AMDGPUSubtarget.cpp 30.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
//===-- AMDGPUSubtarget.cpp - AMDGPU Subtarget Information ----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// Implements the AMDGPU specific subclass of TargetSubtarget.
//
//===----------------------------------------------------------------------===//

#include "AMDGPUSubtarget.h"
#include "AMDGPU.h"
#include "AMDGPUTargetMachine.h"
#include "AMDGPUCallLowering.h"
#include "AMDGPUInstructionSelector.h"
#include "AMDGPULegalizerInfo.h"
#include "AMDGPURegisterBankInfo.h"
#include "SIMachineFunctionInfo.h"
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/CodeGen/MachineScheduler.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/CodeGen/TargetFrameLowering.h"
#include <algorithm>

using namespace llvm;

#define DEBUG_TYPE "amdgpu-subtarget"

#define GET_SUBTARGETINFO_TARGET_DESC
#define GET_SUBTARGETINFO_CTOR
#define AMDGPUSubtarget GCNSubtarget
#include "AMDGPUGenSubtargetInfo.inc"
#define GET_SUBTARGETINFO_TARGET_DESC
#define GET_SUBTARGETINFO_CTOR
#undef AMDGPUSubtarget
#include "R600GenSubtargetInfo.inc"

static cl::opt<bool> DisablePowerSched(
  "amdgpu-disable-power-sched",
  cl::desc("Disable scheduling to minimize mAI power bursts"),
  cl::init(false));

static cl::opt<bool> EnableVGPRIndexMode(
  "amdgpu-vgpr-index-mode",
  cl::desc("Use GPR indexing mode instead of movrel for vector indexing"),
  cl::init(false));

GCNSubtarget::~GCNSubtarget() = default;

R600Subtarget &
R600Subtarget::initializeSubtargetDependencies(const Triple &TT,
                                               StringRef GPU, StringRef FS) {
  SmallString<256> FullFS("+promote-alloca,");
  FullFS += FS;
  ParseSubtargetFeatures(GPU, /*TuneCPU*/ GPU, FullFS);

  HasMulU24 = getGeneration() >= EVERGREEN;
  HasMulI24 = hasCaymanISA();

  return *this;
}

GCNSubtarget &
GCNSubtarget::initializeSubtargetDependencies(const Triple &TT,
                                              StringRef GPU, StringRef FS) {
  // Determine default and user-specified characteristics
  //
  // We want to be able to turn these off, but making this a subtarget feature
  // for SI has the unhelpful behavior that it unsets everything else if you
  // disable it.
  //
  // Similarly we want enable-prt-strict-null to be on by default and not to
  // unset everything else if it is disabled

  // Assuming ECC is enabled is the conservative default.
  SmallString<256> FullFS("+promote-alloca,+load-store-opt,+enable-ds128,+sram-ecc,+xnack,");

  if (isAmdHsaOS()) // Turn on FlatForGlobal for HSA.
    FullFS += "+flat-for-global,+unaligned-buffer-access,+trap-handler,";

  FullFS += "+enable-prt-strict-null,"; // This is overridden by a disable in FS

  // Disable mutually exclusive bits.
  if (FS.find_lower("+wavefrontsize") != StringRef::npos) {
    if (FS.find_lower("wavefrontsize16") == StringRef::npos)
      FullFS += "-wavefrontsize16,";
    if (FS.find_lower("wavefrontsize32") == StringRef::npos)
      FullFS += "-wavefrontsize32,";
    if (FS.find_lower("wavefrontsize64") == StringRef::npos)
      FullFS += "-wavefrontsize64,";
  }

  FullFS += FS;

  ParseSubtargetFeatures(GPU, /*TuneCPU*/ GPU, FullFS);

  // We don't support FP64 for EG/NI atm.
  assert(!hasFP64() || (getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS));

  // Unless +-flat-for-global is specified, turn on FlatForGlobal for all OS-es
  // on VI and newer hardware to avoid assertion failures due to missing ADDR64
  // variants of MUBUF instructions.
  if (!hasAddr64() && !FS.contains("flat-for-global")) {
    FlatForGlobal = true;
  }

  // Set defaults if needed.
  if (MaxPrivateElementSize == 0)
    MaxPrivateElementSize = 4;

  if (LDSBankCount == 0)
    LDSBankCount = 32;

  if (TT.getArch() == Triple::amdgcn) {
    if (LocalMemorySize == 0)
      LocalMemorySize = 32768;

    // Do something sensible for unspecified target.
    if (!HasMovrel && !HasVGPRIndexMode)
      HasMovrel = true;
  }

  // Don't crash on invalid devices.
  if (WavefrontSizeLog2 == 0)
    WavefrontSizeLog2 = 5;

  HasFminFmaxLegacy = getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS;

  // Disable XNACK on targets where it is not enabled by default unless it is
  // explicitly requested.
  if (!FS.contains("+xnack") && DoesNotSupportXNACK && EnableXNACK) {
    ToggleFeature(AMDGPU::FeatureXNACK);
    EnableXNACK = false;
  }

  // ECC is on by default, but turn it off if the hardware doesn't support it
  // anyway. This matters for the gfx9 targets with d16 loads, but don't support
  // ECC.
  if (DoesNotSupportSRAMECC && EnableSRAMECC) {
    ToggleFeature(AMDGPU::FeatureSRAMECC);
    EnableSRAMECC = false;
  }

  return *this;
}

AMDGPUSubtarget::AMDGPUSubtarget(const Triple &TT) :
  TargetTriple(TT),
  Has16BitInsts(false),
  HasMadMixInsts(false),
  HasMadMacF32Insts(false),
  HasDsSrc2Insts(false),
  HasSDWA(false),
  HasVOP3PInsts(false),
  HasMulI24(true),
  HasMulU24(true),
  HasInv2PiInlineImm(false),
  HasFminFmaxLegacy(true),
  EnablePromoteAlloca(false),
  HasTrigReducedRange(false),
  MaxWavesPerEU(10),
  LocalMemorySize(0),
  WavefrontSizeLog2(0)
  { }

GCNSubtarget::GCNSubtarget(const Triple &TT, StringRef GPU, StringRef FS,
                           const GCNTargetMachine &TM) :
    AMDGPUGenSubtargetInfo(TT, GPU, /*TuneCPU*/ GPU, FS),
    AMDGPUSubtarget(TT),
    TargetTriple(TT),
    Gen(TT.getOS() == Triple::AMDHSA ? SEA_ISLANDS : SOUTHERN_ISLANDS),
    InstrItins(getInstrItineraryForCPU(GPU)),
    LDSBankCount(0),
    MaxPrivateElementSize(0),

    FastFMAF32(false),
    FastDenormalF32(false),
    HalfRate64Ops(false),

    FlatForGlobal(false),
    AutoWaitcntBeforeBarrier(false),
    CodeObjectV3(false),
    UnalignedScratchAccess(false),
    UnalignedBufferAccess(false),
    UnalignedAccessMode(false),

    HasApertureRegs(false),
    EnableXNACK(false),
    DoesNotSupportXNACK(false),
    EnableCuMode(false),
    TrapHandler(false),

    EnableLoadStoreOpt(false),
    EnableUnsafeDSOffsetFolding(false),
    EnableSIScheduler(false),
    EnableDS128(false),
    EnablePRTStrictNull(false),
    DumpCode(false),

    FP64(false),
    GCN3Encoding(false),
    CIInsts(false),
    GFX8Insts(false),
    GFX9Insts(false),
    GFX10Insts(false),
    GFX10_3Insts(false),
    GFX7GFX8GFX9Insts(false),
    SGPRInitBug(false),
    HasSMemRealTime(false),
    HasIntClamp(false),
    HasFmaMixInsts(false),
    HasMovrel(false),
    HasVGPRIndexMode(false),
    HasScalarStores(false),
    HasScalarAtomics(false),
    HasSDWAOmod(false),
    HasSDWAScalar(false),
    HasSDWASdst(false),
    HasSDWAMac(false),
    HasSDWAOutModsVOPC(false),
    HasDPP(false),
    HasDPP8(false),
    HasR128A16(false),
    HasGFX10A16(false),
    HasG16(false),
    HasNSAEncoding(false),
    GFX10_BEncoding(false),
    HasDLInsts(false),
    HasDot1Insts(false),
    HasDot2Insts(false),
    HasDot3Insts(false),
    HasDot4Insts(false),
    HasDot5Insts(false),
    HasDot6Insts(false),
    HasMAIInsts(false),
    HasPkFmacF16Inst(false),
    HasAtomicFaddInsts(false),
    EnableSRAMECC(false),
    DoesNotSupportSRAMECC(false),
    HasNoSdstCMPX(false),
    HasVscnt(false),
    HasGetWaveIdInst(false),
    HasSMemTimeInst(false),
    HasRegisterBanking(false),
    HasVOP3Literal(false),
    HasNoDataDepHazard(false),
    FlatAddressSpace(false),
    FlatInstOffsets(false),
    FlatGlobalInsts(false),
    FlatScratchInsts(false),
    ScalarFlatScratchInsts(false),
    AddNoCarryInsts(false),
    HasUnpackedD16VMem(false),
    LDSMisalignedBug(false),
    HasMFMAInlineLiteralBug(false),
    UnalignedDSAccess(false),

    ScalarizeGlobal(false),

    HasVcmpxPermlaneHazard(false),
    HasVMEMtoScalarWriteHazard(false),
    HasSMEMtoVectorWriteHazard(false),
    HasInstFwdPrefetchBug(false),
    HasVcmpxExecWARHazard(false),
    HasLdsBranchVmemWARHazard(false),
    HasNSAtoVMEMBug(false),
    HasOffset3fBug(false),
    HasFlatSegmentOffsetBug(false),

    FeatureDisable(false),
    InstrInfo(initializeSubtargetDependencies(TT, GPU, FS)),
    TLInfo(TM, *this),
    FrameLowering(TargetFrameLowering::StackGrowsUp, getStackAlignment(), 0) {
  MaxWavesPerEU = AMDGPU::IsaInfo::getMaxWavesPerEU(this);
  CallLoweringInfo.reset(new AMDGPUCallLowering(*getTargetLowering()));
  InlineAsmLoweringInfo.reset(new InlineAsmLowering(getTargetLowering()));
  Legalizer.reset(new AMDGPULegalizerInfo(*this, TM));
  RegBankInfo.reset(new AMDGPURegisterBankInfo(*this));
  InstSelector.reset(new AMDGPUInstructionSelector(
  *this, *static_cast<AMDGPURegisterBankInfo *>(RegBankInfo.get()), TM));
}

unsigned GCNSubtarget::getConstantBusLimit(unsigned Opcode) const {
  if (getGeneration() < GFX10)
    return 1;

  switch (Opcode) {
  case AMDGPU::V_LSHLREV_B64:
  case AMDGPU::V_LSHLREV_B64_gfx10:
  case AMDGPU::V_LSHL_B64:
  case AMDGPU::V_LSHRREV_B64:
  case AMDGPU::V_LSHRREV_B64_gfx10:
  case AMDGPU::V_LSHR_B64:
  case AMDGPU::V_ASHRREV_I64:
  case AMDGPU::V_ASHRREV_I64_gfx10:
  case AMDGPU::V_ASHR_I64:
    return 1;
  }

  return 2;
}

unsigned AMDGPUSubtarget::getMaxLocalMemSizeWithWaveCount(unsigned NWaves,
  const Function &F) const {
  if (NWaves == 1)
    return getLocalMemorySize();
  unsigned WorkGroupSize = getFlatWorkGroupSizes(F).second;
  unsigned WorkGroupsPerCu = getMaxWorkGroupsPerCU(WorkGroupSize);
  if (!WorkGroupsPerCu)
    return 0;
  unsigned MaxWaves = getMaxWavesPerEU();
  return getLocalMemorySize() * MaxWaves / WorkGroupsPerCu / NWaves;
}

// FIXME: Should return min,max range.
unsigned AMDGPUSubtarget::getOccupancyWithLocalMemSize(uint32_t Bytes,
  const Function &F) const {
  const unsigned MaxWorkGroupSize = getFlatWorkGroupSizes(F).second;
  const unsigned MaxWorkGroupsPerCu = getMaxWorkGroupsPerCU(MaxWorkGroupSize);
  if (!MaxWorkGroupsPerCu)
    return 0;

  const unsigned WaveSize = getWavefrontSize();

  // FIXME: Do we need to account for alignment requirement of LDS rounding the
  // size up?
  // Compute restriction based on LDS usage
  unsigned NumGroups = getLocalMemorySize() / (Bytes ? Bytes : 1u);

  // This can be queried with more LDS than is possible, so just assume the
  // worst.
  if (NumGroups == 0)
    return 1;

  NumGroups = std::min(MaxWorkGroupsPerCu, NumGroups);

  // Round to the number of waves.
  const unsigned MaxGroupNumWaves = (MaxWorkGroupSize + WaveSize - 1) / WaveSize;
  unsigned MaxWaves = NumGroups * MaxGroupNumWaves;

  // Clamp to the maximum possible number of waves.
  MaxWaves = std::min(MaxWaves, getMaxWavesPerEU());

  // FIXME: Needs to be a multiple of the group size?
  //MaxWaves = MaxGroupNumWaves * (MaxWaves / MaxGroupNumWaves);

  assert(MaxWaves > 0 && MaxWaves <= getMaxWavesPerEU() &&
         "computed invalid occupancy");
  return MaxWaves;
}

unsigned
AMDGPUSubtarget::getOccupancyWithLocalMemSize(const MachineFunction &MF) const {
  const auto *MFI = MF.getInfo<SIMachineFunctionInfo>();
  return getOccupancyWithLocalMemSize(MFI->getLDSSize(), MF.getFunction());
}

std::pair<unsigned, unsigned>
AMDGPUSubtarget::getDefaultFlatWorkGroupSize(CallingConv::ID CC) const {
  switch (CC) {
  case CallingConv::AMDGPU_VS:
  case CallingConv::AMDGPU_LS:
  case CallingConv::AMDGPU_HS:
  case CallingConv::AMDGPU_ES:
  case CallingConv::AMDGPU_GS:
  case CallingConv::AMDGPU_PS:
    return std::make_pair(1, getWavefrontSize());
  default:
    return std::make_pair(1u, getMaxFlatWorkGroupSize());
  }
}

std::pair<unsigned, unsigned> AMDGPUSubtarget::getFlatWorkGroupSizes(
  const Function &F) const {
  // Default minimum/maximum flat work group sizes.
  std::pair<unsigned, unsigned> Default =
    getDefaultFlatWorkGroupSize(F.getCallingConv());

  // Requested minimum/maximum flat work group sizes.
  std::pair<unsigned, unsigned> Requested = AMDGPU::getIntegerPairAttribute(
    F, "amdgpu-flat-work-group-size", Default);

  // Make sure requested minimum is less than requested maximum.
  if (Requested.first > Requested.second)
    return Default;

  // Make sure requested values do not violate subtarget's specifications.
  if (Requested.first < getMinFlatWorkGroupSize())
    return Default;
  if (Requested.second > getMaxFlatWorkGroupSize())
    return Default;

  return Requested;
}

std::pair<unsigned, unsigned> AMDGPUSubtarget::getWavesPerEU(
  const Function &F) const {
  // Default minimum/maximum number of waves per execution unit.
  std::pair<unsigned, unsigned> Default(1, getMaxWavesPerEU());

  // Default/requested minimum/maximum flat work group sizes.
  std::pair<unsigned, unsigned> FlatWorkGroupSizes = getFlatWorkGroupSizes(F);

  // If minimum/maximum flat work group sizes were explicitly requested using
  // "amdgpu-flat-work-group-size" attribute, then set default minimum/maximum
  // number of waves per execution unit to values implied by requested
  // minimum/maximum flat work group sizes.
  unsigned MinImpliedByFlatWorkGroupSize =
    getWavesPerEUForWorkGroup(FlatWorkGroupSizes.second);
  Default.first = MinImpliedByFlatWorkGroupSize;
  bool RequestedFlatWorkGroupSize =
      F.hasFnAttribute("amdgpu-flat-work-group-size");

  // Requested minimum/maximum number of waves per execution unit.
  std::pair<unsigned, unsigned> Requested = AMDGPU::getIntegerPairAttribute(
    F, "amdgpu-waves-per-eu", Default, true);

  // Make sure requested minimum is less than requested maximum.
  if (Requested.second && Requested.first > Requested.second)
    return Default;

  // Make sure requested values do not violate subtarget's specifications.
  if (Requested.first < getMinWavesPerEU() ||
      Requested.second > getMaxWavesPerEU())
    return Default;

  // Make sure requested values are compatible with values implied by requested
  // minimum/maximum flat work group sizes.
  if (RequestedFlatWorkGroupSize &&
      Requested.first < MinImpliedByFlatWorkGroupSize)
    return Default;

  return Requested;
}

static unsigned getReqdWorkGroupSize(const Function &Kernel, unsigned Dim) {
  auto Node = Kernel.getMetadata("reqd_work_group_size");
  if (Node && Node->getNumOperands() == 3)
    return mdconst::extract<ConstantInt>(Node->getOperand(Dim))->getZExtValue();
  return std::numeric_limits<unsigned>::max();
}

unsigned AMDGPUSubtarget::getMaxWorkitemID(const Function &Kernel,
                                           unsigned Dimension) const {
  unsigned ReqdSize = getReqdWorkGroupSize(Kernel, Dimension);
  if (ReqdSize != std::numeric_limits<unsigned>::max())
    return ReqdSize - 1;
  return getFlatWorkGroupSizes(Kernel).second - 1;
}

bool AMDGPUSubtarget::makeLIDRangeMetadata(Instruction *I) const {
  Function *Kernel = I->getParent()->getParent();
  unsigned MinSize = 0;
  unsigned MaxSize = getFlatWorkGroupSizes(*Kernel).second;
  bool IdQuery = false;

  // If reqd_work_group_size is present it narrows value down.
  if (auto *CI = dyn_cast<CallInst>(I)) {
    const Function *F = CI->getCalledFunction();
    if (F) {
      unsigned Dim = UINT_MAX;
      switch (F->getIntrinsicID()) {
      case Intrinsic::amdgcn_workitem_id_x:
      case Intrinsic::r600_read_tidig_x:
        IdQuery = true;
        LLVM_FALLTHROUGH;
      case Intrinsic::r600_read_local_size_x:
        Dim = 0;
        break;
      case Intrinsic::amdgcn_workitem_id_y:
      case Intrinsic::r600_read_tidig_y:
        IdQuery = true;
        LLVM_FALLTHROUGH;
      case Intrinsic::r600_read_local_size_y:
        Dim = 1;
        break;
      case Intrinsic::amdgcn_workitem_id_z:
      case Intrinsic::r600_read_tidig_z:
        IdQuery = true;
        LLVM_FALLTHROUGH;
      case Intrinsic::r600_read_local_size_z:
        Dim = 2;
        break;
      default:
        break;
      }

      if (Dim <= 3) {
        unsigned ReqdSize = getReqdWorkGroupSize(*Kernel, Dim);
        if (ReqdSize != std::numeric_limits<unsigned>::max())
          MinSize = MaxSize = ReqdSize;
      }
    }
  }

  if (!MaxSize)
    return false;

  // Range metadata is [Lo, Hi). For ID query we need to pass max size
  // as Hi. For size query we need to pass Hi + 1.
  if (IdQuery)
    MinSize = 0;
  else
    ++MaxSize;

  MDBuilder MDB(I->getContext());
  MDNode *MaxWorkGroupSizeRange = MDB.createRange(APInt(32, MinSize),
                                                  APInt(32, MaxSize));
  I->setMetadata(LLVMContext::MD_range, MaxWorkGroupSizeRange);
  return true;
}

uint64_t AMDGPUSubtarget::getExplicitKernArgSize(const Function &F,
                                                 Align &MaxAlign) const {
  assert(F.getCallingConv() == CallingConv::AMDGPU_KERNEL ||
         F.getCallingConv() == CallingConv::SPIR_KERNEL);

  const DataLayout &DL = F.getParent()->getDataLayout();
  uint64_t ExplicitArgBytes = 0;
  MaxAlign = Align(1);

  for (const Argument &Arg : F.args()) {
    const bool IsByRef = Arg.hasByRefAttr();
    Type *ArgTy = IsByRef ? Arg.getParamByRefType() : Arg.getType();
    MaybeAlign Alignment = IsByRef ? Arg.getParamAlign() : None;
    if (!Alignment)
      Alignment = DL.getABITypeAlign(ArgTy);

    uint64_t AllocSize = DL.getTypeAllocSize(ArgTy);
    ExplicitArgBytes = alignTo(ExplicitArgBytes, Alignment) + AllocSize;
    MaxAlign = max(MaxAlign, Alignment);
  }

  return ExplicitArgBytes;
}

unsigned AMDGPUSubtarget::getKernArgSegmentSize(const Function &F,
                                                Align &MaxAlign) const {
  uint64_t ExplicitArgBytes = getExplicitKernArgSize(F, MaxAlign);

  unsigned ExplicitOffset = getExplicitKernelArgOffset(F);

  uint64_t TotalSize = ExplicitOffset + ExplicitArgBytes;
  unsigned ImplicitBytes = getImplicitArgNumBytes(F);
  if (ImplicitBytes != 0) {
    const Align Alignment = getAlignmentForImplicitArgPtr();
    TotalSize = alignTo(ExplicitArgBytes, Alignment) + ImplicitBytes;
  }

  // Being able to dereference past the end is useful for emitting scalar loads.
  return alignTo(TotalSize, 4);
}

R600Subtarget::R600Subtarget(const Triple &TT, StringRef GPU, StringRef FS,
                             const TargetMachine &TM) :
  R600GenSubtargetInfo(TT, GPU, /*TuneCPU*/GPU, FS),
  AMDGPUSubtarget(TT),
  InstrInfo(*this),
  FrameLowering(TargetFrameLowering::StackGrowsUp, getStackAlignment(), 0),
  FMA(false),
  CaymanISA(false),
  CFALUBug(false),
  HasVertexCache(false),
  R600ALUInst(false),
  FP64(false),
  TexVTXClauseSize(0),
  Gen(R600),
  TLInfo(TM, initializeSubtargetDependencies(TT, GPU, FS)),
  InstrItins(getInstrItineraryForCPU(GPU)) { }

void GCNSubtarget::overrideSchedPolicy(MachineSchedPolicy &Policy,
                                      unsigned NumRegionInstrs) const {
  // Track register pressure so the scheduler can try to decrease
  // pressure once register usage is above the threshold defined by
  // SIRegisterInfo::getRegPressureSetLimit()
  Policy.ShouldTrackPressure = true;

  // Enabling both top down and bottom up scheduling seems to give us less
  // register spills than just using one of these approaches on its own.
  Policy.OnlyTopDown = false;
  Policy.OnlyBottomUp = false;

  // Enabling ShouldTrackLaneMasks crashes the SI Machine Scheduler.
  if (!enableSIScheduler())
    Policy.ShouldTrackLaneMasks = true;
}

bool GCNSubtarget::hasMadF16() const {
  return InstrInfo.pseudoToMCOpcode(AMDGPU::V_MAD_F16) != -1;
}

bool GCNSubtarget::useVGPRIndexMode() const {
  return !hasMovrel() || (EnableVGPRIndexMode && hasVGPRIndexMode());
}

unsigned GCNSubtarget::getOccupancyWithNumSGPRs(unsigned SGPRs) const {
  if (getGeneration() >= AMDGPUSubtarget::GFX10)
    return getMaxWavesPerEU();

  if (getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) {
    if (SGPRs <= 80)
      return 10;
    if (SGPRs <= 88)
      return 9;
    if (SGPRs <= 100)
      return 8;
    return 7;
  }
  if (SGPRs <= 48)
    return 10;
  if (SGPRs <= 56)
    return 9;
  if (SGPRs <= 64)
    return 8;
  if (SGPRs <= 72)
    return 7;
  if (SGPRs <= 80)
    return 6;
  return 5;
}

unsigned GCNSubtarget::getOccupancyWithNumVGPRs(unsigned VGPRs) const {
  unsigned MaxWaves = getMaxWavesPerEU();
  unsigned Granule = getVGPRAllocGranule();
  if (VGPRs < Granule)
    return MaxWaves;
  unsigned RoundedRegs = ((VGPRs + Granule - 1) / Granule) * Granule;
  return std::min(std::max(getTotalNumVGPRs() / RoundedRegs, 1u), MaxWaves);
}

unsigned GCNSubtarget::getReservedNumSGPRs(const MachineFunction &MF) const {
  const SIMachineFunctionInfo &MFI = *MF.getInfo<SIMachineFunctionInfo>();
  if (getGeneration() >= AMDGPUSubtarget::GFX10)
    return 2; // VCC. FLAT_SCRATCH and XNACK are no longer in SGPRs.

  if (MFI.hasFlatScratchInit()) {
    if (getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
      return 6; // FLAT_SCRATCH, XNACK, VCC (in that order).
    if (getGeneration() == AMDGPUSubtarget::SEA_ISLANDS)
      return 4; // FLAT_SCRATCH, VCC (in that order).
  }

  if (isXNACKEnabled())
    return 4; // XNACK, VCC (in that order).
  return 2; // VCC.
}

unsigned GCNSubtarget::computeOccupancy(const Function &F, unsigned LDSSize,
                                        unsigned NumSGPRs,
                                        unsigned NumVGPRs) const {
  unsigned Occupancy =
    std::min(getMaxWavesPerEU(),
             getOccupancyWithLocalMemSize(LDSSize, F));
  if (NumSGPRs)
    Occupancy = std::min(Occupancy, getOccupancyWithNumSGPRs(NumSGPRs));
  if (NumVGPRs)
    Occupancy = std::min(Occupancy, getOccupancyWithNumVGPRs(NumVGPRs));
  return Occupancy;
}

unsigned GCNSubtarget::getMaxNumSGPRs(const MachineFunction &MF) const {
  const Function &F = MF.getFunction();
  const SIMachineFunctionInfo &MFI = *MF.getInfo<SIMachineFunctionInfo>();

  // Compute maximum number of SGPRs function can use using default/requested
  // minimum number of waves per execution unit.
  std::pair<unsigned, unsigned> WavesPerEU = MFI.getWavesPerEU();
  unsigned MaxNumSGPRs = getMaxNumSGPRs(WavesPerEU.first, false);
  unsigned MaxAddressableNumSGPRs = getMaxNumSGPRs(WavesPerEU.first, true);

  // Check if maximum number of SGPRs was explicitly requested using
  // "amdgpu-num-sgpr" attribute.
  if (F.hasFnAttribute("amdgpu-num-sgpr")) {
    unsigned Requested = AMDGPU::getIntegerAttribute(
      F, "amdgpu-num-sgpr", MaxNumSGPRs);

    // Make sure requested value does not violate subtarget's specifications.
    if (Requested && (Requested <= getReservedNumSGPRs(MF)))
      Requested = 0;

    // If more SGPRs are required to support the input user/system SGPRs,
    // increase to accommodate them.
    //
    // FIXME: This really ends up using the requested number of SGPRs + number
    // of reserved special registers in total. Theoretically you could re-use
    // the last input registers for these special registers, but this would
    // require a lot of complexity to deal with the weird aliasing.
    unsigned InputNumSGPRs = MFI.getNumPreloadedSGPRs();
    if (Requested && Requested < InputNumSGPRs)
      Requested = InputNumSGPRs;

    // Make sure requested value is compatible with values implied by
    // default/requested minimum/maximum number of waves per execution unit.
    if (Requested && Requested > getMaxNumSGPRs(WavesPerEU.first, false))
      Requested = 0;
    if (WavesPerEU.second &&
        Requested && Requested < getMinNumSGPRs(WavesPerEU.second))
      Requested = 0;

    if (Requested)
      MaxNumSGPRs = Requested;
  }

  if (hasSGPRInitBug())
    MaxNumSGPRs = AMDGPU::IsaInfo::FIXED_NUM_SGPRS_FOR_INIT_BUG;

  return std::min(MaxNumSGPRs - getReservedNumSGPRs(MF),
                  MaxAddressableNumSGPRs);
}

unsigned GCNSubtarget::getMaxNumVGPRs(const MachineFunction &MF) const {
  const Function &F = MF.getFunction();
  const SIMachineFunctionInfo &MFI = *MF.getInfo<SIMachineFunctionInfo>();

  // Compute maximum number of VGPRs function can use using default/requested
  // minimum number of waves per execution unit.
  std::pair<unsigned, unsigned> WavesPerEU = MFI.getWavesPerEU();
  unsigned MaxNumVGPRs = getMaxNumVGPRs(WavesPerEU.first);

  // Check if maximum number of VGPRs was explicitly requested using
  // "amdgpu-num-vgpr" attribute.
  if (F.hasFnAttribute("amdgpu-num-vgpr")) {
    unsigned Requested = AMDGPU::getIntegerAttribute(
      F, "amdgpu-num-vgpr", MaxNumVGPRs);

    // Make sure requested value is compatible with values implied by
    // default/requested minimum/maximum number of waves per execution unit.
    if (Requested && Requested > getMaxNumVGPRs(WavesPerEU.first))
      Requested = 0;
    if (WavesPerEU.second &&
        Requested && Requested < getMinNumVGPRs(WavesPerEU.second))
      Requested = 0;

    if (Requested)
      MaxNumVGPRs = Requested;
  }

  return MaxNumVGPRs;
}

void GCNSubtarget::adjustSchedDependency(SUnit *Def, int DefOpIdx, SUnit *Use,
                                         int UseOpIdx, SDep &Dep) const {
  if (Dep.getKind() != SDep::Kind::Data || !Dep.getReg() ||
      !Def->isInstr() || !Use->isInstr())
    return;

  MachineInstr *DefI = Def->getInstr();
  MachineInstr *UseI = Use->getInstr();

  if (DefI->isBundle()) {
    const SIRegisterInfo *TRI = getRegisterInfo();
    auto Reg = Dep.getReg();
    MachineBasicBlock::const_instr_iterator I(DefI->getIterator());
    MachineBasicBlock::const_instr_iterator E(DefI->getParent()->instr_end());
    unsigned Lat = 0;
    for (++I; I != E && I->isBundledWithPred(); ++I) {
      if (I->modifiesRegister(Reg, TRI))
        Lat = InstrInfo.getInstrLatency(getInstrItineraryData(), *I);
      else if (Lat)
        --Lat;
    }
    Dep.setLatency(Lat);
  } else if (UseI->isBundle()) {
    const SIRegisterInfo *TRI = getRegisterInfo();
    auto Reg = Dep.getReg();
    MachineBasicBlock::const_instr_iterator I(UseI->getIterator());
    MachineBasicBlock::const_instr_iterator E(UseI->getParent()->instr_end());
    unsigned Lat = InstrInfo.getInstrLatency(getInstrItineraryData(), *DefI);
    for (++I; I != E && I->isBundledWithPred() && Lat; ++I) {
      if (I->readsRegister(Reg, TRI))
        break;
      --Lat;
    }
    Dep.setLatency(Lat);
  }
}

namespace {
struct FillMFMAShadowMutation : ScheduleDAGMutation {
  const SIInstrInfo *TII;

  ScheduleDAGMI *DAG;

  FillMFMAShadowMutation(const SIInstrInfo *tii) : TII(tii) {}

  bool isSALU(const SUnit *SU) const {
    const MachineInstr *MI = SU->getInstr();
    return MI && TII->isSALU(*MI) && !MI->isTerminator();
  }

  bool isVALU(const SUnit *SU) const {
    const MachineInstr *MI = SU->getInstr();
    return MI && TII->isVALU(*MI);
  }

  bool canAddEdge(const SUnit *Succ, const SUnit *Pred) const {
    if (Pred->NodeNum < Succ->NodeNum)
      return true;

    SmallVector<const SUnit*, 64> Succs({Succ}), Preds({Pred});

    for (unsigned I = 0; I < Succs.size(); ++I) {
      for (const SDep &SI : Succs[I]->Succs) {
        const SUnit *SU = SI.getSUnit();
        if (SU != Succs[I] && llvm::find(Succs, SU) == Succs.end())
          Succs.push_back(SU);
      }
    }

    SmallPtrSet<const SUnit*, 32> Visited;
    while (!Preds.empty()) {
      const SUnit *SU = Preds.pop_back_val();
      if (llvm::find(Succs, SU) != Succs.end())
        return false;
      Visited.insert(SU);
      for (const SDep &SI : SU->Preds)
        if (SI.getSUnit() != SU && !Visited.count(SI.getSUnit()))
          Preds.push_back(SI.getSUnit());
    }

    return true;
  }

  // Link as much SALU intructions in chain as possible. Return the size
  // of the chain. Links up to MaxChain instructions.
  unsigned linkSALUChain(SUnit *From, SUnit *To, unsigned MaxChain,
                         SmallPtrSetImpl<SUnit *> &Visited) const {
    SmallVector<SUnit *, 8> Worklist({To});
    unsigned Linked = 0;

    while (!Worklist.empty() && MaxChain-- > 0) {
      SUnit *SU = Worklist.pop_back_val();
      if (!Visited.insert(SU).second)
        continue;

      LLVM_DEBUG(dbgs() << "Inserting edge from\n" ; DAG->dumpNode(*From);
                 dbgs() << "to\n"; DAG->dumpNode(*SU); dbgs() << '\n');

      if (SU->addPred(SDep(From, SDep::Artificial), false))
        ++Linked;

      for (SDep &SI : From->Succs) {
        SUnit *SUv = SI.getSUnit();
        if (SUv != From && isVALU(SUv) && canAddEdge(SUv, SU))
          SUv->addPred(SDep(SU, SDep::Artificial), false);
      }

      for (SDep &SI : SU->Succs) {
        SUnit *Succ = SI.getSUnit();
        if (Succ != SU && isSALU(Succ) && canAddEdge(From, Succ))
          Worklist.push_back(Succ);
      }
    }

    return Linked;
  }

  void apply(ScheduleDAGInstrs *DAGInstrs) override {
    const GCNSubtarget &ST = DAGInstrs->MF.getSubtarget<GCNSubtarget>();
    if (!ST.hasMAIInsts() || DisablePowerSched)
      return;
    DAG = static_cast<ScheduleDAGMI*>(DAGInstrs);
    const TargetSchedModel *TSchedModel = DAGInstrs->getSchedModel();
    if (!TSchedModel || DAG->SUnits.empty())
      return;

    // Scan for MFMA long latency instructions and try to add a dependency
    // of available SALU instructions to give them a chance to fill MFMA
    // shadow. That is desirable to fill MFMA shadow with SALU instructions
    // rather than VALU to prevent power consumption bursts and throttle.
    auto LastSALU = DAG->SUnits.begin();
    auto E = DAG->SUnits.end();
    SmallPtrSet<SUnit*, 32> Visited;
    for (SUnit &SU : DAG->SUnits) {
      MachineInstr &MAI = *SU.getInstr();
      if (!TII->isMAI(MAI) ||
           MAI.getOpcode() == AMDGPU::V_ACCVGPR_WRITE_B32 ||
           MAI.getOpcode() == AMDGPU::V_ACCVGPR_READ_B32)
        continue;

      unsigned Lat = TSchedModel->computeInstrLatency(&MAI) - 1;

      LLVM_DEBUG(dbgs() << "Found MFMA: "; DAG->dumpNode(SU);
                 dbgs() << "Need " << Lat
                        << " instructions to cover latency.\n");

      // Find up to Lat independent scalar instructions as early as
      // possible such that they can be scheduled after this MFMA.
      for ( ; Lat && LastSALU != E; ++LastSALU) {
        if (Visited.count(&*LastSALU))
          continue;

        if (!isSALU(&*LastSALU) || !canAddEdge(&*LastSALU, &SU))
          continue;

        Lat -= linkSALUChain(&SU, &*LastSALU, Lat, Visited);
      }
    }
  }
};
} // namespace

void GCNSubtarget::getPostRAMutations(
    std::vector<std::unique_ptr<ScheduleDAGMutation>> &Mutations) const {
  Mutations.push_back(std::make_unique<FillMFMAShadowMutation>(&InstrInfo));
}

const AMDGPUSubtarget &AMDGPUSubtarget::get(const MachineFunction &MF) {
  if (MF.getTarget().getTargetTriple().getArch() == Triple::amdgcn)
    return static_cast<const AMDGPUSubtarget&>(MF.getSubtarget<GCNSubtarget>());
  else
    return static_cast<const AMDGPUSubtarget&>(MF.getSubtarget<R600Subtarget>());
}

const AMDGPUSubtarget &AMDGPUSubtarget::get(const TargetMachine &TM, const Function &F) {
  if (TM.getTargetTriple().getArch() == Triple::amdgcn)
    return static_cast<const AMDGPUSubtarget&>(TM.getSubtarget<GCNSubtarget>(F));
  else
    return static_cast<const AMDGPUSubtarget&>(TM.getSubtarget<R600Subtarget>(F));
}