SIInsertWaitcnts.cpp 58.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
//===- SIInsertWaitcnts.cpp - Insert Wait Instructions --------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// Insert wait instructions for memory reads and writes.
///
/// Memory reads and writes are issued asynchronously, so we need to insert
/// S_WAITCNT instructions when we want to access any of their results or
/// overwrite any register that's used asynchronously.
///
/// TODO: This pass currently keeps one timeline per hardware counter. A more
/// finely-grained approach that keeps one timeline per event type could
/// sometimes get away with generating weaker s_waitcnt instructions. For
/// example, when both SMEM and LDS are in flight and we need to wait for
/// the i-th-last LDS instruction, then an lgkmcnt(i) is actually sufficient,
/// but the pass will currently generate a conservative lgkmcnt(0) because
/// multiple event types are in flight.
//
//===----------------------------------------------------------------------===//

#include "AMDGPU.h"
#include "AMDGPUSubtarget.h"
#include "SIDefines.h"
#include "SIInstrInfo.h"
#include "SIMachineFunctionInfo.h"
#include "SIRegisterInfo.h"
#include "Utils/AMDGPUBaseInfo.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachinePostDominators.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/InitializePasses.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/Pass.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/DebugCounter.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <cstring>
#include <memory>
#include <utility>

using namespace llvm;

#define DEBUG_TYPE "si-insert-waitcnts"

DEBUG_COUNTER(ForceExpCounter, DEBUG_TYPE"-forceexp",
              "Force emit s_waitcnt expcnt(0) instrs");
DEBUG_COUNTER(ForceLgkmCounter, DEBUG_TYPE"-forcelgkm",
              "Force emit s_waitcnt lgkmcnt(0) instrs");
DEBUG_COUNTER(ForceVMCounter, DEBUG_TYPE"-forcevm",
              "Force emit s_waitcnt vmcnt(0) instrs");

static cl::opt<bool> ForceEmitZeroFlag(
  "amdgpu-waitcnt-forcezero",
  cl::desc("Force all waitcnt instrs to be emitted as s_waitcnt vmcnt(0) expcnt(0) lgkmcnt(0)"),
  cl::init(false), cl::Hidden);

namespace {

template <typename EnumT>
class enum_iterator
    : public iterator_facade_base<enum_iterator<EnumT>,
                                  std::forward_iterator_tag, const EnumT> {
  EnumT Value;
public:
  enum_iterator() = default;
  enum_iterator(EnumT Value) : Value(Value) {}

  enum_iterator &operator++() {
    Value = static_cast<EnumT>(Value + 1);
    return *this;
  }

  bool operator==(const enum_iterator &RHS) const { return Value == RHS.Value; }

  EnumT operator*() const { return Value; }
};

// Class of object that encapsulates latest instruction counter score
// associated with the operand.  Used for determining whether
// s_waitcnt instruction needs to be emited.

#define CNT_MASK(t) (1u << (t))

enum InstCounterType { VM_CNT = 0, LGKM_CNT, EXP_CNT, VS_CNT, NUM_INST_CNTS };

iterator_range<enum_iterator<InstCounterType>> inst_counter_types() {
  return make_range(enum_iterator<InstCounterType>(VM_CNT),
                    enum_iterator<InstCounterType>(NUM_INST_CNTS));
}

using RegInterval = std::pair<int, int>;

struct {
  unsigned VmcntMax;
  unsigned ExpcntMax;
  unsigned LgkmcntMax;
  unsigned VscntMax;
} HardwareLimits;

struct {
  unsigned VGPR0;
  unsigned VGPRL;
  unsigned SGPR0;
  unsigned SGPRL;
} RegisterEncoding;

enum WaitEventType {
  VMEM_ACCESS,      // vector-memory read & write
  VMEM_READ_ACCESS, // vector-memory read
  VMEM_WRITE_ACCESS,// vector-memory write
  LDS_ACCESS,       // lds read & write
  GDS_ACCESS,       // gds read & write
  SQ_MESSAGE,       // send message
  SMEM_ACCESS,      // scalar-memory read & write
  EXP_GPR_LOCK,     // export holding on its data src
  GDS_GPR_LOCK,     // GDS holding on its data and addr src
  EXP_POS_ACCESS,   // write to export position
  EXP_PARAM_ACCESS, // write to export parameter
  VMW_GPR_LOCK,     // vector-memory write holding on its data src
  NUM_WAIT_EVENTS,
};

static const unsigned WaitEventMaskForInst[NUM_INST_CNTS] = {
  (1 << VMEM_ACCESS) | (1 << VMEM_READ_ACCESS),
  (1 << SMEM_ACCESS) | (1 << LDS_ACCESS) | (1 << GDS_ACCESS) |
      (1 << SQ_MESSAGE),
  (1 << EXP_GPR_LOCK) | (1 << GDS_GPR_LOCK) | (1 << VMW_GPR_LOCK) |
      (1 << EXP_PARAM_ACCESS) | (1 << EXP_POS_ACCESS),
  (1 << VMEM_WRITE_ACCESS)
};

// The mapping is:
//  0                .. SQ_MAX_PGM_VGPRS-1               real VGPRs
//  SQ_MAX_PGM_VGPRS .. NUM_ALL_VGPRS-1                  extra VGPR-like slots
//  NUM_ALL_VGPRS    .. NUM_ALL_VGPRS+SQ_MAX_PGM_SGPRS-1 real SGPRs
// We reserve a fixed number of VGPR slots in the scoring tables for
// special tokens like SCMEM_LDS (needed for buffer load to LDS).
enum RegisterMapping {
  SQ_MAX_PGM_VGPRS = 256, // Maximum programmable VGPRs across all targets.
  SQ_MAX_PGM_SGPRS = 256, // Maximum programmable SGPRs across all targets.
  NUM_EXTRA_VGPRS = 1,    // A reserved slot for DS.
  EXTRA_VGPR_LDS = 0,     // This is a placeholder the Shader algorithm uses.
  NUM_ALL_VGPRS = SQ_MAX_PGM_VGPRS + NUM_EXTRA_VGPRS, // Where SGPR starts.
};

// Enumerate different types of result-returning VMEM operations. Although
// s_waitcnt orders them all with a single vmcnt counter, in the absence of
// s_waitcnt only instructions of the same VmemType are guaranteed to write
// their results in order -- so there is no need to insert an s_waitcnt between
// two instructions of the same type that write the same vgpr.
enum VmemType {
  // BUF instructions and MIMG instructions without a sampler.
  VMEM_NOSAMPLER,
  // MIMG instructions with a sampler.
  VMEM_SAMPLER,
};

VmemType getVmemType(const MachineInstr &Inst) {
  assert(SIInstrInfo::isVMEM(Inst));
  if (!SIInstrInfo::isMIMG(Inst))
    return VMEM_NOSAMPLER;
  const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(Inst.getOpcode());
  return AMDGPU::getMIMGBaseOpcodeInfo(Info->BaseOpcode)->Sampler
             ? VMEM_SAMPLER
             : VMEM_NOSAMPLER;
}

void addWait(AMDGPU::Waitcnt &Wait, InstCounterType T, unsigned Count) {
  switch (T) {
  case VM_CNT:
    Wait.VmCnt = std::min(Wait.VmCnt, Count);
    break;
  case EXP_CNT:
    Wait.ExpCnt = std::min(Wait.ExpCnt, Count);
    break;
  case LGKM_CNT:
    Wait.LgkmCnt = std::min(Wait.LgkmCnt, Count);
    break;
  case VS_CNT:
    Wait.VsCnt = std::min(Wait.VsCnt, Count);
    break;
  default:
    llvm_unreachable("bad InstCounterType");
  }
}

// This objects maintains the current score brackets of each wait counter, and
// a per-register scoreboard for each wait counter.
//
// We also maintain the latest score for every event type that can change the
// waitcnt in order to know if there are multiple types of events within
// the brackets. When multiple types of event happen in the bracket,
// wait count may get decreased out of order, therefore we need to put in
// "s_waitcnt 0" before use.
class WaitcntBrackets {
public:
  WaitcntBrackets(const GCNSubtarget *SubTarget) : ST(SubTarget) {}

  static unsigned getWaitCountMax(InstCounterType T) {
    switch (T) {
    case VM_CNT:
      return HardwareLimits.VmcntMax;
    case LGKM_CNT:
      return HardwareLimits.LgkmcntMax;
    case EXP_CNT:
      return HardwareLimits.ExpcntMax;
    case VS_CNT:
      return HardwareLimits.VscntMax;
    default:
      break;
    }
    return 0;
  }

  unsigned getScoreLB(InstCounterType T) const {
    assert(T < NUM_INST_CNTS);
    return ScoreLBs[T];
  }

  unsigned getScoreUB(InstCounterType T) const {
    assert(T < NUM_INST_CNTS);
    return ScoreUBs[T];
  }

  // Mapping from event to counter.
  InstCounterType eventCounter(WaitEventType E) {
    if (WaitEventMaskForInst[VM_CNT] & (1 << E))
      return VM_CNT;
    if (WaitEventMaskForInst[LGKM_CNT] & (1 << E))
      return LGKM_CNT;
    if (WaitEventMaskForInst[VS_CNT] & (1 << E))
      return VS_CNT;
    assert(WaitEventMaskForInst[EXP_CNT] & (1 << E));
    return EXP_CNT;
  }

  unsigned getRegScore(int GprNo, InstCounterType T) {
    if (GprNo < NUM_ALL_VGPRS) {
      return VgprScores[T][GprNo];
    }
    assert(T == LGKM_CNT);
    return SgprScores[GprNo - NUM_ALL_VGPRS];
  }

  bool merge(const WaitcntBrackets &Other);

  RegInterval getRegInterval(const MachineInstr *MI, const SIInstrInfo *TII,
                             const MachineRegisterInfo *MRI,
                             const SIRegisterInfo *TRI, unsigned OpNo) const;

  bool counterOutOfOrder(InstCounterType T) const;
  bool simplifyWaitcnt(AMDGPU::Waitcnt &Wait) const;
  bool simplifyWaitcnt(InstCounterType T, unsigned &Count) const;
  void determineWait(InstCounterType T, unsigned ScoreToWait,
                     AMDGPU::Waitcnt &Wait) const;
  void applyWaitcnt(const AMDGPU::Waitcnt &Wait);
  void applyWaitcnt(InstCounterType T, unsigned Count);
  void updateByEvent(const SIInstrInfo *TII, const SIRegisterInfo *TRI,
                     const MachineRegisterInfo *MRI, WaitEventType E,
                     MachineInstr &MI);

  bool hasPending() const { return PendingEvents != 0; }
  bool hasPendingEvent(WaitEventType E) const {
    return PendingEvents & (1 << E);
  }

  bool hasMixedPendingEvents(InstCounterType T) const {
    unsigned Events = PendingEvents & WaitEventMaskForInst[T];
    // Return true if more than one bit is set in Events.
    return Events & (Events - 1);
  }

  bool hasPendingFlat() const {
    return ((LastFlat[LGKM_CNT] > ScoreLBs[LGKM_CNT] &&
             LastFlat[LGKM_CNT] <= ScoreUBs[LGKM_CNT]) ||
            (LastFlat[VM_CNT] > ScoreLBs[VM_CNT] &&
             LastFlat[VM_CNT] <= ScoreUBs[VM_CNT]));
  }

  void setPendingFlat() {
    LastFlat[VM_CNT] = ScoreUBs[VM_CNT];
    LastFlat[LGKM_CNT] = ScoreUBs[LGKM_CNT];
  }

  // Return true if there might be pending writes to the specified vgpr by VMEM
  // instructions with types different from V.
  bool hasOtherPendingVmemTypes(int GprNo, VmemType V) const {
    assert(GprNo < NUM_ALL_VGPRS);
    return VgprVmemTypes[GprNo] & ~(1 << V);
  }

  void clearVgprVmemTypes(int GprNo) {
    assert(GprNo < NUM_ALL_VGPRS);
    VgprVmemTypes[GprNo] = 0;
  }

  void print(raw_ostream &);
  void dump() { print(dbgs()); }

private:
  struct MergeInfo {
    unsigned OldLB;
    unsigned OtherLB;
    unsigned MyShift;
    unsigned OtherShift;
  };
  static bool mergeScore(const MergeInfo &M, unsigned &Score,
                         unsigned OtherScore);

  void setScoreLB(InstCounterType T, unsigned Val) {
    assert(T < NUM_INST_CNTS);
    ScoreLBs[T] = Val;
  }

  void setScoreUB(InstCounterType T, unsigned Val) {
    assert(T < NUM_INST_CNTS);
    ScoreUBs[T] = Val;
    if (T == EXP_CNT) {
      unsigned UB = ScoreUBs[T] - getWaitCountMax(EXP_CNT);
      if (ScoreLBs[T] < UB && UB < ScoreUBs[T])
        ScoreLBs[T] = UB;
    }
  }

  void setRegScore(int GprNo, InstCounterType T, unsigned Val) {
    if (GprNo < NUM_ALL_VGPRS) {
      VgprUB = std::max(VgprUB, GprNo);
      VgprScores[T][GprNo] = Val;
    } else {
      assert(T == LGKM_CNT);
      SgprUB = std::max(SgprUB, GprNo - NUM_ALL_VGPRS);
      SgprScores[GprNo - NUM_ALL_VGPRS] = Val;
    }
  }

  void setExpScore(const MachineInstr *MI, const SIInstrInfo *TII,
                   const SIRegisterInfo *TRI, const MachineRegisterInfo *MRI,
                   unsigned OpNo, unsigned Val);

  const GCNSubtarget *ST = nullptr;
  unsigned ScoreLBs[NUM_INST_CNTS] = {0};
  unsigned ScoreUBs[NUM_INST_CNTS] = {0};
  unsigned PendingEvents = 0;
  // Remember the last flat memory operation.
  unsigned LastFlat[NUM_INST_CNTS] = {0};
  // wait_cnt scores for every vgpr.
  // Keep track of the VgprUB and SgprUB to make merge at join efficient.
  int VgprUB = -1;
  int SgprUB = -1;
  unsigned VgprScores[NUM_INST_CNTS][NUM_ALL_VGPRS] = {{0}};
  // Wait cnt scores for every sgpr, only lgkmcnt is relevant.
  unsigned SgprScores[SQ_MAX_PGM_SGPRS] = {0};
  // Bitmask of the VmemTypes of VMEM instructions that might have a pending
  // write to each vgpr.
  unsigned char VgprVmemTypes[NUM_ALL_VGPRS] = {0};
};

class SIInsertWaitcnts : public MachineFunctionPass {
private:
  const GCNSubtarget *ST = nullptr;
  const SIInstrInfo *TII = nullptr;
  const SIRegisterInfo *TRI = nullptr;
  const MachineRegisterInfo *MRI = nullptr;
  AMDGPU::IsaVersion IV;

  DenseSet<MachineInstr *> TrackedWaitcntSet;
  DenseMap<const Value *, MachineBasicBlock *> SLoadAddresses;
  MachinePostDominatorTree *PDT;

  struct BlockInfo {
    MachineBasicBlock *MBB;
    std::unique_ptr<WaitcntBrackets> Incoming;
    bool Dirty = true;

    explicit BlockInfo(MachineBasicBlock *MBB) : MBB(MBB) {}
  };

  MapVector<MachineBasicBlock *, BlockInfo> BlockInfos;

  // ForceEmitZeroWaitcnts: force all waitcnts insts to be s_waitcnt 0
  // because of amdgpu-waitcnt-forcezero flag
  bool ForceEmitZeroWaitcnts;
  bool ForceEmitWaitcnt[NUM_INST_CNTS];

public:
  static char ID;

  SIInsertWaitcnts() : MachineFunctionPass(ID) {
    (void)ForceExpCounter;
    (void)ForceLgkmCounter;
    (void)ForceVMCounter;
  }

  bool runOnMachineFunction(MachineFunction &MF) override;

  StringRef getPassName() const override {
    return "SI insert wait instructions";
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.setPreservesCFG();
    AU.addRequired<MachinePostDominatorTree>();
    MachineFunctionPass::getAnalysisUsage(AU);
  }

  bool isForceEmitWaitcnt() const {
    for (auto T : inst_counter_types())
      if (ForceEmitWaitcnt[T])
        return true;
    return false;
  }

  void setForceEmitWaitcnt() {
// For non-debug builds, ForceEmitWaitcnt has been initialized to false;
// For debug builds, get the debug counter info and adjust if need be
#ifndef NDEBUG
    if (DebugCounter::isCounterSet(ForceExpCounter) &&
        DebugCounter::shouldExecute(ForceExpCounter)) {
      ForceEmitWaitcnt[EXP_CNT] = true;
    } else {
      ForceEmitWaitcnt[EXP_CNT] = false;
    }

    if (DebugCounter::isCounterSet(ForceLgkmCounter) &&
         DebugCounter::shouldExecute(ForceLgkmCounter)) {
      ForceEmitWaitcnt[LGKM_CNT] = true;
    } else {
      ForceEmitWaitcnt[LGKM_CNT] = false;
    }

    if (DebugCounter::isCounterSet(ForceVMCounter) &&
        DebugCounter::shouldExecute(ForceVMCounter)) {
      ForceEmitWaitcnt[VM_CNT] = true;
    } else {
      ForceEmitWaitcnt[VM_CNT] = false;
    }
#endif // NDEBUG
  }

  bool mayAccessLDSThroughFlat(const MachineInstr &MI) const;
  bool generateWaitcntInstBefore(MachineInstr &MI,
                                 WaitcntBrackets &ScoreBrackets,
                                 MachineInstr *OldWaitcntInstr);
  void updateEventWaitcntAfter(MachineInstr &Inst,
                               WaitcntBrackets *ScoreBrackets);
  bool insertWaitcntInBlock(MachineFunction &MF, MachineBasicBlock &Block,
                            WaitcntBrackets &ScoreBrackets);
};

} // end anonymous namespace

RegInterval WaitcntBrackets::getRegInterval(const MachineInstr *MI,
                                            const SIInstrInfo *TII,
                                            const MachineRegisterInfo *MRI,
                                            const SIRegisterInfo *TRI,
                                            unsigned OpNo) const {
  const MachineOperand &Op = MI->getOperand(OpNo);
  assert(Op.isReg());
  if (!TRI->isInAllocatableClass(Op.getReg()) || TRI->isAGPR(*MRI, Op.getReg()))
    return {-1, -1};

  // A use via a PW operand does not need a waitcnt.
  // A partial write is not a WAW.
  assert(!Op.getSubReg() || !Op.isUndef());

  RegInterval Result;

  unsigned Reg = TRI->getEncodingValue(Op.getReg());

  if (TRI->isVGPR(*MRI, Op.getReg())) {
    assert(Reg >= RegisterEncoding.VGPR0 && Reg <= RegisterEncoding.VGPRL);
    Result.first = Reg - RegisterEncoding.VGPR0;
    assert(Result.first >= 0 && Result.first < SQ_MAX_PGM_VGPRS);
  } else if (TRI->isSGPRReg(*MRI, Op.getReg())) {
    assert(Reg >= RegisterEncoding.SGPR0 && Reg < SQ_MAX_PGM_SGPRS);
    Result.first = Reg - RegisterEncoding.SGPR0 + NUM_ALL_VGPRS;
    assert(Result.first >= NUM_ALL_VGPRS &&
           Result.first < SQ_MAX_PGM_SGPRS + NUM_ALL_VGPRS);
  }
  // TODO: Handle TTMP
  // else if (TRI->isTTMP(*MRI, Reg.getReg())) ...
  else
    return {-1, -1};

  const TargetRegisterClass *RC = TII->getOpRegClass(*MI, OpNo);
  unsigned Size = TRI->getRegSizeInBits(*RC);
  Result.second = Result.first + ((Size + 16) / 32);

  return Result;
}

void WaitcntBrackets::setExpScore(const MachineInstr *MI,
                                  const SIInstrInfo *TII,
                                  const SIRegisterInfo *TRI,
                                  const MachineRegisterInfo *MRI, unsigned OpNo,
                                  unsigned Val) {
  RegInterval Interval = getRegInterval(MI, TII, MRI, TRI, OpNo);
  assert(TRI->isVGPR(*MRI, MI->getOperand(OpNo).getReg()));
  for (int RegNo = Interval.first; RegNo < Interval.second; ++RegNo) {
    setRegScore(RegNo, EXP_CNT, Val);
  }
}

void WaitcntBrackets::updateByEvent(const SIInstrInfo *TII,
                                    const SIRegisterInfo *TRI,
                                    const MachineRegisterInfo *MRI,
                                    WaitEventType E, MachineInstr &Inst) {
  InstCounterType T = eventCounter(E);
  unsigned CurrScore = getScoreUB(T) + 1;
  if (CurrScore == 0)
    report_fatal_error("InsertWaitcnt score wraparound");
  // PendingEvents and ScoreUB need to be update regardless if this event
  // changes the score of a register or not.
  // Examples including vm_cnt when buffer-store or lgkm_cnt when send-message.
  PendingEvents |= 1 << E;
  setScoreUB(T, CurrScore);

  if (T == EXP_CNT) {
    // Put score on the source vgprs. If this is a store, just use those
    // specific register(s).
    if (TII->isDS(Inst) && (Inst.mayStore() || Inst.mayLoad())) {
      int AddrOpIdx =
          AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::addr);
      // All GDS operations must protect their address register (same as
      // export.)
      if (AddrOpIdx != -1) {
        setExpScore(&Inst, TII, TRI, MRI, AddrOpIdx, CurrScore);
      }

      if (Inst.mayStore()) {
        if (AMDGPU::getNamedOperandIdx(Inst.getOpcode(),
                                       AMDGPU::OpName::data0) != -1) {
          setExpScore(
              &Inst, TII, TRI, MRI,
              AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data0),
              CurrScore);
        }
        if (AMDGPU::getNamedOperandIdx(Inst.getOpcode(),
                                       AMDGPU::OpName::data1) != -1) {
          setExpScore(&Inst, TII, TRI, MRI,
                      AMDGPU::getNamedOperandIdx(Inst.getOpcode(),
                                                 AMDGPU::OpName::data1),
                      CurrScore);
        }
      } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1 &&
                 Inst.getOpcode() != AMDGPU::DS_GWS_INIT &&
                 Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_V &&
                 Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_BR &&
                 Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_P &&
                 Inst.getOpcode() != AMDGPU::DS_GWS_BARRIER &&
                 Inst.getOpcode() != AMDGPU::DS_APPEND &&
                 Inst.getOpcode() != AMDGPU::DS_CONSUME &&
                 Inst.getOpcode() != AMDGPU::DS_ORDERED_COUNT) {
        for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) {
          const MachineOperand &Op = Inst.getOperand(I);
          if (Op.isReg() && !Op.isDef() && TRI->isVGPR(*MRI, Op.getReg())) {
            setExpScore(&Inst, TII, TRI, MRI, I, CurrScore);
          }
        }
      }
    } else if (TII->isFLAT(Inst)) {
      if (Inst.mayStore()) {
        setExpScore(
            &Inst, TII, TRI, MRI,
            AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data),
            CurrScore);
      } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1) {
        setExpScore(
            &Inst, TII, TRI, MRI,
            AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data),
            CurrScore);
      }
    } else if (TII->isMIMG(Inst)) {
      if (Inst.mayStore()) {
        setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore);
      } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1) {
        setExpScore(
            &Inst, TII, TRI, MRI,
            AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data),
            CurrScore);
      }
    } else if (TII->isMTBUF(Inst)) {
      if (Inst.mayStore()) {
        setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore);
      }
    } else if (TII->isMUBUF(Inst)) {
      if (Inst.mayStore()) {
        setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore);
      } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1) {
        setExpScore(
            &Inst, TII, TRI, MRI,
            AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data),
            CurrScore);
      }
    } else {
      if (TII->isEXP(Inst)) {
        // For export the destination registers are really temps that
        // can be used as the actual source after export patching, so
        // we need to treat them like sources and set the EXP_CNT
        // score.
        for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) {
          MachineOperand &DefMO = Inst.getOperand(I);
          if (DefMO.isReg() && DefMO.isDef() &&
              TRI->isVGPR(*MRI, DefMO.getReg())) {
            setRegScore(TRI->getEncodingValue(DefMO.getReg()), EXP_CNT,
                        CurrScore);
          }
        }
      }
      for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) {
        MachineOperand &MO = Inst.getOperand(I);
        if (MO.isReg() && !MO.isDef() && TRI->isVGPR(*MRI, MO.getReg())) {
          setExpScore(&Inst, TII, TRI, MRI, I, CurrScore);
        }
      }
    }
#if 0 // TODO: check if this is handled by MUBUF code above.
  } else if (Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORD ||
       Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORDX2 ||
       Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORDX4) {
    MachineOperand *MO = TII->getNamedOperand(Inst, AMDGPU::OpName::data);
    unsigned OpNo;//TODO: find the OpNo for this operand;
    RegInterval Interval = getRegInterval(&Inst, TII, MRI, TRI, OpNo);
    for (int RegNo = Interval.first; RegNo < Interval.second;
    ++RegNo) {
      setRegScore(RegNo + NUM_ALL_VGPRS, t, CurrScore);
    }
#endif
  } else {
    // Match the score to the destination registers.
    for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) {
      auto &Op = Inst.getOperand(I);
      if (!Op.isReg() || !Op.isDef())
        continue;
      RegInterval Interval = getRegInterval(&Inst, TII, MRI, TRI, I);
      if (T == VM_CNT) {
        if (Interval.first >= NUM_ALL_VGPRS)
          continue;
        if (SIInstrInfo::isVMEM(Inst)) {
          VmemType V = getVmemType(Inst);
          for (int RegNo = Interval.first; RegNo < Interval.second; ++RegNo)
            VgprVmemTypes[RegNo] |= 1 << V;
        }
      }
      for (int RegNo = Interval.first; RegNo < Interval.second; ++RegNo) {
        setRegScore(RegNo, T, CurrScore);
      }
    }
    if (TII->isDS(Inst) && Inst.mayStore()) {
      setRegScore(SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS, T, CurrScore);
    }
  }
}

void WaitcntBrackets::print(raw_ostream &OS) {
  OS << '\n';
  for (auto T : inst_counter_types()) {
    unsigned LB = getScoreLB(T);
    unsigned UB = getScoreUB(T);

    switch (T) {
    case VM_CNT:
      OS << "    VM_CNT(" << UB - LB << "): ";
      break;
    case LGKM_CNT:
      OS << "    LGKM_CNT(" << UB - LB << "): ";
      break;
    case EXP_CNT:
      OS << "    EXP_CNT(" << UB - LB << "): ";
      break;
    case VS_CNT:
      OS << "    VS_CNT(" << UB - LB << "): ";
      break;
    default:
      OS << "    UNKNOWN(" << UB - LB << "): ";
      break;
    }

    if (LB < UB) {
      // Print vgpr scores.
      for (int J = 0; J <= VgprUB; J++) {
        unsigned RegScore = getRegScore(J, T);
        if (RegScore <= LB)
          continue;
        unsigned RelScore = RegScore - LB - 1;
        if (J < SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS) {
          OS << RelScore << ":v" << J << " ";
        } else {
          OS << RelScore << ":ds ";
        }
      }
      // Also need to print sgpr scores for lgkm_cnt.
      if (T == LGKM_CNT) {
        for (int J = 0; J <= SgprUB; J++) {
          unsigned RegScore = getRegScore(J + NUM_ALL_VGPRS, LGKM_CNT);
          if (RegScore <= LB)
            continue;
          unsigned RelScore = RegScore - LB - 1;
          OS << RelScore << ":s" << J << " ";
        }
      }
    }
    OS << '\n';
  }
  OS << '\n';
}

/// Simplify the waitcnt, in the sense of removing redundant counts, and return
/// whether a waitcnt instruction is needed at all.
bool WaitcntBrackets::simplifyWaitcnt(AMDGPU::Waitcnt &Wait) const {
  return simplifyWaitcnt(VM_CNT, Wait.VmCnt) |
         simplifyWaitcnt(EXP_CNT, Wait.ExpCnt) |
         simplifyWaitcnt(LGKM_CNT, Wait.LgkmCnt) |
         simplifyWaitcnt(VS_CNT, Wait.VsCnt);
}

bool WaitcntBrackets::simplifyWaitcnt(InstCounterType T,
                                      unsigned &Count) const {
  const unsigned LB = getScoreLB(T);
  const unsigned UB = getScoreUB(T);
  if (Count < UB && UB - Count > LB)
    return true;

  Count = ~0u;
  return false;
}

void WaitcntBrackets::determineWait(InstCounterType T, unsigned ScoreToWait,
                                    AMDGPU::Waitcnt &Wait) const {
  // If the score of src_operand falls within the bracket, we need an
  // s_waitcnt instruction.
  const unsigned LB = getScoreLB(T);
  const unsigned UB = getScoreUB(T);
  if ((UB >= ScoreToWait) && (ScoreToWait > LB)) {
    if ((T == VM_CNT || T == LGKM_CNT) &&
        hasPendingFlat() &&
        !ST->hasFlatLgkmVMemCountInOrder()) {
      // If there is a pending FLAT operation, and this is a VMem or LGKM
      // waitcnt and the target can report early completion, then we need
      // to force a waitcnt 0.
      addWait(Wait, T, 0);
    } else if (counterOutOfOrder(T)) {
      // Counter can get decremented out-of-order when there
      // are multiple types event in the bracket. Also emit an s_wait counter
      // with a conservative value of 0 for the counter.
      addWait(Wait, T, 0);
    } else {
      // If a counter has been maxed out avoid overflow by waiting for
      // MAX(CounterType) - 1 instead.
      unsigned NeededWait = std::min(UB - ScoreToWait, getWaitCountMax(T) - 1);
      addWait(Wait, T, NeededWait);
    }
  }
}

void WaitcntBrackets::applyWaitcnt(const AMDGPU::Waitcnt &Wait) {
  applyWaitcnt(VM_CNT, Wait.VmCnt);
  applyWaitcnt(EXP_CNT, Wait.ExpCnt);
  applyWaitcnt(LGKM_CNT, Wait.LgkmCnt);
  applyWaitcnt(VS_CNT, Wait.VsCnt);
}

void WaitcntBrackets::applyWaitcnt(InstCounterType T, unsigned Count) {
  const unsigned UB = getScoreUB(T);
  if (Count >= UB)
    return;
  if (Count != 0) {
    if (counterOutOfOrder(T))
      return;
    setScoreLB(T, std::max(getScoreLB(T), UB - Count));
  } else {
    setScoreLB(T, UB);
    PendingEvents &= ~WaitEventMaskForInst[T];
  }
}

// Where there are multiple types of event in the bracket of a counter,
// the decrement may go out of order.
bool WaitcntBrackets::counterOutOfOrder(InstCounterType T) const {
  // Scalar memory read always can go out of order.
  if (T == LGKM_CNT && hasPendingEvent(SMEM_ACCESS))
    return true;
  return hasMixedPendingEvents(T);
}

INITIALIZE_PASS_BEGIN(SIInsertWaitcnts, DEBUG_TYPE, "SI Insert Waitcnts", false,
                      false)
INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree)
INITIALIZE_PASS_END(SIInsertWaitcnts, DEBUG_TYPE, "SI Insert Waitcnts", false,
                    false)

char SIInsertWaitcnts::ID = 0;

char &llvm::SIInsertWaitcntsID = SIInsertWaitcnts::ID;

FunctionPass *llvm::createSIInsertWaitcntsPass() {
  return new SIInsertWaitcnts();
}

static bool readsVCCZ(const MachineInstr &MI) {
  unsigned Opc = MI.getOpcode();
  return (Opc == AMDGPU::S_CBRANCH_VCCNZ || Opc == AMDGPU::S_CBRANCH_VCCZ) &&
         !MI.getOperand(1).isUndef();
}

/// \returns true if the callee inserts an s_waitcnt 0 on function entry.
static bool callWaitsOnFunctionEntry(const MachineInstr &MI) {
  // Currently all conventions wait, but this may not always be the case.
  //
  // TODO: If IPRA is enabled, and the callee is isSafeForNoCSROpt, it may make
  // senses to omit the wait and do it in the caller.
  return true;
}

/// \returns true if the callee is expected to wait for any outstanding waits
/// before returning.
static bool callWaitsOnFunctionReturn(const MachineInstr &MI) {
  return true;
}

///  Generate s_waitcnt instruction to be placed before cur_Inst.
///  Instructions of a given type are returned in order,
///  but instructions of different types can complete out of order.
///  We rely on this in-order completion
///  and simply assign a score to the memory access instructions.
///  We keep track of the active "score bracket" to determine
///  if an access of a memory read requires an s_waitcnt
///  and if so what the value of each counter is.
///  The "score bracket" is bound by the lower bound and upper bound
///  scores (*_score_LB and *_score_ub respectively).
bool SIInsertWaitcnts::generateWaitcntInstBefore(
    MachineInstr &MI, WaitcntBrackets &ScoreBrackets,
    MachineInstr *OldWaitcntInstr) {
  setForceEmitWaitcnt();
  bool IsForceEmitWaitcnt = isForceEmitWaitcnt();

  if (MI.isMetaInstruction())
    return false;

  AMDGPU::Waitcnt Wait;

  // See if this instruction has a forced S_WAITCNT VM.
  // TODO: Handle other cases of NeedsWaitcntVmBefore()
  if (MI.getOpcode() == AMDGPU::BUFFER_WBINVL1 ||
      MI.getOpcode() == AMDGPU::BUFFER_WBINVL1_SC ||
      MI.getOpcode() == AMDGPU::BUFFER_WBINVL1_VOL ||
      MI.getOpcode() == AMDGPU::BUFFER_GL0_INV ||
      MI.getOpcode() == AMDGPU::BUFFER_GL1_INV) {
    Wait.VmCnt = 0;
  }

  // All waits must be resolved at call return.
  // NOTE: this could be improved with knowledge of all call sites or
  //   with knowledge of the called routines.
  if (MI.getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG ||
      MI.getOpcode() == AMDGPU::S_SETPC_B64_return ||
      (MI.isReturn() && MI.isCall() && !callWaitsOnFunctionEntry(MI))) {
    Wait = Wait.combined(AMDGPU::Waitcnt::allZero(ST->hasVscnt()));
  }
  // Resolve vm waits before gs-done.
  else if ((MI.getOpcode() == AMDGPU::S_SENDMSG ||
            MI.getOpcode() == AMDGPU::S_SENDMSGHALT) &&
           ((MI.getOperand(0).getImm() & AMDGPU::SendMsg::ID_MASK_) ==
            AMDGPU::SendMsg::ID_GS_DONE)) {
    Wait.VmCnt = 0;
  }
#if 0 // TODO: the following blocks of logic when we have fence.
  else if (MI.getOpcode() == SC_FENCE) {
    const unsigned int group_size =
      context->shader_info->GetMaxThreadGroupSize();
    // group_size == 0 means thread group size is unknown at compile time
    const bool group_is_multi_wave =
      (group_size == 0 || group_size > target_info->GetWaveFrontSize());
    const bool fence_is_global = !((SCInstInternalMisc*)Inst)->IsGroupFence();

    for (unsigned int i = 0; i < Inst->NumSrcOperands(); i++) {
      SCRegType src_type = Inst->GetSrcType(i);
      switch (src_type) {
        case SCMEM_LDS:
          if (group_is_multi_wave ||
            context->OptFlagIsOn(OPT_R1100_LDSMEM_FENCE_CHICKEN_BIT)) {
            EmitWaitcnt |= ScoreBrackets->updateByWait(LGKM_CNT,
                               ScoreBrackets->getScoreUB(LGKM_CNT));
            // LDS may have to wait for VM_CNT after buffer load to LDS
            if (target_info->HasBufferLoadToLDS()) {
              EmitWaitcnt |= ScoreBrackets->updateByWait(VM_CNT,
                                 ScoreBrackets->getScoreUB(VM_CNT));
            }
          }
          break;

        case SCMEM_GDS:
          if (group_is_multi_wave || fence_is_global) {
            EmitWaitcnt |= ScoreBrackets->updateByWait(EXP_CNT,
              ScoreBrackets->getScoreUB(EXP_CNT));
            EmitWaitcnt |= ScoreBrackets->updateByWait(LGKM_CNT,
              ScoreBrackets->getScoreUB(LGKM_CNT));
          }
          break;

        case SCMEM_UAV:
        case SCMEM_TFBUF:
        case SCMEM_RING:
        case SCMEM_SCATTER:
          if (group_is_multi_wave || fence_is_global) {
            EmitWaitcnt |= ScoreBrackets->updateByWait(EXP_CNT,
              ScoreBrackets->getScoreUB(EXP_CNT));
            EmitWaitcnt |= ScoreBrackets->updateByWait(VM_CNT,
              ScoreBrackets->getScoreUB(VM_CNT));
          }
          break;

        case SCMEM_SCRATCH:
        default:
          break;
      }
    }
  }
#endif

  // Export & GDS instructions do not read the EXEC mask until after the export
  // is granted (which can occur well after the instruction is issued).
  // The shader program must flush all EXP operations on the export-count
  // before overwriting the EXEC mask.
  else {
    if (MI.modifiesRegister(AMDGPU::EXEC, TRI)) {
      // Export and GDS are tracked individually, either may trigger a waitcnt
      // for EXEC.
      if (ScoreBrackets.hasPendingEvent(EXP_GPR_LOCK) ||
          ScoreBrackets.hasPendingEvent(EXP_PARAM_ACCESS) ||
          ScoreBrackets.hasPendingEvent(EXP_POS_ACCESS) ||
          ScoreBrackets.hasPendingEvent(GDS_GPR_LOCK)) {
        Wait.ExpCnt = 0;
      }
    }

    if (MI.isCall() && callWaitsOnFunctionEntry(MI)) {
      // The function is going to insert a wait on everything in its prolog.
      // This still needs to be careful if the call target is a load (e.g. a GOT
      // load). We also need to check WAW depenancy with saved PC.
      Wait = AMDGPU::Waitcnt();

      int CallAddrOpIdx =
          AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::src0);

      if (MI.getOperand(CallAddrOpIdx).isReg()) {
        RegInterval CallAddrOpInterval =
          ScoreBrackets.getRegInterval(&MI, TII, MRI, TRI, CallAddrOpIdx);

        for (int RegNo = CallAddrOpInterval.first;
             RegNo < CallAddrOpInterval.second; ++RegNo)
          ScoreBrackets.determineWait(
            LGKM_CNT, ScoreBrackets.getRegScore(RegNo, LGKM_CNT), Wait);

        int RtnAddrOpIdx =
          AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dst);
        if (RtnAddrOpIdx != -1) {
          RegInterval RtnAddrOpInterval =
            ScoreBrackets.getRegInterval(&MI, TII, MRI, TRI, RtnAddrOpIdx);

          for (int RegNo = RtnAddrOpInterval.first;
               RegNo < RtnAddrOpInterval.second; ++RegNo)
            ScoreBrackets.determineWait(
              LGKM_CNT, ScoreBrackets.getRegScore(RegNo, LGKM_CNT), Wait);
        }
      }
    } else {
      // FIXME: Should not be relying on memoperands.
      // Look at the source operands of every instruction to see if
      // any of them results from a previous memory operation that affects
      // its current usage. If so, an s_waitcnt instruction needs to be
      // emitted.
      // If the source operand was defined by a load, add the s_waitcnt
      // instruction.
      //
      // Two cases are handled for destination operands:
      // 1) If the destination operand was defined by a load, add the s_waitcnt
      // instruction to guarantee the right WAW order.
      // 2) If a destination operand that was used by a recent export/store ins,
      // add s_waitcnt on exp_cnt to guarantee the WAR order.
      for (const MachineMemOperand *Memop : MI.memoperands()) {
        const Value *Ptr = Memop->getValue();
        if (Memop->isStore() && SLoadAddresses.count(Ptr)) {
          addWait(Wait, LGKM_CNT, 0);
          if (PDT->dominates(MI.getParent(), SLoadAddresses.find(Ptr)->second))
            SLoadAddresses.erase(Ptr);
        }
        unsigned AS = Memop->getAddrSpace();
        if (AS != AMDGPUAS::LOCAL_ADDRESS)
          continue;
        unsigned RegNo = SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS;
        // VM_CNT is only relevant to vgpr or LDS.
        ScoreBrackets.determineWait(
            VM_CNT, ScoreBrackets.getRegScore(RegNo, VM_CNT), Wait);
        if (Memop->isStore()) {
          ScoreBrackets.determineWait(
              EXP_CNT, ScoreBrackets.getRegScore(RegNo, EXP_CNT), Wait);
        }
      }

      // Loop over use and def operands.
      for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
        MachineOperand &Op = MI.getOperand(I);
        if (!Op.isReg())
          continue;
        RegInterval Interval =
            ScoreBrackets.getRegInterval(&MI, TII, MRI, TRI, I);

        const bool IsVGPR = TRI->isVGPR(*MRI, Op.getReg());
        for (int RegNo = Interval.first; RegNo < Interval.second; ++RegNo) {
          if (IsVGPR) {
            // RAW always needs an s_waitcnt. WAW needs an s_waitcnt unless the
            // previous write and this write are the same type of VMEM
            // instruction, in which case they're guaranteed to write their
            // results in order anyway.
            if (Op.isUse() || !SIInstrInfo::isVMEM(MI) ||
                ScoreBrackets.hasOtherPendingVmemTypes(RegNo,
                                                       getVmemType(MI))) {
              ScoreBrackets.determineWait(
                  VM_CNT, ScoreBrackets.getRegScore(RegNo, VM_CNT), Wait);
              ScoreBrackets.clearVgprVmemTypes(RegNo);
            }
            if (Op.isDef()) {
              ScoreBrackets.determineWait(
                  EXP_CNT, ScoreBrackets.getRegScore(RegNo, EXP_CNT), Wait);
            }
          }
          ScoreBrackets.determineWait(
              LGKM_CNT, ScoreBrackets.getRegScore(RegNo, LGKM_CNT), Wait);
        }
      }
    }
  }

  // Check to see if this is an S_BARRIER, and if an implicit S_WAITCNT 0
  // occurs before the instruction. Doing it here prevents any additional
  // S_WAITCNTs from being emitted if the instruction was marked as
  // requiring a WAITCNT beforehand.
  if (MI.getOpcode() == AMDGPU::S_BARRIER &&
      !ST->hasAutoWaitcntBeforeBarrier()) {
    Wait = Wait.combined(AMDGPU::Waitcnt::allZero(ST->hasVscnt()));
  }

  // TODO: Remove this work-around, enable the assert for Bug 457939
  //       after fixing the scheduler. Also, the Shader Compiler code is
  //       independent of target.
  if (readsVCCZ(MI) && ST->hasReadVCCZBug()) {
    if (ScoreBrackets.getScoreLB(LGKM_CNT) <
            ScoreBrackets.getScoreUB(LGKM_CNT) &&
        ScoreBrackets.hasPendingEvent(SMEM_ACCESS)) {
      Wait.LgkmCnt = 0;
    }
  }

  // Early-out if no wait is indicated.
  if (!ScoreBrackets.simplifyWaitcnt(Wait) && !IsForceEmitWaitcnt) {
    bool Modified = false;
    if (OldWaitcntInstr) {
      for (auto II = OldWaitcntInstr->getIterator(), NextI = std::next(II);
           &*II != &MI; II = NextI, ++NextI) {
        if (II->isDebugInstr())
          continue;

        if (TrackedWaitcntSet.count(&*II)) {
          TrackedWaitcntSet.erase(&*II);
          II->eraseFromParent();
          Modified = true;
        } else if (II->getOpcode() == AMDGPU::S_WAITCNT) {
          int64_t Imm = II->getOperand(0).getImm();
          ScoreBrackets.applyWaitcnt(AMDGPU::decodeWaitcnt(IV, Imm));
        } else {
          assert(II->getOpcode() == AMDGPU::S_WAITCNT_VSCNT);
          assert(II->getOperand(0).getReg() == AMDGPU::SGPR_NULL);
          auto W = TII->getNamedOperand(*II, AMDGPU::OpName::simm16)->getImm();
          ScoreBrackets.applyWaitcnt(AMDGPU::Waitcnt(~0u, ~0u, ~0u, W));
        }
      }
    }
    return Modified;
  }

  if (ForceEmitZeroWaitcnts)
    Wait = AMDGPU::Waitcnt::allZero(ST->hasVscnt());

  if (ForceEmitWaitcnt[VM_CNT])
    Wait.VmCnt = 0;
  if (ForceEmitWaitcnt[EXP_CNT])
    Wait.ExpCnt = 0;
  if (ForceEmitWaitcnt[LGKM_CNT])
    Wait.LgkmCnt = 0;
  if (ForceEmitWaitcnt[VS_CNT])
    Wait.VsCnt = 0;

  ScoreBrackets.applyWaitcnt(Wait);

  AMDGPU::Waitcnt OldWait;
  bool Modified = false;

  if (OldWaitcntInstr) {
    for (auto II = OldWaitcntInstr->getIterator(), NextI = std::next(II);
         &*II != &MI; II = NextI, NextI++) {
      if (II->isDebugInstr())
        continue;

      if (II->getOpcode() == AMDGPU::S_WAITCNT) {
        unsigned IEnc = II->getOperand(0).getImm();
        AMDGPU::Waitcnt IWait = AMDGPU::decodeWaitcnt(IV, IEnc);
        OldWait = OldWait.combined(IWait);
        if (!TrackedWaitcntSet.count(&*II))
          Wait = Wait.combined(IWait);
        unsigned NewEnc = AMDGPU::encodeWaitcnt(IV, Wait);
        if (IEnc != NewEnc) {
          II->getOperand(0).setImm(NewEnc);
          Modified = true;
        }
        Wait.VmCnt = ~0u;
        Wait.LgkmCnt = ~0u;
        Wait.ExpCnt = ~0u;
      } else {
        assert(II->getOpcode() == AMDGPU::S_WAITCNT_VSCNT);
        assert(II->getOperand(0).getReg() == AMDGPU::SGPR_NULL);

        unsigned ICnt = TII->getNamedOperand(*II, AMDGPU::OpName::simm16)
                        ->getImm();
        OldWait.VsCnt = std::min(OldWait.VsCnt, ICnt);
        if (!TrackedWaitcntSet.count(&*II))
          Wait.VsCnt = std::min(Wait.VsCnt, ICnt);
        if (Wait.VsCnt != ICnt) {
          TII->getNamedOperand(*II, AMDGPU::OpName::simm16)->setImm(Wait.VsCnt);
          Modified = true;
        }
        Wait.VsCnt = ~0u;
      }

      LLVM_DEBUG(dbgs() << "generateWaitcntInstBefore\n"
                        << "Old Instr: " << MI
                        << "New Instr: " << *II << '\n');

      if (!Wait.hasWait())
        return Modified;
    }
  }

  if (Wait.VmCnt != ~0u || Wait.LgkmCnt != ~0u || Wait.ExpCnt != ~0u) {
    unsigned Enc = AMDGPU::encodeWaitcnt(IV, Wait);
    auto SWaitInst = BuildMI(*MI.getParent(), MI.getIterator(),
                             MI.getDebugLoc(), TII->get(AMDGPU::S_WAITCNT))
                         .addImm(Enc);
    TrackedWaitcntSet.insert(SWaitInst);
    Modified = true;

    LLVM_DEBUG(dbgs() << "generateWaitcntInstBefore\n"
                      << "Old Instr: " << MI
                      << "New Instr: " << *SWaitInst << '\n');
  }

  if (Wait.VsCnt != ~0u) {
    assert(ST->hasVscnt());

    auto SWaitInst =
        BuildMI(*MI.getParent(), MI.getIterator(), MI.getDebugLoc(),
                TII->get(AMDGPU::S_WAITCNT_VSCNT))
            .addReg(AMDGPU::SGPR_NULL, RegState::Undef)
            .addImm(Wait.VsCnt);
    TrackedWaitcntSet.insert(SWaitInst);
    Modified = true;

    LLVM_DEBUG(dbgs() << "generateWaitcntInstBefore\n"
                      << "Old Instr: " << MI
                      << "New Instr: " << *SWaitInst << '\n');
  }

  return Modified;
}

// This is a flat memory operation. Check to see if it has memory
// tokens for both LDS and Memory, and if so mark it as a flat.
bool SIInsertWaitcnts::mayAccessLDSThroughFlat(const MachineInstr &MI) const {
  if (MI.memoperands_empty())
    return true;

  for (const MachineMemOperand *Memop : MI.memoperands()) {
    unsigned AS = Memop->getAddrSpace();
    if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS)
      return true;
  }

  return false;
}

void SIInsertWaitcnts::updateEventWaitcntAfter(MachineInstr &Inst,
                                               WaitcntBrackets *ScoreBrackets) {
  // Now look at the instruction opcode. If it is a memory access
  // instruction, update the upper-bound of the appropriate counter's
  // bracket and the destination operand scores.
  // TODO: Use the (TSFlags & SIInstrFlags::LGKM_CNT) property everywhere.
  if (TII->isDS(Inst) && TII->usesLGKM_CNT(Inst)) {
    if (TII->isAlwaysGDS(Inst.getOpcode()) ||
        TII->hasModifiersSet(Inst, AMDGPU::OpName::gds)) {
      ScoreBrackets->updateByEvent(TII, TRI, MRI, GDS_ACCESS, Inst);
      ScoreBrackets->updateByEvent(TII, TRI, MRI, GDS_GPR_LOCK, Inst);
    } else {
      ScoreBrackets->updateByEvent(TII, TRI, MRI, LDS_ACCESS, Inst);
    }
  } else if (TII->isFLAT(Inst)) {
    assert(Inst.mayLoadOrStore());

    if (TII->usesVM_CNT(Inst)) {
      if (!ST->hasVscnt())
        ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_ACCESS, Inst);
      else if (Inst.mayLoad() &&
               AMDGPU::getAtomicRetOp(Inst.getOpcode()) == -1)
        ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_READ_ACCESS, Inst);
      else
        ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_WRITE_ACCESS, Inst);
    }

    if (TII->usesLGKM_CNT(Inst)) {
      ScoreBrackets->updateByEvent(TII, TRI, MRI, LDS_ACCESS, Inst);

      // This is a flat memory operation, so note it - it will require
      // that both the VM and LGKM be flushed to zero if it is pending when
      // a VM or LGKM dependency occurs.
      if (mayAccessLDSThroughFlat(Inst))
        ScoreBrackets->setPendingFlat();
    }
  } else if (SIInstrInfo::isVMEM(Inst) &&
             // TODO: get a better carve out.
             Inst.getOpcode() != AMDGPU::BUFFER_WBINVL1 &&
             Inst.getOpcode() != AMDGPU::BUFFER_WBINVL1_SC &&
             Inst.getOpcode() != AMDGPU::BUFFER_WBINVL1_VOL &&
             Inst.getOpcode() != AMDGPU::BUFFER_GL0_INV &&
             Inst.getOpcode() != AMDGPU::BUFFER_GL1_INV) {
    if (!ST->hasVscnt())
      ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_ACCESS, Inst);
    else if ((Inst.mayLoad() &&
              AMDGPU::getAtomicRetOp(Inst.getOpcode()) == -1) ||
             /* IMAGE_GET_RESINFO / IMAGE_GET_LOD */
             (TII->isMIMG(Inst) && !Inst.mayLoad() && !Inst.mayStore()))
      ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_READ_ACCESS, Inst);
    else if (Inst.mayStore())
      ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_WRITE_ACCESS, Inst);

    if (ST->vmemWriteNeedsExpWaitcnt() &&
        (Inst.mayStore() || AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1)) {
      ScoreBrackets->updateByEvent(TII, TRI, MRI, VMW_GPR_LOCK, Inst);
    }
  } else if (TII->isSMRD(Inst)) {
    ScoreBrackets->updateByEvent(TII, TRI, MRI, SMEM_ACCESS, Inst);
  } else if (Inst.isCall()) {
    if (callWaitsOnFunctionReturn(Inst)) {
      // Act as a wait on everything
      ScoreBrackets->applyWaitcnt(AMDGPU::Waitcnt::allZero(ST->hasVscnt()));
    } else {
      // May need to way wait for anything.
      ScoreBrackets->applyWaitcnt(AMDGPU::Waitcnt());
    }
  } else {
    switch (Inst.getOpcode()) {
    case AMDGPU::S_SENDMSG:
    case AMDGPU::S_SENDMSGHALT:
      ScoreBrackets->updateByEvent(TII, TRI, MRI, SQ_MESSAGE, Inst);
      break;
    case AMDGPU::EXP:
    case AMDGPU::EXP_DONE: {
      int Imm = TII->getNamedOperand(Inst, AMDGPU::OpName::tgt)->getImm();
      if (Imm >= 32 && Imm <= 63)
        ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_PARAM_ACCESS, Inst);
      else if (Imm >= 12 && Imm <= 15)
        ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_POS_ACCESS, Inst);
      else
        ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_GPR_LOCK, Inst);
      break;
    }
    case AMDGPU::S_MEMTIME:
    case AMDGPU::S_MEMREALTIME:
      ScoreBrackets->updateByEvent(TII, TRI, MRI, SMEM_ACCESS, Inst);
      break;
    default:
      break;
    }
  }
}

bool WaitcntBrackets::mergeScore(const MergeInfo &M, unsigned &Score,
                                 unsigned OtherScore) {
  unsigned MyShifted = Score <= M.OldLB ? 0 : Score + M.MyShift;
  unsigned OtherShifted =
      OtherScore <= M.OtherLB ? 0 : OtherScore + M.OtherShift;
  Score = std::max(MyShifted, OtherShifted);
  return OtherShifted > MyShifted;
}

/// Merge the pending events and associater score brackets of \p Other into
/// this brackets status.
///
/// Returns whether the merge resulted in a change that requires tighter waits
/// (i.e. the merged brackets strictly dominate the original brackets).
bool WaitcntBrackets::merge(const WaitcntBrackets &Other) {
  bool StrictDom = false;

  VgprUB = std::max(VgprUB, Other.VgprUB);
  SgprUB = std::max(SgprUB, Other.SgprUB);

  for (auto T : inst_counter_types()) {
    // Merge event flags for this counter
    const bool OldOutOfOrder = counterOutOfOrder(T);
    const unsigned OldEvents = PendingEvents & WaitEventMaskForInst[T];
    const unsigned OtherEvents = Other.PendingEvents & WaitEventMaskForInst[T];
    if (OtherEvents & ~OldEvents)
      StrictDom = true;
    PendingEvents |= OtherEvents;

    // Merge scores for this counter
    const unsigned MyPending = ScoreUBs[T] - ScoreLBs[T];
    const unsigned OtherPending = Other.ScoreUBs[T] - Other.ScoreLBs[T];
    const unsigned NewUB = ScoreLBs[T] + std::max(MyPending, OtherPending);
    if (NewUB < ScoreLBs[T])
      report_fatal_error("waitcnt score overflow");

    MergeInfo M;
    M.OldLB = ScoreLBs[T];
    M.OtherLB = Other.ScoreLBs[T];
    M.MyShift = NewUB - ScoreUBs[T];
    M.OtherShift = NewUB - Other.ScoreUBs[T];

    ScoreUBs[T] = NewUB;

    StrictDom |= mergeScore(M, LastFlat[T], Other.LastFlat[T]);

    bool RegStrictDom = false;
    for (int J = 0; J <= VgprUB; J++) {
      RegStrictDom |= mergeScore(M, VgprScores[T][J], Other.VgprScores[T][J]);
    }

    if (T == VM_CNT) {
      for (int J = 0; J <= VgprUB; J++) {
        unsigned char NewVmemTypes = VgprVmemTypes[J] | Other.VgprVmemTypes[J];
        RegStrictDom |= NewVmemTypes != VgprVmemTypes[J];
        VgprVmemTypes[J] = NewVmemTypes;
      }
    }

    if (T == LGKM_CNT) {
      for (int J = 0; J <= SgprUB; J++) {
        RegStrictDom |= mergeScore(M, SgprScores[J], Other.SgprScores[J]);
      }
    }

    if (RegStrictDom && !OldOutOfOrder)
      StrictDom = true;
  }

  return StrictDom;
}

// Generate s_waitcnt instructions where needed.
bool SIInsertWaitcnts::insertWaitcntInBlock(MachineFunction &MF,
                                            MachineBasicBlock &Block,
                                            WaitcntBrackets &ScoreBrackets) {
  bool Modified = false;

  LLVM_DEBUG({
    dbgs() << "*** Block" << Block.getNumber() << " ***";
    ScoreBrackets.dump();
  });

  // Assume VCCZ is correct at basic block boundaries, unless and until we need
  // to handle cases where that is not true.
  bool VCCZCorrect = true;

  // Walk over the instructions.
  MachineInstr *OldWaitcntInstr = nullptr;

  for (MachineBasicBlock::instr_iterator Iter = Block.instr_begin(),
                                         E = Block.instr_end();
       Iter != E;) {
    MachineInstr &Inst = *Iter;

    // Track pre-existing waitcnts from earlier iterations.
    if (Inst.getOpcode() == AMDGPU::S_WAITCNT ||
        (Inst.getOpcode() == AMDGPU::S_WAITCNT_VSCNT &&
         Inst.getOperand(0).isReg() &&
         Inst.getOperand(0).getReg() == AMDGPU::SGPR_NULL)) {
      if (!OldWaitcntInstr)
        OldWaitcntInstr = &Inst;
      ++Iter;
      continue;
    }

    // We might need to restore vccz to its correct value for either of two
    // different reasons; see ST->hasReadVCCZBug() and
    // ST->partialVCCWritesUpdateVCCZ().
    bool RestoreVCCZ = false;
    if (readsVCCZ(Inst)) {
      if (!VCCZCorrect)
        RestoreVCCZ = true;
      else if (ST->hasReadVCCZBug()) {
        // There is a hardware bug on CI/SI where SMRD instruction may corrupt
        // vccz bit, so when we detect that an instruction may read from a
        // corrupt vccz bit, we need to:
        // 1. Insert s_waitcnt lgkm(0) to wait for all outstanding SMRD
        //    operations to complete.
        // 2. Restore the correct value of vccz by writing the current value
        //    of vcc back to vcc.
        if (ScoreBrackets.getScoreLB(LGKM_CNT) <
            ScoreBrackets.getScoreUB(LGKM_CNT) &&
            ScoreBrackets.hasPendingEvent(SMEM_ACCESS)) {
          RestoreVCCZ = true;
        }
      }
    }

    if (TII->isSMRD(Inst)) {
      for (const MachineMemOperand *Memop : Inst.memoperands()) {
        const Value *Ptr = Memop->getValue();
        SLoadAddresses.insert(std::make_pair(Ptr, Inst.getParent()));
      }
    }

    if (!ST->partialVCCWritesUpdateVCCZ()) {
      // Up to gfx9, writes to vcc_lo and vcc_hi don't update vccz.
      // Writes to vcc will fix it.
      if (Inst.definesRegister(AMDGPU::VCC_LO) ||
          Inst.definesRegister(AMDGPU::VCC_HI))
        VCCZCorrect = false;
      else if (Inst.definesRegister(AMDGPU::VCC))
        VCCZCorrect = true;
    }

    // Generate an s_waitcnt instruction to be placed before
    // cur_Inst, if needed.
    Modified |= generateWaitcntInstBefore(Inst, ScoreBrackets, OldWaitcntInstr);
    OldWaitcntInstr = nullptr;

    updateEventWaitcntAfter(Inst, &ScoreBrackets);

#if 0 // TODO: implement resource type check controlled by options with ub = LB.
    // If this instruction generates a S_SETVSKIP because it is an
    // indexed resource, and we are on Tahiti, then it will also force
    // an S_WAITCNT vmcnt(0)
    if (RequireCheckResourceType(Inst, context)) {
      // Force the score to as if an S_WAITCNT vmcnt(0) is emitted.
      ScoreBrackets->setScoreLB(VM_CNT,
      ScoreBrackets->getScoreUB(VM_CNT));
    }
#endif

    LLVM_DEBUG({
      Inst.print(dbgs());
      ScoreBrackets.dump();
    });

    // TODO: Remove this work-around after fixing the scheduler and enable the
    // assert above.
    if (RestoreVCCZ) {
      // Restore the vccz bit.  Any time a value is written to vcc, the vcc
      // bit is updated, so we can restore the bit by reading the value of
      // vcc and then writing it back to the register.
      BuildMI(Block, Inst, Inst.getDebugLoc(),
              TII->get(ST->isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64),
              TRI->getVCC())
          .addReg(TRI->getVCC());
      VCCZCorrect = true;
      Modified = true;
    }

    ++Iter;
  }

  return Modified;
}

bool SIInsertWaitcnts::runOnMachineFunction(MachineFunction &MF) {
  ST = &MF.getSubtarget<GCNSubtarget>();
  TII = ST->getInstrInfo();
  TRI = &TII->getRegisterInfo();
  MRI = &MF.getRegInfo();
  IV = AMDGPU::getIsaVersion(ST->getCPU());
  const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
  PDT = &getAnalysis<MachinePostDominatorTree>();

  ForceEmitZeroWaitcnts = ForceEmitZeroFlag;
  for (auto T : inst_counter_types())
    ForceEmitWaitcnt[T] = false;

  HardwareLimits.VmcntMax = AMDGPU::getVmcntBitMask(IV);
  HardwareLimits.ExpcntMax = AMDGPU::getExpcntBitMask(IV);
  HardwareLimits.LgkmcntMax = AMDGPU::getLgkmcntBitMask(IV);
  HardwareLimits.VscntMax = ST->hasVscnt() ? 63 : 0;

  unsigned NumVGPRsMax = ST->getAddressableNumVGPRs();
  unsigned NumSGPRsMax = ST->getAddressableNumSGPRs();
  assert(NumVGPRsMax <= SQ_MAX_PGM_VGPRS);
  assert(NumSGPRsMax <= SQ_MAX_PGM_SGPRS);

  RegisterEncoding.VGPR0 = TRI->getEncodingValue(AMDGPU::VGPR0);
  RegisterEncoding.VGPRL = RegisterEncoding.VGPR0 + NumVGPRsMax - 1;
  RegisterEncoding.SGPR0 = TRI->getEncodingValue(AMDGPU::SGPR0);
  RegisterEncoding.SGPRL = RegisterEncoding.SGPR0 + NumSGPRsMax - 1;

  TrackedWaitcntSet.clear();
  BlockInfos.clear();

  // Keep iterating over the blocks in reverse post order, inserting and
  // updating s_waitcnt where needed, until a fix point is reached.
  for (auto *MBB : ReversePostOrderTraversal<MachineFunction *>(&MF))
    BlockInfos.insert({MBB, BlockInfo(MBB)});

  std::unique_ptr<WaitcntBrackets> Brackets;
  bool Modified = false;
  bool Repeat;
  do {
    Repeat = false;

    for (auto BII = BlockInfos.begin(), BIE = BlockInfos.end(); BII != BIE;
         ++BII) {
      BlockInfo &BI = BII->second;
      if (!BI.Dirty)
        continue;

      if (BI.Incoming) {
        if (!Brackets)
          Brackets = std::make_unique<WaitcntBrackets>(*BI.Incoming);
        else
          *Brackets = *BI.Incoming;
      } else {
        if (!Brackets)
          Brackets = std::make_unique<WaitcntBrackets>(ST);
        else
          *Brackets = WaitcntBrackets(ST);
      }

      Modified |= insertWaitcntInBlock(MF, *BI.MBB, *Brackets);
      BI.Dirty = false;

      if (Brackets->hasPending()) {
        BlockInfo *MoveBracketsToSucc = nullptr;
        for (MachineBasicBlock *Succ : BI.MBB->successors()) {
          auto SuccBII = BlockInfos.find(Succ);
          BlockInfo &SuccBI = SuccBII->second;
          if (!SuccBI.Incoming) {
            SuccBI.Dirty = true;
            if (SuccBII <= BII)
              Repeat = true;
            if (!MoveBracketsToSucc) {
              MoveBracketsToSucc = &SuccBI;
            } else {
              SuccBI.Incoming = std::make_unique<WaitcntBrackets>(*Brackets);
            }
          } else if (SuccBI.Incoming->merge(*Brackets)) {
            SuccBI.Dirty = true;
            if (SuccBII <= BII)
              Repeat = true;
          }
        }
        if (MoveBracketsToSucc)
          MoveBracketsToSucc->Incoming = std::move(Brackets);
      }
    }
  } while (Repeat);

  SmallVector<MachineBasicBlock *, 4> EndPgmBlocks;

  bool HaveScalarStores = false;

  for (MachineFunction::iterator BI = MF.begin(), BE = MF.end(); BI != BE;
       ++BI) {
    MachineBasicBlock &MBB = *BI;

    for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); I != E;
         ++I) {
      if (!HaveScalarStores && TII->isScalarStore(*I))
        HaveScalarStores = true;

      if (I->getOpcode() == AMDGPU::S_ENDPGM ||
          I->getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG)
        EndPgmBlocks.push_back(&MBB);
    }
  }

  if (HaveScalarStores) {
    // If scalar writes are used, the cache must be flushed or else the next
    // wave to reuse the same scratch memory can be clobbered.
    //
    // Insert s_dcache_wb at wave termination points if there were any scalar
    // stores, and only if the cache hasn't already been flushed. This could be
    // improved by looking across blocks for flushes in postdominating blocks
    // from the stores but an explicitly requested flush is probably very rare.
    for (MachineBasicBlock *MBB : EndPgmBlocks) {
      bool SeenDCacheWB = false;

      for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E;
           ++I) {
        if (I->getOpcode() == AMDGPU::S_DCACHE_WB)
          SeenDCacheWB = true;
        else if (TII->isScalarStore(*I))
          SeenDCacheWB = false;

        // FIXME: It would be better to insert this before a waitcnt if any.
        if ((I->getOpcode() == AMDGPU::S_ENDPGM ||
             I->getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG) &&
            !SeenDCacheWB) {
          Modified = true;
          BuildMI(*MBB, I, I->getDebugLoc(), TII->get(AMDGPU::S_DCACHE_WB));
        }
      }
    }
  }

  if (!MFI->isEntryFunction()) {
    // Wait for any outstanding memory operations that the input registers may
    // depend on. We can't track them and it's better to the wait after the
    // costly call sequence.

    // TODO: Could insert earlier and schedule more liberally with operations
    // that only use caller preserved registers.
    MachineBasicBlock &EntryBB = MF.front();
    MachineBasicBlock::iterator I = EntryBB.begin();
    for (MachineBasicBlock::iterator E = EntryBB.end();
         I != E && (I->isPHI() || I->isMetaInstruction()); ++I)
      ;
    BuildMI(EntryBB, I, DebugLoc(), TII->get(AMDGPU::S_WAITCNT)).addImm(0);
    if (ST->hasVscnt())
      BuildMI(EntryBB, I, DebugLoc(), TII->get(AMDGPU::S_WAITCNT_VSCNT))
          .addReg(AMDGPU::SGPR_NULL, RegState::Undef)
          .addImm(0);

    Modified = true;
  }

  return Modified;
}