AMDGPUCodeGenPrepare.cpp
46.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
//===-- AMDGPUCodeGenPrepare.cpp ------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// This pass does misc. AMDGPU optimizations on IR before instruction
/// selection.
//
//===----------------------------------------------------------------------===//
#include "AMDGPU.h"
#include "AMDGPUSubtarget.h"
#include "AMDGPUTargetMachine.h"
#include "llvm/ADT/FloatingPointMode.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/LegacyDivergenceAnalysis.h"
#include "llvm/Analysis/Loads.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstVisitor.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Transforms/Utils/IntegerDivision.h"
#include <cassert>
#include <iterator>
#define DEBUG_TYPE "amdgpu-codegenprepare"
using namespace llvm;
namespace {
static cl::opt<bool> WidenLoads(
"amdgpu-codegenprepare-widen-constant-loads",
cl::desc("Widen sub-dword constant address space loads in AMDGPUCodeGenPrepare"),
cl::ReallyHidden,
cl::init(false));
static cl::opt<bool> Widen16BitOps(
"amdgpu-codegenprepare-widen-16-bit-ops",
cl::desc("Widen uniform 16-bit instructions to 32-bit in AMDGPUCodeGenPrepare"),
cl::ReallyHidden,
cl::init(true));
static cl::opt<bool> UseMul24Intrin(
"amdgpu-codegenprepare-mul24",
cl::desc("Introduce mul24 intrinsics in AMDGPUCodeGenPrepare"),
cl::ReallyHidden,
cl::init(true));
// Legalize 64-bit division by using the generic IR expansion.
static cl::opt<bool> ExpandDiv64InIR(
"amdgpu-codegenprepare-expand-div64",
cl::desc("Expand 64-bit division in AMDGPUCodeGenPrepare"),
cl::ReallyHidden,
cl::init(false));
// Leave all division operations as they are. This supersedes ExpandDiv64InIR
// and is used for testing the legalizer.
static cl::opt<bool> DisableIDivExpand(
"amdgpu-codegenprepare-disable-idiv-expansion",
cl::desc("Prevent expanding integer division in AMDGPUCodeGenPrepare"),
cl::ReallyHidden,
cl::init(false));
class AMDGPUCodeGenPrepare : public FunctionPass,
public InstVisitor<AMDGPUCodeGenPrepare, bool> {
const GCNSubtarget *ST = nullptr;
AssumptionCache *AC = nullptr;
DominatorTree *DT = nullptr;
LegacyDivergenceAnalysis *DA = nullptr;
Module *Mod = nullptr;
const DataLayout *DL = nullptr;
bool HasUnsafeFPMath = false;
bool HasFP32Denormals = false;
/// Copies exact/nsw/nuw flags (if any) from binary operation \p I to
/// binary operation \p V.
///
/// \returns Binary operation \p V.
/// \returns \p T's base element bit width.
unsigned getBaseElementBitWidth(const Type *T) const;
/// \returns Equivalent 32 bit integer type for given type \p T. For example,
/// if \p T is i7, then i32 is returned; if \p T is <3 x i12>, then <3 x i32>
/// is returned.
Type *getI32Ty(IRBuilder<> &B, const Type *T) const;
/// \returns True if binary operation \p I is a signed binary operation, false
/// otherwise.
bool isSigned(const BinaryOperator &I) const;
/// \returns True if the condition of 'select' operation \p I comes from a
/// signed 'icmp' operation, false otherwise.
bool isSigned(const SelectInst &I) const;
/// \returns True if type \p T needs to be promoted to 32 bit integer type,
/// false otherwise.
bool needsPromotionToI32(const Type *T) const;
/// Promotes uniform binary operation \p I to equivalent 32 bit binary
/// operation.
///
/// \details \p I's base element bit width must be greater than 1 and less
/// than or equal 16. Promotion is done by sign or zero extending operands to
/// 32 bits, replacing \p I with equivalent 32 bit binary operation, and
/// truncating the result of 32 bit binary operation back to \p I's original
/// type. Division operation is not promoted.
///
/// \returns True if \p I is promoted to equivalent 32 bit binary operation,
/// false otherwise.
bool promoteUniformOpToI32(BinaryOperator &I) const;
/// Promotes uniform 'icmp' operation \p I to 32 bit 'icmp' operation.
///
/// \details \p I's base element bit width must be greater than 1 and less
/// than or equal 16. Promotion is done by sign or zero extending operands to
/// 32 bits, and replacing \p I with 32 bit 'icmp' operation.
///
/// \returns True.
bool promoteUniformOpToI32(ICmpInst &I) const;
/// Promotes uniform 'select' operation \p I to 32 bit 'select'
/// operation.
///
/// \details \p I's base element bit width must be greater than 1 and less
/// than or equal 16. Promotion is done by sign or zero extending operands to
/// 32 bits, replacing \p I with 32 bit 'select' operation, and truncating the
/// result of 32 bit 'select' operation back to \p I's original type.
///
/// \returns True.
bool promoteUniformOpToI32(SelectInst &I) const;
/// Promotes uniform 'bitreverse' intrinsic \p I to 32 bit 'bitreverse'
/// intrinsic.
///
/// \details \p I's base element bit width must be greater than 1 and less
/// than or equal 16. Promotion is done by zero extending the operand to 32
/// bits, replacing \p I with 32 bit 'bitreverse' intrinsic, shifting the
/// result of 32 bit 'bitreverse' intrinsic to the right with zero fill (the
/// shift amount is 32 minus \p I's base element bit width), and truncating
/// the result of the shift operation back to \p I's original type.
///
/// \returns True.
bool promoteUniformBitreverseToI32(IntrinsicInst &I) const;
unsigned numBitsUnsigned(Value *Op, unsigned ScalarSize) const;
unsigned numBitsSigned(Value *Op, unsigned ScalarSize) const;
bool isI24(Value *V, unsigned ScalarSize) const;
bool isU24(Value *V, unsigned ScalarSize) const;
/// Replace mul instructions with llvm.amdgcn.mul.u24 or llvm.amdgcn.mul.s24.
/// SelectionDAG has an issue where an and asserting the bits are known
bool replaceMulWithMul24(BinaryOperator &I) const;
/// Perform same function as equivalently named function in DAGCombiner. Since
/// we expand some divisions here, we need to perform this before obscuring.
bool foldBinOpIntoSelect(BinaryOperator &I) const;
bool divHasSpecialOptimization(BinaryOperator &I,
Value *Num, Value *Den) const;
int getDivNumBits(BinaryOperator &I,
Value *Num, Value *Den,
unsigned AtLeast, bool Signed) const;
/// Expands 24 bit div or rem.
Value* expandDivRem24(IRBuilder<> &Builder, BinaryOperator &I,
Value *Num, Value *Den,
bool IsDiv, bool IsSigned) const;
Value *expandDivRem24Impl(IRBuilder<> &Builder, BinaryOperator &I,
Value *Num, Value *Den, unsigned NumBits,
bool IsDiv, bool IsSigned) const;
/// Expands 32 bit div or rem.
Value* expandDivRem32(IRBuilder<> &Builder, BinaryOperator &I,
Value *Num, Value *Den) const;
Value *shrinkDivRem64(IRBuilder<> &Builder, BinaryOperator &I,
Value *Num, Value *Den) const;
void expandDivRem64(BinaryOperator &I) const;
/// Widen a scalar load.
///
/// \details \p Widen scalar load for uniform, small type loads from constant
// memory / to a full 32-bits and then truncate the input to allow a scalar
// load instead of a vector load.
//
/// \returns True.
bool canWidenScalarExtLoad(LoadInst &I) const;
public:
static char ID;
AMDGPUCodeGenPrepare() : FunctionPass(ID) {}
bool visitFDiv(BinaryOperator &I);
bool visitInstruction(Instruction &I) { return false; }
bool visitBinaryOperator(BinaryOperator &I);
bool visitLoadInst(LoadInst &I);
bool visitICmpInst(ICmpInst &I);
bool visitSelectInst(SelectInst &I);
bool visitIntrinsicInst(IntrinsicInst &I);
bool visitBitreverseIntrinsicInst(IntrinsicInst &I);
bool doInitialization(Module &M) override;
bool runOnFunction(Function &F) override;
StringRef getPassName() const override { return "AMDGPU IR optimizations"; }
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<AssumptionCacheTracker>();
AU.addRequired<LegacyDivergenceAnalysis>();
// FIXME: Division expansion needs to preserve the dominator tree.
if (!ExpandDiv64InIR)
AU.setPreservesAll();
}
};
} // end anonymous namespace
unsigned AMDGPUCodeGenPrepare::getBaseElementBitWidth(const Type *T) const {
assert(needsPromotionToI32(T) && "T does not need promotion to i32");
if (T->isIntegerTy())
return T->getIntegerBitWidth();
return cast<VectorType>(T)->getElementType()->getIntegerBitWidth();
}
Type *AMDGPUCodeGenPrepare::getI32Ty(IRBuilder<> &B, const Type *T) const {
assert(needsPromotionToI32(T) && "T does not need promotion to i32");
if (T->isIntegerTy())
return B.getInt32Ty();
return FixedVectorType::get(B.getInt32Ty(), cast<FixedVectorType>(T));
}
bool AMDGPUCodeGenPrepare::isSigned(const BinaryOperator &I) const {
return I.getOpcode() == Instruction::AShr ||
I.getOpcode() == Instruction::SDiv || I.getOpcode() == Instruction::SRem;
}
bool AMDGPUCodeGenPrepare::isSigned(const SelectInst &I) const {
return isa<ICmpInst>(I.getOperand(0)) ?
cast<ICmpInst>(I.getOperand(0))->isSigned() : false;
}
bool AMDGPUCodeGenPrepare::needsPromotionToI32(const Type *T) const {
if (!Widen16BitOps)
return false;
const IntegerType *IntTy = dyn_cast<IntegerType>(T);
if (IntTy && IntTy->getBitWidth() > 1 && IntTy->getBitWidth() <= 16)
return true;
if (const VectorType *VT = dyn_cast<VectorType>(T)) {
// TODO: The set of packed operations is more limited, so may want to
// promote some anyway.
if (ST->hasVOP3PInsts())
return false;
return needsPromotionToI32(VT->getElementType());
}
return false;
}
// Return true if the op promoted to i32 should have nsw set.
static bool promotedOpIsNSW(const Instruction &I) {
switch (I.getOpcode()) {
case Instruction::Shl:
case Instruction::Add:
case Instruction::Sub:
return true;
case Instruction::Mul:
return I.hasNoUnsignedWrap();
default:
return false;
}
}
// Return true if the op promoted to i32 should have nuw set.
static bool promotedOpIsNUW(const Instruction &I) {
switch (I.getOpcode()) {
case Instruction::Shl:
case Instruction::Add:
case Instruction::Mul:
return true;
case Instruction::Sub:
return I.hasNoUnsignedWrap();
default:
return false;
}
}
bool AMDGPUCodeGenPrepare::canWidenScalarExtLoad(LoadInst &I) const {
Type *Ty = I.getType();
const DataLayout &DL = Mod->getDataLayout();
int TySize = DL.getTypeSizeInBits(Ty);
Align Alignment = DL.getValueOrABITypeAlignment(I.getAlign(), Ty);
return I.isSimple() && TySize < 32 && Alignment >= 4 && DA->isUniform(&I);
}
bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(BinaryOperator &I) const {
assert(needsPromotionToI32(I.getType()) &&
"I does not need promotion to i32");
if (I.getOpcode() == Instruction::SDiv ||
I.getOpcode() == Instruction::UDiv ||
I.getOpcode() == Instruction::SRem ||
I.getOpcode() == Instruction::URem)
return false;
IRBuilder<> Builder(&I);
Builder.SetCurrentDebugLocation(I.getDebugLoc());
Type *I32Ty = getI32Ty(Builder, I.getType());
Value *ExtOp0 = nullptr;
Value *ExtOp1 = nullptr;
Value *ExtRes = nullptr;
Value *TruncRes = nullptr;
if (isSigned(I)) {
ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty);
ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty);
} else {
ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty);
ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty);
}
ExtRes = Builder.CreateBinOp(I.getOpcode(), ExtOp0, ExtOp1);
if (Instruction *Inst = dyn_cast<Instruction>(ExtRes)) {
if (promotedOpIsNSW(cast<Instruction>(I)))
Inst->setHasNoSignedWrap();
if (promotedOpIsNUW(cast<Instruction>(I)))
Inst->setHasNoUnsignedWrap();
if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I))
Inst->setIsExact(ExactOp->isExact());
}
TruncRes = Builder.CreateTrunc(ExtRes, I.getType());
I.replaceAllUsesWith(TruncRes);
I.eraseFromParent();
return true;
}
bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(ICmpInst &I) const {
assert(needsPromotionToI32(I.getOperand(0)->getType()) &&
"I does not need promotion to i32");
IRBuilder<> Builder(&I);
Builder.SetCurrentDebugLocation(I.getDebugLoc());
Type *I32Ty = getI32Ty(Builder, I.getOperand(0)->getType());
Value *ExtOp0 = nullptr;
Value *ExtOp1 = nullptr;
Value *NewICmp = nullptr;
if (I.isSigned()) {
ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty);
ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty);
} else {
ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty);
ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty);
}
NewICmp = Builder.CreateICmp(I.getPredicate(), ExtOp0, ExtOp1);
I.replaceAllUsesWith(NewICmp);
I.eraseFromParent();
return true;
}
bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(SelectInst &I) const {
assert(needsPromotionToI32(I.getType()) &&
"I does not need promotion to i32");
IRBuilder<> Builder(&I);
Builder.SetCurrentDebugLocation(I.getDebugLoc());
Type *I32Ty = getI32Ty(Builder, I.getType());
Value *ExtOp1 = nullptr;
Value *ExtOp2 = nullptr;
Value *ExtRes = nullptr;
Value *TruncRes = nullptr;
if (isSigned(I)) {
ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty);
ExtOp2 = Builder.CreateSExt(I.getOperand(2), I32Ty);
} else {
ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty);
ExtOp2 = Builder.CreateZExt(I.getOperand(2), I32Ty);
}
ExtRes = Builder.CreateSelect(I.getOperand(0), ExtOp1, ExtOp2);
TruncRes = Builder.CreateTrunc(ExtRes, I.getType());
I.replaceAllUsesWith(TruncRes);
I.eraseFromParent();
return true;
}
bool AMDGPUCodeGenPrepare::promoteUniformBitreverseToI32(
IntrinsicInst &I) const {
assert(I.getIntrinsicID() == Intrinsic::bitreverse &&
"I must be bitreverse intrinsic");
assert(needsPromotionToI32(I.getType()) &&
"I does not need promotion to i32");
IRBuilder<> Builder(&I);
Builder.SetCurrentDebugLocation(I.getDebugLoc());
Type *I32Ty = getI32Ty(Builder, I.getType());
Function *I32 =
Intrinsic::getDeclaration(Mod, Intrinsic::bitreverse, { I32Ty });
Value *ExtOp = Builder.CreateZExt(I.getOperand(0), I32Ty);
Value *ExtRes = Builder.CreateCall(I32, { ExtOp });
Value *LShrOp =
Builder.CreateLShr(ExtRes, 32 - getBaseElementBitWidth(I.getType()));
Value *TruncRes =
Builder.CreateTrunc(LShrOp, I.getType());
I.replaceAllUsesWith(TruncRes);
I.eraseFromParent();
return true;
}
unsigned AMDGPUCodeGenPrepare::numBitsUnsigned(Value *Op,
unsigned ScalarSize) const {
KnownBits Known = computeKnownBits(Op, *DL, 0, AC);
return ScalarSize - Known.countMinLeadingZeros();
}
unsigned AMDGPUCodeGenPrepare::numBitsSigned(Value *Op,
unsigned ScalarSize) const {
// In order for this to be a signed 24-bit value, bit 23, must
// be a sign bit.
return ScalarSize - ComputeNumSignBits(Op, *DL, 0, AC);
}
bool AMDGPUCodeGenPrepare::isI24(Value *V, unsigned ScalarSize) const {
return ScalarSize >= 24 && // Types less than 24-bit should be treated
// as unsigned 24-bit values.
numBitsSigned(V, ScalarSize) < 24;
}
bool AMDGPUCodeGenPrepare::isU24(Value *V, unsigned ScalarSize) const {
return numBitsUnsigned(V, ScalarSize) <= 24;
}
static void extractValues(IRBuilder<> &Builder,
SmallVectorImpl<Value *> &Values, Value *V) {
auto *VT = dyn_cast<FixedVectorType>(V->getType());
if (!VT) {
Values.push_back(V);
return;
}
for (int I = 0, E = VT->getNumElements(); I != E; ++I)
Values.push_back(Builder.CreateExtractElement(V, I));
}
static Value *insertValues(IRBuilder<> &Builder,
Type *Ty,
SmallVectorImpl<Value *> &Values) {
if (Values.size() == 1)
return Values[0];
Value *NewVal = UndefValue::get(Ty);
for (int I = 0, E = Values.size(); I != E; ++I)
NewVal = Builder.CreateInsertElement(NewVal, Values[I], I);
return NewVal;
}
bool AMDGPUCodeGenPrepare::replaceMulWithMul24(BinaryOperator &I) const {
if (I.getOpcode() != Instruction::Mul)
return false;
Type *Ty = I.getType();
unsigned Size = Ty->getScalarSizeInBits();
if (Size <= 16 && ST->has16BitInsts())
return false;
// Prefer scalar if this could be s_mul_i32
if (DA->isUniform(&I))
return false;
Value *LHS = I.getOperand(0);
Value *RHS = I.getOperand(1);
IRBuilder<> Builder(&I);
Builder.SetCurrentDebugLocation(I.getDebugLoc());
Intrinsic::ID IntrID = Intrinsic::not_intrinsic;
// TODO: Should this try to match mulhi24?
if (ST->hasMulU24() && isU24(LHS, Size) && isU24(RHS, Size)) {
IntrID = Intrinsic::amdgcn_mul_u24;
} else if (ST->hasMulI24() && isI24(LHS, Size) && isI24(RHS, Size)) {
IntrID = Intrinsic::amdgcn_mul_i24;
} else
return false;
SmallVector<Value *, 4> LHSVals;
SmallVector<Value *, 4> RHSVals;
SmallVector<Value *, 4> ResultVals;
extractValues(Builder, LHSVals, LHS);
extractValues(Builder, RHSVals, RHS);
IntegerType *I32Ty = Builder.getInt32Ty();
FunctionCallee Intrin = Intrinsic::getDeclaration(Mod, IntrID);
for (int I = 0, E = LHSVals.size(); I != E; ++I) {
Value *LHS, *RHS;
if (IntrID == Intrinsic::amdgcn_mul_u24) {
LHS = Builder.CreateZExtOrTrunc(LHSVals[I], I32Ty);
RHS = Builder.CreateZExtOrTrunc(RHSVals[I], I32Ty);
} else {
LHS = Builder.CreateSExtOrTrunc(LHSVals[I], I32Ty);
RHS = Builder.CreateSExtOrTrunc(RHSVals[I], I32Ty);
}
Value *Result = Builder.CreateCall(Intrin, {LHS, RHS});
if (IntrID == Intrinsic::amdgcn_mul_u24) {
ResultVals.push_back(Builder.CreateZExtOrTrunc(Result,
LHSVals[I]->getType()));
} else {
ResultVals.push_back(Builder.CreateSExtOrTrunc(Result,
LHSVals[I]->getType()));
}
}
Value *NewVal = insertValues(Builder, Ty, ResultVals);
NewVal->takeName(&I);
I.replaceAllUsesWith(NewVal);
I.eraseFromParent();
return true;
}
// Find a select instruction, which may have been casted. This is mostly to deal
// with cases where i16 selects were promoted here to i32.
static SelectInst *findSelectThroughCast(Value *V, CastInst *&Cast) {
Cast = nullptr;
if (SelectInst *Sel = dyn_cast<SelectInst>(V))
return Sel;
if ((Cast = dyn_cast<CastInst>(V))) {
if (SelectInst *Sel = dyn_cast<SelectInst>(Cast->getOperand(0)))
return Sel;
}
return nullptr;
}
bool AMDGPUCodeGenPrepare::foldBinOpIntoSelect(BinaryOperator &BO) const {
// Don't do this unless the old select is going away. We want to eliminate the
// binary operator, not replace a binop with a select.
int SelOpNo = 0;
CastInst *CastOp;
// TODO: Should probably try to handle some cases with multiple
// users. Duplicating the select may be profitable for division.
SelectInst *Sel = findSelectThroughCast(BO.getOperand(0), CastOp);
if (!Sel || !Sel->hasOneUse()) {
SelOpNo = 1;
Sel = findSelectThroughCast(BO.getOperand(1), CastOp);
}
if (!Sel || !Sel->hasOneUse())
return false;
Constant *CT = dyn_cast<Constant>(Sel->getTrueValue());
Constant *CF = dyn_cast<Constant>(Sel->getFalseValue());
Constant *CBO = dyn_cast<Constant>(BO.getOperand(SelOpNo ^ 1));
if (!CBO || !CT || !CF)
return false;
if (CastOp) {
if (!CastOp->hasOneUse())
return false;
CT = ConstantFoldCastOperand(CastOp->getOpcode(), CT, BO.getType(), *DL);
CF = ConstantFoldCastOperand(CastOp->getOpcode(), CF, BO.getType(), *DL);
}
// TODO: Handle special 0/-1 cases DAG combine does, although we only really
// need to handle divisions here.
Constant *FoldedT = SelOpNo ?
ConstantFoldBinaryOpOperands(BO.getOpcode(), CBO, CT, *DL) :
ConstantFoldBinaryOpOperands(BO.getOpcode(), CT, CBO, *DL);
if (isa<ConstantExpr>(FoldedT))
return false;
Constant *FoldedF = SelOpNo ?
ConstantFoldBinaryOpOperands(BO.getOpcode(), CBO, CF, *DL) :
ConstantFoldBinaryOpOperands(BO.getOpcode(), CF, CBO, *DL);
if (isa<ConstantExpr>(FoldedF))
return false;
IRBuilder<> Builder(&BO);
Builder.SetCurrentDebugLocation(BO.getDebugLoc());
if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&BO))
Builder.setFastMathFlags(FPOp->getFastMathFlags());
Value *NewSelect = Builder.CreateSelect(Sel->getCondition(),
FoldedT, FoldedF);
NewSelect->takeName(&BO);
BO.replaceAllUsesWith(NewSelect);
BO.eraseFromParent();
if (CastOp)
CastOp->eraseFromParent();
Sel->eraseFromParent();
return true;
}
// Optimize fdiv with rcp:
//
// 1/x -> rcp(x) when rcp is sufficiently accurate or inaccurate rcp is
// allowed with unsafe-fp-math or afn.
//
// a/b -> a*rcp(b) when inaccurate rcp is allowed with unsafe-fp-math or afn.
static Value *optimizeWithRcp(Value *Num, Value *Den, bool AllowInaccurateRcp,
bool RcpIsAccurate, IRBuilder<> &Builder,
Module *Mod) {
if (!AllowInaccurateRcp && !RcpIsAccurate)
return nullptr;
Type *Ty = Den->getType();
if (const ConstantFP *CLHS = dyn_cast<ConstantFP>(Num)) {
if (AllowInaccurateRcp || RcpIsAccurate) {
if (CLHS->isExactlyValue(1.0)) {
Function *Decl = Intrinsic::getDeclaration(
Mod, Intrinsic::amdgcn_rcp, Ty);
// v_rcp_f32 and v_rsq_f32 do not support denormals, and according to
// the CI documentation has a worst case error of 1 ulp.
// OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to
// use it as long as we aren't trying to use denormals.
//
// v_rcp_f16 and v_rsq_f16 DO support denormals.
// NOTE: v_sqrt and v_rcp will be combined to v_rsq later. So we don't
// insert rsq intrinsic here.
// 1.0 / x -> rcp(x)
return Builder.CreateCall(Decl, { Den });
}
// Same as for 1.0, but expand the sign out of the constant.
if (CLHS->isExactlyValue(-1.0)) {
Function *Decl = Intrinsic::getDeclaration(
Mod, Intrinsic::amdgcn_rcp, Ty);
// -1.0 / x -> rcp (fneg x)
Value *FNeg = Builder.CreateFNeg(Den);
return Builder.CreateCall(Decl, { FNeg });
}
}
}
if (AllowInaccurateRcp) {
Function *Decl = Intrinsic::getDeclaration(
Mod, Intrinsic::amdgcn_rcp, Ty);
// Turn into multiply by the reciprocal.
// x / y -> x * (1.0 / y)
Value *Recip = Builder.CreateCall(Decl, { Den });
return Builder.CreateFMul(Num, Recip);
}
return nullptr;
}
// optimize with fdiv.fast:
//
// a/b -> fdiv.fast(a, b) when !fpmath >= 2.5ulp with denormals flushed.
//
// 1/x -> fdiv.fast(1,x) when !fpmath >= 2.5ulp.
//
// NOTE: optimizeWithRcp should be tried first because rcp is the preference.
static Value *optimizeWithFDivFast(Value *Num, Value *Den, float ReqdAccuracy,
bool HasDenormals, IRBuilder<> &Builder,
Module *Mod) {
// fdiv.fast can achieve 2.5 ULP accuracy.
if (ReqdAccuracy < 2.5f)
return nullptr;
// Only have fdiv.fast for f32.
Type *Ty = Den->getType();
if (!Ty->isFloatTy())
return nullptr;
bool NumIsOne = false;
if (const ConstantFP *CNum = dyn_cast<ConstantFP>(Num)) {
if (CNum->isExactlyValue(+1.0) || CNum->isExactlyValue(-1.0))
NumIsOne = true;
}
// fdiv does not support denormals. But 1.0/x is always fine to use it.
if (HasDenormals && !NumIsOne)
return nullptr;
Function *Decl = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_fdiv_fast);
return Builder.CreateCall(Decl, { Num, Den });
}
// Optimizations is performed based on fpmath, fast math flags as well as
// denormals to optimize fdiv with either rcp or fdiv.fast.
//
// With rcp:
// 1/x -> rcp(x) when rcp is sufficiently accurate or inaccurate rcp is
// allowed with unsafe-fp-math or afn.
//
// a/b -> a*rcp(b) when inaccurate rcp is allowed with unsafe-fp-math or afn.
//
// With fdiv.fast:
// a/b -> fdiv.fast(a, b) when !fpmath >= 2.5ulp with denormals flushed.
//
// 1/x -> fdiv.fast(1,x) when !fpmath >= 2.5ulp.
//
// NOTE: rcp is the preference in cases that both are legal.
bool AMDGPUCodeGenPrepare::visitFDiv(BinaryOperator &FDiv) {
Type *Ty = FDiv.getType()->getScalarType();
// No intrinsic for fdiv16 if target does not support f16.
if (Ty->isHalfTy() && !ST->has16BitInsts())
return false;
const FPMathOperator *FPOp = cast<const FPMathOperator>(&FDiv);
const float ReqdAccuracy = FPOp->getFPAccuracy();
// Inaccurate rcp is allowed with unsafe-fp-math or afn.
FastMathFlags FMF = FPOp->getFastMathFlags();
const bool AllowInaccurateRcp = HasUnsafeFPMath || FMF.approxFunc();
// rcp_f16 is accurate for !fpmath >= 1.0ulp.
// rcp_f32 is accurate for !fpmath >= 1.0ulp and denormals are flushed.
// rcp_f64 is never accurate.
const bool RcpIsAccurate = (Ty->isHalfTy() && ReqdAccuracy >= 1.0f) ||
(Ty->isFloatTy() && !HasFP32Denormals && ReqdAccuracy >= 1.0f);
IRBuilder<> Builder(FDiv.getParent(), std::next(FDiv.getIterator()));
Builder.setFastMathFlags(FMF);
Builder.SetCurrentDebugLocation(FDiv.getDebugLoc());
Value *Num = FDiv.getOperand(0);
Value *Den = FDiv.getOperand(1);
Value *NewFDiv = nullptr;
if (auto *VT = dyn_cast<FixedVectorType>(FDiv.getType())) {
NewFDiv = UndefValue::get(VT);
// FIXME: Doesn't do the right thing for cases where the vector is partially
// constant. This works when the scalarizer pass is run first.
for (unsigned I = 0, E = VT->getNumElements(); I != E; ++I) {
Value *NumEltI = Builder.CreateExtractElement(Num, I);
Value *DenEltI = Builder.CreateExtractElement(Den, I);
// Try rcp first.
Value *NewElt = optimizeWithRcp(NumEltI, DenEltI, AllowInaccurateRcp,
RcpIsAccurate, Builder, Mod);
if (!NewElt) // Try fdiv.fast.
NewElt = optimizeWithFDivFast(NumEltI, DenEltI, ReqdAccuracy,
HasFP32Denormals, Builder, Mod);
if (!NewElt) // Keep the original.
NewElt = Builder.CreateFDiv(NumEltI, DenEltI);
NewFDiv = Builder.CreateInsertElement(NewFDiv, NewElt, I);
}
} else { // Scalar FDiv.
// Try rcp first.
NewFDiv = optimizeWithRcp(Num, Den, AllowInaccurateRcp, RcpIsAccurate,
Builder, Mod);
if (!NewFDiv) { // Try fdiv.fast.
NewFDiv = optimizeWithFDivFast(Num, Den, ReqdAccuracy, HasFP32Denormals,
Builder, Mod);
}
}
if (NewFDiv) {
FDiv.replaceAllUsesWith(NewFDiv);
NewFDiv->takeName(&FDiv);
FDiv.eraseFromParent();
}
return !!NewFDiv;
}
static bool hasUnsafeFPMath(const Function &F) {
Attribute Attr = F.getFnAttribute("unsafe-fp-math");
return Attr.getValueAsString() == "true";
}
static std::pair<Value*, Value*> getMul64(IRBuilder<> &Builder,
Value *LHS, Value *RHS) {
Type *I32Ty = Builder.getInt32Ty();
Type *I64Ty = Builder.getInt64Ty();
Value *LHS_EXT64 = Builder.CreateZExt(LHS, I64Ty);
Value *RHS_EXT64 = Builder.CreateZExt(RHS, I64Ty);
Value *MUL64 = Builder.CreateMul(LHS_EXT64, RHS_EXT64);
Value *Lo = Builder.CreateTrunc(MUL64, I32Ty);
Value *Hi = Builder.CreateLShr(MUL64, Builder.getInt64(32));
Hi = Builder.CreateTrunc(Hi, I32Ty);
return std::make_pair(Lo, Hi);
}
static Value* getMulHu(IRBuilder<> &Builder, Value *LHS, Value *RHS) {
return getMul64(Builder, LHS, RHS).second;
}
/// Figure out how many bits are really needed for this ddivision. \p AtLeast is
/// an optimization hint to bypass the second ComputeNumSignBits call if we the
/// first one is insufficient. Returns -1 on failure.
int AMDGPUCodeGenPrepare::getDivNumBits(BinaryOperator &I,
Value *Num, Value *Den,
unsigned AtLeast, bool IsSigned) const {
const DataLayout &DL = Mod->getDataLayout();
unsigned LHSSignBits = ComputeNumSignBits(Num, DL, 0, AC, &I);
if (LHSSignBits < AtLeast)
return -1;
unsigned RHSSignBits = ComputeNumSignBits(Den, DL, 0, AC, &I);
if (RHSSignBits < AtLeast)
return -1;
unsigned SignBits = std::min(LHSSignBits, RHSSignBits);
unsigned DivBits = Num->getType()->getScalarSizeInBits() - SignBits;
if (IsSigned)
++DivBits;
return DivBits;
}
// The fractional part of a float is enough to accurately represent up to
// a 24-bit signed integer.
Value *AMDGPUCodeGenPrepare::expandDivRem24(IRBuilder<> &Builder,
BinaryOperator &I,
Value *Num, Value *Den,
bool IsDiv, bool IsSigned) const {
int DivBits = getDivNumBits(I, Num, Den, 9, IsSigned);
if (DivBits == -1)
return nullptr;
return expandDivRem24Impl(Builder, I, Num, Den, DivBits, IsDiv, IsSigned);
}
Value *AMDGPUCodeGenPrepare::expandDivRem24Impl(IRBuilder<> &Builder,
BinaryOperator &I,
Value *Num, Value *Den,
unsigned DivBits,
bool IsDiv, bool IsSigned) const {
Type *I32Ty = Builder.getInt32Ty();
Num = Builder.CreateTrunc(Num, I32Ty);
Den = Builder.CreateTrunc(Den, I32Ty);
Type *F32Ty = Builder.getFloatTy();
ConstantInt *One = Builder.getInt32(1);
Value *JQ = One;
if (IsSigned) {
// char|short jq = ia ^ ib;
JQ = Builder.CreateXor(Num, Den);
// jq = jq >> (bitsize - 2)
JQ = Builder.CreateAShr(JQ, Builder.getInt32(30));
// jq = jq | 0x1
JQ = Builder.CreateOr(JQ, One);
}
// int ia = (int)LHS;
Value *IA = Num;
// int ib, (int)RHS;
Value *IB = Den;
// float fa = (float)ia;
Value *FA = IsSigned ? Builder.CreateSIToFP(IA, F32Ty)
: Builder.CreateUIToFP(IA, F32Ty);
// float fb = (float)ib;
Value *FB = IsSigned ? Builder.CreateSIToFP(IB,F32Ty)
: Builder.CreateUIToFP(IB,F32Ty);
Function *RcpDecl = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_rcp,
Builder.getFloatTy());
Value *RCP = Builder.CreateCall(RcpDecl, { FB });
Value *FQM = Builder.CreateFMul(FA, RCP);
// fq = trunc(fqm);
CallInst *FQ = Builder.CreateUnaryIntrinsic(Intrinsic::trunc, FQM);
FQ->copyFastMathFlags(Builder.getFastMathFlags());
// float fqneg = -fq;
Value *FQNeg = Builder.CreateFNeg(FQ);
// float fr = mad(fqneg, fb, fa);
auto FMAD = !ST->hasMadMacF32Insts()
? Intrinsic::fma
: (Intrinsic::ID)Intrinsic::amdgcn_fmad_ftz;
Value *FR = Builder.CreateIntrinsic(FMAD,
{FQNeg->getType()}, {FQNeg, FB, FA}, FQ);
// int iq = (int)fq;
Value *IQ = IsSigned ? Builder.CreateFPToSI(FQ, I32Ty)
: Builder.CreateFPToUI(FQ, I32Ty);
// fr = fabs(fr);
FR = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FR, FQ);
// fb = fabs(fb);
FB = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FB, FQ);
// int cv = fr >= fb;
Value *CV = Builder.CreateFCmpOGE(FR, FB);
// jq = (cv ? jq : 0);
JQ = Builder.CreateSelect(CV, JQ, Builder.getInt32(0));
// dst = iq + jq;
Value *Div = Builder.CreateAdd(IQ, JQ);
Value *Res = Div;
if (!IsDiv) {
// Rem needs compensation, it's easier to recompute it
Value *Rem = Builder.CreateMul(Div, Den);
Res = Builder.CreateSub(Num, Rem);
}
if (DivBits != 0 && DivBits < 32) {
// Extend in register from the number of bits this divide really is.
if (IsSigned) {
int InRegBits = 32 - DivBits;
Res = Builder.CreateShl(Res, InRegBits);
Res = Builder.CreateAShr(Res, InRegBits);
} else {
ConstantInt *TruncMask
= Builder.getInt32((UINT64_C(1) << DivBits) - 1);
Res = Builder.CreateAnd(Res, TruncMask);
}
}
return Res;
}
// Try to recognize special cases the DAG will emit special, better expansions
// than the general expansion we do here.
// TODO: It would be better to just directly handle those optimizations here.
bool AMDGPUCodeGenPrepare::divHasSpecialOptimization(
BinaryOperator &I, Value *Num, Value *Den) const {
if (Constant *C = dyn_cast<Constant>(Den)) {
// Arbitrary constants get a better expansion as long as a wider mulhi is
// legal.
if (C->getType()->getScalarSizeInBits() <= 32)
return true;
// TODO: Sdiv check for not exact for some reason.
// If there's no wider mulhi, there's only a better expansion for powers of
// two.
// TODO: Should really know for each vector element.
if (isKnownToBeAPowerOfTwo(C, *DL, true, 0, AC, &I, DT))
return true;
return false;
}
if (BinaryOperator *BinOpDen = dyn_cast<BinaryOperator>(Den)) {
// fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2
if (BinOpDen->getOpcode() == Instruction::Shl &&
isa<Constant>(BinOpDen->getOperand(0)) &&
isKnownToBeAPowerOfTwo(BinOpDen->getOperand(0), *DL, true,
0, AC, &I, DT)) {
return true;
}
}
return false;
}
static Value *getSign32(Value *V, IRBuilder<> &Builder, const DataLayout *DL) {
// Check whether the sign can be determined statically.
KnownBits Known = computeKnownBits(V, *DL);
if (Known.isNegative())
return Constant::getAllOnesValue(V->getType());
if (Known.isNonNegative())
return Constant::getNullValue(V->getType());
return Builder.CreateAShr(V, Builder.getInt32(31));
}
Value *AMDGPUCodeGenPrepare::expandDivRem32(IRBuilder<> &Builder,
BinaryOperator &I, Value *X,
Value *Y) const {
Instruction::BinaryOps Opc = I.getOpcode();
assert(Opc == Instruction::URem || Opc == Instruction::UDiv ||
Opc == Instruction::SRem || Opc == Instruction::SDiv);
FastMathFlags FMF;
FMF.setFast();
Builder.setFastMathFlags(FMF);
if (divHasSpecialOptimization(I, X, Y))
return nullptr; // Keep it for later optimization.
bool IsDiv = Opc == Instruction::UDiv || Opc == Instruction::SDiv;
bool IsSigned = Opc == Instruction::SRem || Opc == Instruction::SDiv;
Type *Ty = X->getType();
Type *I32Ty = Builder.getInt32Ty();
Type *F32Ty = Builder.getFloatTy();
if (Ty->getScalarSizeInBits() < 32) {
if (IsSigned) {
X = Builder.CreateSExt(X, I32Ty);
Y = Builder.CreateSExt(Y, I32Ty);
} else {
X = Builder.CreateZExt(X, I32Ty);
Y = Builder.CreateZExt(Y, I32Ty);
}
}
if (Value *Res = expandDivRem24(Builder, I, X, Y, IsDiv, IsSigned)) {
return IsSigned ? Builder.CreateSExtOrTrunc(Res, Ty) :
Builder.CreateZExtOrTrunc(Res, Ty);
}
ConstantInt *Zero = Builder.getInt32(0);
ConstantInt *One = Builder.getInt32(1);
Value *Sign = nullptr;
if (IsSigned) {
Value *SignX = getSign32(X, Builder, DL);
Value *SignY = getSign32(Y, Builder, DL);
// Remainder sign is the same as LHS
Sign = IsDiv ? Builder.CreateXor(SignX, SignY) : SignX;
X = Builder.CreateAdd(X, SignX);
Y = Builder.CreateAdd(Y, SignY);
X = Builder.CreateXor(X, SignX);
Y = Builder.CreateXor(Y, SignY);
}
// The algorithm here is based on ideas from "Software Integer Division", Tom
// Rodeheffer, August 2008.
//
// unsigned udiv(unsigned x, unsigned y) {
// // Initial estimate of inv(y). The constant is less than 2^32 to ensure
// // that this is a lower bound on inv(y), even if some of the calculations
// // round up.
// unsigned z = (unsigned)((4294967296.0 - 512.0) * v_rcp_f32((float)y));
//
// // One round of UNR (Unsigned integer Newton-Raphson) to improve z.
// // Empirically this is guaranteed to give a "two-y" lower bound on
// // inv(y).
// z += umulh(z, -y * z);
//
// // Quotient/remainder estimate.
// unsigned q = umulh(x, z);
// unsigned r = x - q * y;
//
// // Two rounds of quotient/remainder refinement.
// if (r >= y) {
// ++q;
// r -= y;
// }
// if (r >= y) {
// ++q;
// r -= y;
// }
//
// return q;
// }
// Initial estimate of inv(y).
Value *FloatY = Builder.CreateUIToFP(Y, F32Ty);
Function *Rcp = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_rcp, F32Ty);
Value *RcpY = Builder.CreateCall(Rcp, {FloatY});
Constant *Scale = ConstantFP::get(F32Ty, BitsToFloat(0x4F7FFFFE));
Value *ScaledY = Builder.CreateFMul(RcpY, Scale);
Value *Z = Builder.CreateFPToUI(ScaledY, I32Ty);
// One round of UNR.
Value *NegY = Builder.CreateSub(Zero, Y);
Value *NegYZ = Builder.CreateMul(NegY, Z);
Z = Builder.CreateAdd(Z, getMulHu(Builder, Z, NegYZ));
// Quotient/remainder estimate.
Value *Q = getMulHu(Builder, X, Z);
Value *R = Builder.CreateSub(X, Builder.CreateMul(Q, Y));
// First quotient/remainder refinement.
Value *Cond = Builder.CreateICmpUGE(R, Y);
if (IsDiv)
Q = Builder.CreateSelect(Cond, Builder.CreateAdd(Q, One), Q);
R = Builder.CreateSelect(Cond, Builder.CreateSub(R, Y), R);
// Second quotient/remainder refinement.
Cond = Builder.CreateICmpUGE(R, Y);
Value *Res;
if (IsDiv)
Res = Builder.CreateSelect(Cond, Builder.CreateAdd(Q, One), Q);
else
Res = Builder.CreateSelect(Cond, Builder.CreateSub(R, Y), R);
if (IsSigned) {
Res = Builder.CreateXor(Res, Sign);
Res = Builder.CreateSub(Res, Sign);
}
Res = Builder.CreateTrunc(Res, Ty);
return Res;
}
Value *AMDGPUCodeGenPrepare::shrinkDivRem64(IRBuilder<> &Builder,
BinaryOperator &I,
Value *Num, Value *Den) const {
if (!ExpandDiv64InIR && divHasSpecialOptimization(I, Num, Den))
return nullptr; // Keep it for later optimization.
Instruction::BinaryOps Opc = I.getOpcode();
bool IsDiv = Opc == Instruction::SDiv || Opc == Instruction::UDiv;
bool IsSigned = Opc == Instruction::SDiv || Opc == Instruction::SRem;
int NumDivBits = getDivNumBits(I, Num, Den, 32, IsSigned);
if (NumDivBits == -1)
return nullptr;
Value *Narrowed = nullptr;
if (NumDivBits <= 24) {
Narrowed = expandDivRem24Impl(Builder, I, Num, Den, NumDivBits,
IsDiv, IsSigned);
} else if (NumDivBits <= 32) {
Narrowed = expandDivRem32(Builder, I, Num, Den);
}
if (Narrowed) {
return IsSigned ? Builder.CreateSExt(Narrowed, Num->getType()) :
Builder.CreateZExt(Narrowed, Num->getType());
}
return nullptr;
}
void AMDGPUCodeGenPrepare::expandDivRem64(BinaryOperator &I) const {
Instruction::BinaryOps Opc = I.getOpcode();
// Do the general expansion.
if (Opc == Instruction::UDiv || Opc == Instruction::SDiv) {
expandDivisionUpTo64Bits(&I);
return;
}
if (Opc == Instruction::URem || Opc == Instruction::SRem) {
expandRemainderUpTo64Bits(&I);
return;
}
llvm_unreachable("not a division");
}
bool AMDGPUCodeGenPrepare::visitBinaryOperator(BinaryOperator &I) {
if (foldBinOpIntoSelect(I))
return true;
if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) &&
DA->isUniform(&I) && promoteUniformOpToI32(I))
return true;
if (UseMul24Intrin && replaceMulWithMul24(I))
return true;
bool Changed = false;
Instruction::BinaryOps Opc = I.getOpcode();
Type *Ty = I.getType();
Value *NewDiv = nullptr;
unsigned ScalarSize = Ty->getScalarSizeInBits();
SmallVector<BinaryOperator *, 8> Div64ToExpand;
if ((Opc == Instruction::URem || Opc == Instruction::UDiv ||
Opc == Instruction::SRem || Opc == Instruction::SDiv) &&
ScalarSize <= 64 &&
!DisableIDivExpand) {
Value *Num = I.getOperand(0);
Value *Den = I.getOperand(1);
IRBuilder<> Builder(&I);
Builder.SetCurrentDebugLocation(I.getDebugLoc());
if (auto *VT = dyn_cast<FixedVectorType>(Ty)) {
NewDiv = UndefValue::get(VT);
for (unsigned N = 0, E = VT->getNumElements(); N != E; ++N) {
Value *NumEltN = Builder.CreateExtractElement(Num, N);
Value *DenEltN = Builder.CreateExtractElement(Den, N);
Value *NewElt;
if (ScalarSize <= 32) {
NewElt = expandDivRem32(Builder, I, NumEltN, DenEltN);
if (!NewElt)
NewElt = Builder.CreateBinOp(Opc, NumEltN, DenEltN);
} else {
// See if this 64-bit division can be shrunk to 32/24-bits before
// producing the general expansion.
NewElt = shrinkDivRem64(Builder, I, NumEltN, DenEltN);
if (!NewElt) {
// The general 64-bit expansion introduces control flow and doesn't
// return the new value. Just insert a scalar copy and defer
// expanding it.
NewElt = Builder.CreateBinOp(Opc, NumEltN, DenEltN);
Div64ToExpand.push_back(cast<BinaryOperator>(NewElt));
}
}
NewDiv = Builder.CreateInsertElement(NewDiv, NewElt, N);
}
} else {
if (ScalarSize <= 32)
NewDiv = expandDivRem32(Builder, I, Num, Den);
else {
NewDiv = shrinkDivRem64(Builder, I, Num, Den);
if (!NewDiv)
Div64ToExpand.push_back(&I);
}
}
if (NewDiv) {
I.replaceAllUsesWith(NewDiv);
I.eraseFromParent();
Changed = true;
}
}
if (ExpandDiv64InIR) {
// TODO: We get much worse code in specially handled constant cases.
for (BinaryOperator *Div : Div64ToExpand) {
expandDivRem64(*Div);
Changed = true;
}
}
return Changed;
}
bool AMDGPUCodeGenPrepare::visitLoadInst(LoadInst &I) {
if (!WidenLoads)
return false;
if ((I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) &&
canWidenScalarExtLoad(I)) {
IRBuilder<> Builder(&I);
Builder.SetCurrentDebugLocation(I.getDebugLoc());
Type *I32Ty = Builder.getInt32Ty();
Type *PT = PointerType::get(I32Ty, I.getPointerAddressSpace());
Value *BitCast= Builder.CreateBitCast(I.getPointerOperand(), PT);
LoadInst *WidenLoad = Builder.CreateLoad(I32Ty, BitCast);
WidenLoad->copyMetadata(I);
// If we have range metadata, we need to convert the type, and not make
// assumptions about the high bits.
if (auto *Range = WidenLoad->getMetadata(LLVMContext::MD_range)) {
ConstantInt *Lower =
mdconst::extract<ConstantInt>(Range->getOperand(0));
if (Lower->getValue().isNullValue()) {
WidenLoad->setMetadata(LLVMContext::MD_range, nullptr);
} else {
Metadata *LowAndHigh[] = {
ConstantAsMetadata::get(ConstantInt::get(I32Ty, Lower->getValue().zext(32))),
// Don't make assumptions about the high bits.
ConstantAsMetadata::get(ConstantInt::get(I32Ty, 0))
};
WidenLoad->setMetadata(LLVMContext::MD_range,
MDNode::get(Mod->getContext(), LowAndHigh));
}
}
int TySize = Mod->getDataLayout().getTypeSizeInBits(I.getType());
Type *IntNTy = Builder.getIntNTy(TySize);
Value *ValTrunc = Builder.CreateTrunc(WidenLoad, IntNTy);
Value *ValOrig = Builder.CreateBitCast(ValTrunc, I.getType());
I.replaceAllUsesWith(ValOrig);
I.eraseFromParent();
return true;
}
return false;
}
bool AMDGPUCodeGenPrepare::visitICmpInst(ICmpInst &I) {
bool Changed = false;
if (ST->has16BitInsts() && needsPromotionToI32(I.getOperand(0)->getType()) &&
DA->isUniform(&I))
Changed |= promoteUniformOpToI32(I);
return Changed;
}
bool AMDGPUCodeGenPrepare::visitSelectInst(SelectInst &I) {
bool Changed = false;
if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) &&
DA->isUniform(&I))
Changed |= promoteUniformOpToI32(I);
return Changed;
}
bool AMDGPUCodeGenPrepare::visitIntrinsicInst(IntrinsicInst &I) {
switch (I.getIntrinsicID()) {
case Intrinsic::bitreverse:
return visitBitreverseIntrinsicInst(I);
default:
return false;
}
}
bool AMDGPUCodeGenPrepare::visitBitreverseIntrinsicInst(IntrinsicInst &I) {
bool Changed = false;
if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) &&
DA->isUniform(&I))
Changed |= promoteUniformBitreverseToI32(I);
return Changed;
}
bool AMDGPUCodeGenPrepare::doInitialization(Module &M) {
Mod = &M;
DL = &Mod->getDataLayout();
return false;
}
bool AMDGPUCodeGenPrepare::runOnFunction(Function &F) {
if (skipFunction(F))
return false;
auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
if (!TPC)
return false;
const AMDGPUTargetMachine &TM = TPC->getTM<AMDGPUTargetMachine>();
ST = &TM.getSubtarget<GCNSubtarget>(F);
AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
DA = &getAnalysis<LegacyDivergenceAnalysis>();
auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
DT = DTWP ? &DTWP->getDomTree() : nullptr;
HasUnsafeFPMath = hasUnsafeFPMath(F);
AMDGPU::SIModeRegisterDefaults Mode(F);
HasFP32Denormals = Mode.allFP32Denormals();
bool MadeChange = false;
Function::iterator NextBB;
for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; FI = NextBB) {
BasicBlock *BB = &*FI;
NextBB = std::next(FI);
BasicBlock::iterator Next;
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; I = Next) {
Next = std::next(I);
MadeChange |= visit(*I);
if (Next != E) { // Control flow changed
BasicBlock *NextInstBB = Next->getParent();
if (NextInstBB != BB) {
BB = NextInstBB;
E = BB->end();
FE = F.end();
}
}
}
}
return MadeChange;
}
INITIALIZE_PASS_BEGIN(AMDGPUCodeGenPrepare, DEBUG_TYPE,
"AMDGPU IR optimizations", false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis)
INITIALIZE_PASS_END(AMDGPUCodeGenPrepare, DEBUG_TYPE, "AMDGPU IR optimizations",
false, false)
char AMDGPUCodeGenPrepare::ID = 0;
FunctionPass *llvm::createAMDGPUCodeGenPreparePass() {
return new AMDGPUCodeGenPrepare();
}