIndex(MovSrc.getIndex());
          ConstantFolded = true;
        } else if (MovSrc.isGlobal()) {
          Src0.ChangeToGA(MovSrc.getGlobal(), MovSrc.getOffset(),
                          MovSrc.getTargetFlags());
          ConstantFolded = true;
        }

        if (ConstantFolded) {
          assert(MRI.use_empty(Reg));
          Def->eraseFromParent();
          ++NumLiteralConstantsFolded;
          return true;
        }
      }
    }
  }

  // We have failed to fold src0, so commute the instruction and try again.
  if (TryToCommute && MI.isCommutable()) {
    if (TII->commuteInstruction(MI)) {
      if (foldImmediates(MI, TII, MRI, false))
        return true;

      // Commute back.
      TII->commuteInstruction(MI);
    }
  }

  return false;
}

static bool isKImmOperand(const SIInstrInfo *TII, const MachineOperand &Src) {
  return isInt<16>(Src.getImm()) &&
    !TII->isInlineConstant(*Src.getParent(),
                           Src.getParent()->getOperandNo(&Src));
}

static bool isKUImmOperand(const SIInstrInfo *TII, const MachineOperand &Src) {
  return isUInt<16>(Src.getImm()) &&
    !TII->isInlineConstant(*Src.getParent(),
                           Src.getParent()->getOperandNo(&Src));
}

static bool isKImmOrKUImmOperand(const SIInstrInfo *TII,
                                 const MachineOperand &Src,
                                 bool &IsUnsigned) {
  if (isInt<16>(Src.getImm())) {
    IsUnsigned = false;
    return !TII->isInlineConstant(Src);
  }

  if (isUInt<16>(Src.getImm())) {
    IsUnsigned = true;
    return !TII->isInlineConstant(Src);
  }

  return false;
}

/// \returns true if the constant in \p Src should be replaced with a bitreverse
/// of an inline immediate.
static bool isReverseInlineImm(const SIInstrInfo *TII,
                               const MachineOperand &Src,
                               int32_t &ReverseImm) {
  if (!isInt<32>(Src.getImm()) || TII->isInlineConstant(Src))
    return false;

  ReverseImm = reverseBits<int32_t>(static_cast<int32_t>(Src.getImm()));
  return ReverseImm >= -16 && ReverseImm <= 64;
}

/// Copy implicit register operands from specified instruction to this
/// instruction that are not part of the instruction definition.
static void copyExtraImplicitOps(MachineInstr &NewMI, MachineFunction &MF,
                                 const MachineInstr &MI) {
  for (unsigned i = MI.getDesc().getNumOperands() +
         MI.getDesc().getNumImplicitUses() +
         MI.getDesc().getNumImplicitDefs(), e = MI.getNumOperands();
       i != e; ++i) {
    const MachineOperand &MO = MI.getOperand(i);
    if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask())
      NewMI.addOperand(MF, MO);
  }
}

static void shrinkScalarCompare(const SIInstrInfo *TII, MachineInstr &MI) {
  // cmpk instructions do scc = dst <cc op> imm16, so commute the instruction to
  // get constants on the RHS.
  if (!MI.getOperand(0).isReg())
    TII->commuteInstruction(MI, false, 0, 1);

  // cmpk requires src0 to be a register
  const MachineOperand &Src0 = MI.getOperand(0);
  if (!Src0.isReg())
    return;

  const MachineOperand &Src1 = MI.getOperand(1);
  if (!Src1.isImm())
    return;

  int SOPKOpc = AMDGPU::getSOPKOp(MI.getOpcode());
  if (SOPKOpc == -1)
    return;

  // eq/ne is special because the imm16 can be treated as signed or unsigned,
  // and initially selectd to the unsigned versions.
  if (SOPKOpc == AMDGPU::S_CMPK_EQ_U32 || SOPKOpc == AMDGPU::S_CMPK_LG_U32) {
    bool HasUImm;
    if (isKImmOrKUImmOperand(TII, Src1, HasUImm)) {
      if (!HasUImm) {
        SOPKOpc = (SOPKOpc == AMDGPU::S_CMPK_EQ_U32) ?
          AMDGPU::S_CMPK_EQ_I32 : AMDGPU::S_CMPK_LG_I32;
      }

      MI.setDesc(TII->get(SOPKOpc));
    }

    return;
  }

  const MCInstrDesc &NewDesc = TII->get(SOPKOpc);

  if ((TII->sopkIsZext(SOPKOpc) && isKUImmOperand(TII, Src1)) ||
      (!TII->sopkIsZext(SOPKOpc) && isKImmOperand(TII, Src1))) {
    MI.setDesc(NewDesc);
  }
}

// Shrink NSA encoded instructions with contiguous VGPRs to non-NSA encoding.
void SIShrinkInstructions::shrinkMIMG(MachineInstr &MI) {
  const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(MI.getOpcode());
  if (!Info || Info->MIMGEncoding != AMDGPU::MIMGEncGfx10NSA)
    return;

  MachineFunction *MF = MI.getParent()->getParent();
  const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
  const SIInstrInfo *TII = ST.getInstrInfo();
  const SIRegisterInfo &TRI = TII->getRegisterInfo();
  int VAddr0Idx =
      AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
  unsigned NewAddrDwords = Info->VAddrDwords;
  const TargetRegisterClass *RC;

  if (Info->VAddrDwords == 2) {
    RC = &AMDGPU::VReg_64RegClass;
  } else if (Info->VAddrDwords == 3) {
    RC = &AMDGPU::VReg_96RegClass;
  } else if (Info->VAddrDwords == 4) {
    RC = &AMDGPU::VReg_128RegClass;
  } else if (Info->VAddrDwords <= 8) {
    RC = &AMDGPU::VReg_256RegClass;
    NewAddrDwords = 8;
  } else {
    RC = &AMDGPU::VReg_512RegClass;
    NewAddrDwords = 16;
  }

  unsigned VgprBase = 0;
  bool IsUndef = true;
  bool IsKill = NewAddrDwords == Info->VAddrDwords;
  for (unsigned i = 0; i < Info->VAddrDwords; ++i) {
    const MachineOperand &Op = MI.getOperand(VAddr0Idx + i);
    unsigned Vgpr = TRI.getHWRegIndex(Op.getReg());

    if (i == 0) {
      VgprBase = Vgpr;
    } else if (VgprBase + i != Vgpr)
      return;

    if (!Op.isUndef())
      IsUndef = false;
    if (!Op.isKill())
      IsKill = false;
  }

  if (VgprBase + NewAddrDwords > 256)
    return;

  // Further check for implicit tied operands - this may be present if TFE is
  // enabled
  int TFEIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::tfe);
  int LWEIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::lwe);
  unsigned TFEVal = (TFEIdx == -1) ? 0 : MI.getOperand(TFEIdx).getImm();
  unsigned LWEVal = (LWEIdx == -1) ? 0 : MI.getOperand(LWEIdx).getImm();
  int ToUntie = -1;
  if (TFEVal || LWEVal) {
    // TFE/LWE is enabled so we need to deal with an implicit tied operand
    for (unsigned i = LWEIdx + 1, e = MI.getNumOperands(); i != e; ++i) {
      if (MI.getOperand(i).isReg() && MI.getOperand(i).isTied() &&
          MI.getOperand(i).isImplicit()) {
        // This is the tied operand
        assert(
            ToUntie == -1 &&
            "found more than one tied implicit operand when expecting only 1");
        ToUntie = i;
        MI.untieRegOperand(ToUntie);
      }
    }
  }

  unsigned NewOpcode =
      AMDGPU::getMIMGOpcode(Info->BaseOpcode, AMDGPU::MIMGEncGfx10Default,
                            Info->VDataDwords, NewAddrDwords);
  MI.setDesc(TII->get(NewOpcode));
  MI.getOperand(VAddr0Idx).setReg(RC->getRegister(VgprBase));
  MI.getOperand(VAddr0Idx).setIsUndef(IsUndef);
  MI.getOperand(VAddr0Idx).setIsKill(IsKill);

  for (unsigned i = 1; i < Info->VAddrDwords; ++i)
    MI.RemoveOperand(VAddr0Idx + 1);

  if (ToUntie >= 0) {
    MI.tieOperands(
        AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vdata),
        ToUntie - (Info->VAddrDwords - 1));
  }
}

/// Attempt to shink AND/OR/XOR operations requiring non-inlineable literals.
/// For AND or OR, try using S_BITSET{0,1} to clear or set bits.
/// If the inverse of the immediate is legal, use ANDN2, ORN2 or
/// XNOR (as a ^ b == ~(a ^ ~b)).
/// \returns true if the caller should continue the machine function iterator
static bool shrinkScalarLogicOp(const GCNSubtarget &ST,
                                MachineRegisterInfo &MRI,
                                const SIInstrInfo *TII,
                                MachineInstr &MI) {
  unsigned Opc = MI.getOpcode();
  const MachineOperand *Dest = &MI.getOperand(0);
  MachineOperand *Src0 = &MI.getOperand(1);
  MachineOperand *Src1 = &MI.getOperand(2);
  MachineOperand *SrcReg = Src0;
  MachineOperand *SrcImm = Src1;

  if (!SrcImm->isImm() ||
      AMDGPU::isInlinableLiteral32(SrcImm->getImm(), ST.hasInv2PiInlineImm()))
    return false;

  uint32_t Imm = static_cast<uint32_t>(SrcImm->getImm());
  uint32_t NewImm = 0;

  if (Opc == AMDGPU::S_AND_B32) {
    if (isPowerOf2_32(~Imm)) {
      NewImm = countTrailingOnes(Imm);
      Opc = AMDGPU::S_BITSET0_B32;
    } else if (AMDGPU::isInlinableLiteral32(~Imm, ST.hasInv2PiInlineImm())) {
      NewImm = ~Imm;
      Opc = AMDGPU::S_ANDN2_B32;
    }
  } else if (Opc == AMDGPU::S_OR_B32) {
    if (isPowerOf2_32(Imm)) {
      NewImm = countTrailingZeros(Imm);
      Opc = AMDGPU::S_BITSET1_B32;
    } else if (AMDGPU::isInlinableLiteral32(~Imm, ST.hasInv2PiInlineImm())) {
      NewImm = ~Imm;
      Opc = AMDGPU::S_ORN2_B32;
    }
  } else if (Opc == AMDGPU::S_XOR_B32) {
    if (AMDGPU::isInlinableLiteral32(~Imm, ST.hasInv2PiInlineImm())) {
      NewImm = ~Imm;
      Opc = AMDGPU::S_XNOR_B32;
    }
  } else {
    llvm_unreachable("unexpected opcode");
  }

  if ((Opc == AMDGPU::S_ANDN2_B32 || Opc == AMDGPU::S_ORN2_B32) &&
      SrcImm == Src0) {
    if (!TII->commuteInstruction(MI, false, 1, 2))
      NewImm = 0;
  }

  if (NewImm != 0) {
    if (Dest->getReg().isVirtual() && SrcReg->isReg()) {
      MRI.setRegAllocationHint(Dest->getReg(), 0, SrcReg->getReg());
      MRI.setRegAllocationHint(SrcReg->getReg(), 0, Dest->getReg());
      return true;
    }

    if (SrcReg->isReg() && SrcReg->getReg() == Dest->getReg()) {
      const bool IsUndef = SrcReg->isUndef();
      const bool IsKill = SrcReg->isKill();
      MI.setDesc(TII->get(Opc));
      if (Opc == AMDGPU::S_BITSET0_B32 ||
          Opc == AMDGPU::S_BITSET1_B32) {
        Src0->ChangeToImmediate(NewImm);
        // Remove the immediate and add the tied input.
        MI.getOperand(2).ChangeToRegister(Dest->getReg(), /*IsDef*/ false,
                                          /*isImp*/ false, IsKill,
                                          /*isDead*/ false, IsUndef);
        MI.tieOperands(0, 2);
      } else {
        SrcImm->setImm(NewImm);
      }
    }
  }

  return false;
}

// This is the same as MachineInstr::readsRegister/modifiesRegister except
// it takes subregs into account.
static bool instAccessReg(iterator_range<MachineInstr::const_mop_iterator> &&R,
                          Register Reg, unsigned SubReg,
                          const SIRegisterInfo &TRI) {
  for (const MachineOperand &MO : R) {
    if (!MO.isReg())
      continue;

    if (Reg.isPhysical() && MO.getReg().isPhysical()) {
      if (TRI.regsOverlap(Reg, MO.getReg()))
        return true;
    } else if (MO.getReg() == Reg && Reg.isVirtual()) {
      LaneBitmask Overlap = TRI.getSubRegIndexLaneMask(SubReg) &
                            TRI.getSubRegIndexLaneMask(MO.getSubReg());
      if (Overlap.any())
        return true;
    }
  }
  return false;
}

static bool instReadsReg(const MachineInstr *MI,
                         unsigned Reg, unsigned SubReg,
                         const SIRegisterInfo &TRI) {
  return instAccessReg(MI->uses(), Reg, SubReg, TRI);
}

static bool instModifiesReg(const MachineInstr *MI,
                            unsigned Reg, unsigned SubReg,
                            const SIRegisterInfo &TRI) {
  return instAccessReg(MI->defs(), Reg, SubReg, TRI);
}

static TargetInstrInfo::RegSubRegPair
getSubRegForIndex(Register Reg, unsigned Sub, unsigned I,
                  const SIRegisterInfo &TRI, const MachineRegisterInfo &MRI) {
  if (TRI.getRegSizeInBits(Reg, MRI) != 32) {
    if (Reg.isPhysical()) {
      Reg = TRI.getSubReg(Reg, TRI.getSubRegFromChannel(I));
    } else {
      Sub = TRI.getSubRegFromChannel(I + TRI.getChannelFromSubReg(Sub));
    }
  }
  return TargetInstrInfo::RegSubRegPair(Reg, Sub);
}

// Match:
// mov t, x
// mov x, y
// mov y, t
//
// =>
//
// mov t, x (t is potentially dead and move eliminated)
// v_swap_b32 x, y
//
// Returns next valid instruction pointer if was able to create v_swap_b32.
//
// This shall not be done too early not to prevent possible folding which may
// remove matched moves, and this should prefereably be done before RA to
// release saved registers and also possibly after RA which can insert copies
// too.
//
// This is really just a generic peephole that is not a canocical shrinking,
// although requirements match the pass placement and it reduces code size too.
static MachineInstr* matchSwap(MachineInstr &MovT, MachineRegisterInfo &MRI,
                               const SIInstrInfo *TII) {
  assert(MovT.getOpcode() == AMDGPU::V_MOV_B32_e32 ||
         MovT.getOpcode() == AMDGPU::COPY);

  Register T = MovT.getOperand(0).getReg();
  unsigned Tsub = MovT.getOperand(0).getSubReg();
  MachineOperand &Xop = MovT.getOperand(1);

  if (!Xop.isReg())
    return nullptr;
  Register X = Xop.getReg();
  unsigned Xsub = Xop.getSubReg();

  unsigned Size = TII->getOpSize(MovT, 0) / 4;

  const SIRegisterInfo &TRI = TII->getRegisterInfo();
  if (!TRI.isVGPR(MRI, X))
    return nullptr;

  const unsigned SearchLimit = 16;
  unsigned Count = 0;
  for (auto Iter = std::next(MovT.getIterator()),
            E = MovT.getParent()->instr_end();
       Iter != E && Count < SearchLimit; ++Iter, ++Count) {

    MachineInstr *MovY = &*Iter;
    if ((MovY->getOpcode() != AMDGPU::V_MOV_B32_e32 &&
         MovY->getOpcode() != AMDGPU::COPY) ||
        !MovY->getOperand(1).isReg()        ||
        MovY->getOperand(1).getReg() != T   ||
        MovY->getOperand(1).getSubReg() != Tsub)
      continue;

    Register Y = MovY->getOperand(0).getReg();
    unsigned Ysub = MovY->getOperand(0).getSubReg();

    if (!TRI.isVGPR(MRI, Y))
      continue;

    MachineInstr *MovX = nullptr;
    for (auto IY = MovY->getIterator(), I = std::next(MovT.getIterator());
         I != IY; ++I) {
      if (instReadsReg(&*I, X, Xsub, TRI)    ||
          instModifiesReg(&*I, Y, Ysub, TRI) ||
          instModifiesReg(&*I, T, Tsub, TRI) ||
          (MovX && instModifiesReg(&*I, X, Xsub, TRI))) {
        MovX = nullptr;
        break;
      }
      if (!instReadsReg(&*I, Y, Ysub, TRI)) {
        if (!MovX && instModifiesReg(&*I, X, Xsub, TRI)) {
          MovX = nullptr;
          break;
        }
        continue;
      }
      if (MovX ||
          (I->getOpcode() != AMDGPU::V_MOV_B32_e32 &&
           I->getOpcode() != AMDGPU::COPY) ||
          I->getOperand(0).getReg() != X ||
          I->getOperand(0).getSubReg() != Xsub) {
        MovX = nullptr;
        break;
      }
      MovX = &*I;
    }

    if (!MovX)
      continue;

    LLVM_DEBUG(dbgs() << "Matched v_swap_b32:\n" << MovT << *MovX << MovY);

    for (unsigned I = 0; I < Size; ++I) {
      TargetInstrInfo::RegSubRegPair X1, Y1;
      X1 = getSubRegForIndex(X, Xsub, I, TRI, MRI);
      Y1 = getSubRegForIndex(Y, Ysub, I, TRI, MRI);
      BuildMI(*MovT.getParent(), MovX->getIterator(), MovT.getDebugLoc(),
                TII->get(AMDGPU::V_SWAP_B32))
        .addDef(X1.Reg, 0, X1.SubReg)
        .addDef(Y1.Reg, 0, Y1.SubReg)
        .addReg(Y1.Reg, 0, Y1.SubReg)
        .addReg(X1.Reg, 0, X1.SubReg).getInstr();
    }
    MovX->eraseFromParent();
    MovY->eraseFromParent();
    MachineInstr *Next = &*std::next(MovT.getIterator());
    if (MRI.use_nodbg_empty(T))
      MovT.eraseFromParent();
    else
      Xop.setIsKill(false);

    return Next;
  }

  return nullptr;
}

bool SIShrinkInstructions::runOnMachineFunction(MachineFunction &MF) {
  if (skipFunction(MF.getFunction()))
    return false;

  MachineRegisterInfo &MRI = MF.getRegInfo();
  const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
  const SIInstrInfo *TII = ST.getInstrInfo();
  unsigned VCCReg = ST.isWave32() ? AMDGPU::VCC_LO : AMDGPU::VCC;

  std::vector<unsigned> I1Defs;

  for (MachineFunction::iterator BI = MF.begin(), BE = MF.end();
                                                  BI != BE; ++BI) {

    MachineBasicBlock &MBB = *BI;
    MachineBasicBlock::iterator I, Next;
    for (I = MBB.begin(); I != MBB.end(); I = Next) {
      Next = std::next(I);
      MachineInstr &MI = *I;

      if (MI.getOpcode() == AMDGPU::V_MOV_B32_e32) {
        // If this has a literal constant source that is the same as the
        // reversed bits of an inline immediate, replace with a bitreverse of
        // that constant. This saves 4 bytes in the common case of materializing
        // sign bits.

        // Test if we are after regalloc. We only want to do this after any
        // optimizations happen because this will confuse them.
        // XXX - not exactly a check for post-regalloc run.
        MachineOperand &Src = MI.getOperand(1);
        if (Src.isImm() && MI.getOperand(0).getReg().isPhysical()) {
          int32_t ReverseImm;
          if (isReverseInlineImm(TII, Src, ReverseImm)) {
            MI.setDesc(TII->get(AMDGPU::V_BFREV_B32_e32));
            Src.setImm(ReverseImm);
            continue;
          }
        }
      }

      if (ST.hasSwap() && (MI.getOpcode() == AMDGPU::V_MOV_B32_e32 ||
                           MI.getOpcode() == AMDGPU::COPY)) {
        if (auto *NextMI = matchSwap(MI, MRI, TII)) {
          Next = NextMI->getIterator();
          continue;
        }
      }

      // Combine adjacent s_nops to use the immediate operand encoding how long
      // to wait.
      //
      // s_nop N
      // s_nop M
      //  =>
      // s_nop (N + M)
      if (MI.getOpcode() == AMDGPU::S_NOP &&
          MI.getNumOperands() == 1 && // Don't merge with implicit operands
          Next != MBB.end() &&
          (*Next).getOpcode() == AMDGPU::S_NOP &&
          (*Next).getNumOperands() == 1) {

        MachineInstr &NextMI = *Next;
        // The instruction encodes the amount to wait with an offset of 1,
        // i.e. 0 is wait 1 cycle. Convert both to cycles and then convert back
        // after adding.
        uint8_t Nop0 = MI.getOperand(0).getImm() + 1;
        uint8_t Nop1 = NextMI.getOperand(0).getImm() + 1;

        // Make sure we don't overflow the bounds.
        if (Nop0 + Nop1 <= 8) {
          NextMI.getOperand(0).setImm(Nop0 + Nop1 - 1);
          MI.eraseFromParent();
        }

        continue;
      }

      // FIXME: We also need to consider movs of constant operands since
      // immediate operands are not folded if they have more than one use, and
      // the operand folding pass is unaware if the immediate will be free since
      // it won't know if the src == dest constraint will end up being
      // satisfied.
      if (MI.getOpcode() == AMDGPU::S_ADD_I32 ||
          MI.getOpcode() == AMDGPU::S_MUL_I32) {
        const MachineOperand *Dest = &MI.getOperand(0);
        MachineOperand *Src0 = &MI.getOperand(1);
        MachineOperand *Src1 = &MI.getOperand(2);

        if (!Src0->isReg() && Src1->isReg()) {
          if (TII->commuteInstruction(MI, false, 1, 2))
            std::swap(Src0, Src1);
        }

        // FIXME: This could work better if hints worked with subregisters. If
        // we have a vector add of a constant, we usually don't get the correct
        // allocation due to the subregister usage.
        if (Dest->getReg().isVirtual() && Src0->isReg()) {
          MRI.setRegAllocationHint(Dest->getReg(), 0, Src0->getReg());
          MRI.setRegAllocationHint(Src0->getReg(), 0, Dest->getReg());
          continue;
        }

        if (Src0->isReg() && Src0->getReg() == Dest->getReg()) {
          if (Src1->isImm() && isKImmOperand(TII, *Src1)) {
            unsigned Opc = (MI.getOpcode() == AMDGPU::S_ADD_I32) ?
              AMDGPU::S_ADDK_I32 : AMDGPU::S_MULK_I32;

            MI.setDesc(TII->get(Opc));
            MI.tieOperands(0, 1);
          }
        }
      }

      // Try to use s_cmpk_*
      if (MI.isCompare() && TII->isSOPC(MI)) {
        shrinkScalarCompare(TII, MI);
        continue;
      }

      // Try to use S_MOVK_I32, which will save 4 bytes for small immediates.
      if (MI.getOpcode() == AMDGPU::S_MOV_B32) {
        const MachineOperand &Dst = MI.getOperand(0);
        MachineOperand &Src = MI.getOperand(1);

        if (Src.isImm() && Dst.getReg().isPhysical()) {
          int32_t ReverseImm;
          if (isKImmOperand(TII, Src))
            MI.setDesc(TII->get(AMDGPU::S_MOVK_I32));
          else if (isReverseInlineImm(TII, Src, ReverseImm)) {
            MI.setDesc(TII->get(AMDGPU::S_BREV_B32));
            Src.setImm(ReverseImm);
          }
        }

        continue;
      }

      // Shrink scalar logic operations.
      if (MI.getOpcode() == AMDGPU::S_AND_B32 ||
          MI.getOpcode() == AMDGPU::S_OR_B32 ||
          MI.getOpcode() == AMDGPU::S_XOR_B32) {
        if (shrinkScalarLogicOp(ST, MRI, TII, MI))
          continue;
      }

      if (TII->isMIMG(MI.getOpcode()) &&
          ST.getGeneration() >= AMDGPUSubtarget::GFX10 &&
          MF.getProperties().hasProperty(
              MachineFunctionProperties::Property::NoVRegs)) {
        shrinkMIMG(MI);
        continue;
      }

      if (!TII->hasVALU32BitEncoding(MI.getOpcode()))
        continue;

      if (!TII->canShrink(MI, MRI)) {
        // Try commuting the instruction and see if that enables us to shrink
        // it.
        if (!MI.isCommutable() || !TII->commuteInstruction(MI) ||
            !TII->canShrink(MI, MRI))
          continue;
      }

      // getVOPe32 could be -1 here if we started with an instruction that had
      // a 32-bit encoding and then commuted it to an instruction that did not.
      if (!TII->hasVALU32BitEncoding(MI.getOpcode()))
        continue;

      int Op32 = AMDGPU::getVOPe32(MI.getOpcode());

      if (TII->isVOPC(Op32)) {
        Register DstReg = MI.getOperand(0).getReg();
        if (DstReg.isVirtual()) {
          // VOPC instructions can only write to the VCC register. We can't
          // force them to use VCC here, because this is only one register and
          // cannot deal with sequences which would require multiple copies of
          // VCC, e.g. S_AND_B64 (vcc = V_CMP_...), (vcc = V_CMP_...)
          //
          // So, instead of forcing the instruction to write to VCC, we provide
          // a hint to the register allocator to use VCC and then we will run
          // this pass again after RA and shrink it if it outputs to VCC.
          MRI.setRegAllocationHint(MI.getOperand(0).getReg(), 0, VCCReg);
          continue;
        }
        if (DstReg != VCCReg)
          continue;
      }

      if (Op32 == AMDGPU::V_CNDMASK_B32_e32) {
        // We shrink V_CNDMASK_B32_e64 using regalloc hints like we do for VOPC
        // instructions.
        const MachineOperand *Src2 =
            TII->getNamedOperand(MI, AMDGPU::OpName::src2);
        if (!Src2->isReg())
          continue;
        Register SReg = Src2->getReg();
        if (SReg.isVirtual()) {
          MRI.setRegAllocationHint(SReg, 0, VCCReg);
          continue;
        }
        if (SReg != VCCReg)
          continue;
      }

      // Check for the bool flag output for instructions like V_ADD_I32_e64.
      const MachineOperand *SDst = TII->getNamedOperand(MI,
                                                        AMDGPU::OpName::sdst);

      // Check the carry-in operand for v_addc_u32_e64.
      const MachineOperand *Src2 = TII->getNamedOperand(MI,
                                                        AMDGPU::OpName::src2);

      if (SDst) {
        bool Next = false;

        if (SDst->getReg() != VCCReg) {
          if (SDst->getReg().isVirtual())
            MRI.setRegAllocationHint(SDst->getReg(), 0, VCCReg);
          Next = true;
        }

        // All of the instructions with carry outs also have an SGPR input in
        // src2.
        if (Src2 && Src2->getReg() != VCCReg) {
          if (Src2->getReg().isVirtual())
            MRI.setRegAllocationHint(Src2->getReg(), 0, VCCReg);
          Next = true;
        }

        if (Next)
          continue;
      }

      // We can shrink this instruction
      LLVM_DEBUG(dbgs() << "Shrinking " << MI);

      MachineInstr *Inst32 = TII->buildShrunkInst(MI, Op32);
      ++NumInstructionsShrunk;

      // Copy extra operands not present in the instruction definition.
      copyExtraImplicitOps(*Inst32, MF, MI);

      MI.eraseFromParent();
      foldImmediates(*Inst32, TII, MRI);

      LLVM_DEBUG(dbgs() << "e32 MI = " << *Inst32 << '\n');
    }
  }
  return false;
}