StringRef.cpp 17.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
//===-- StringRef.cpp - Lightweight String References ---------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/edit_distance.h"
#include "llvm/Support/Error.h"
#include <bitset>

using namespace llvm;

// MSVC emits references to this into the translation units which reference it.
#ifndef _MSC_VER
constexpr size_t StringRef::npos;
#endif

// strncasecmp() is not available on non-POSIX systems, so define an
// alternative function here.
static int ascii_strncasecmp(const char *LHS, const char *RHS, size_t Length) {
  for (size_t I = 0; I < Length; ++I) {
    unsigned char LHC = toLower(LHS[I]);
    unsigned char RHC = toLower(RHS[I]);
    if (LHC != RHC)
      return LHC < RHC ? -1 : 1;
  }
  return 0;
}

/// compare_lower - Compare strings, ignoring case.
int StringRef::compare_lower(StringRef RHS) const {
  if (int Res = ascii_strncasecmp(Data, RHS.Data, std::min(Length, RHS.Length)))
    return Res;
  if (Length == RHS.Length)
    return 0;
  return Length < RHS.Length ? -1 : 1;
}

/// Check if this string starts with the given \p Prefix, ignoring case.
bool StringRef::startswith_lower(StringRef Prefix) const {
  return Length >= Prefix.Length &&
      ascii_strncasecmp(Data, Prefix.Data, Prefix.Length) == 0;
}

/// Check if this string ends with the given \p Suffix, ignoring case.
bool StringRef::endswith_lower(StringRef Suffix) const {
  return Length >= Suffix.Length &&
      ascii_strncasecmp(end() - Suffix.Length, Suffix.Data, Suffix.Length) == 0;
}

size_t StringRef::find_lower(char C, size_t From) const {
  char L = toLower(C);
  return find_if([L](char D) { return toLower(D) == L; }, From);
}

/// compare_numeric - Compare strings, handle embedded numbers.
int StringRef::compare_numeric(StringRef RHS) const {
  for (size_t I = 0, E = std::min(Length, RHS.Length); I != E; ++I) {
    // Check for sequences of digits.
    if (isDigit(Data[I]) && isDigit(RHS.Data[I])) {
      // The longer sequence of numbers is considered larger.
      // This doesn't really handle prefixed zeros well.
      size_t J;
      for (J = I + 1; J != E + 1; ++J) {
        bool ld = J < Length && isDigit(Data[J]);
        bool rd = J < RHS.Length && isDigit(RHS.Data[J]);
        if (ld != rd)
          return rd ? -1 : 1;
        if (!rd)
          break;
      }
      // The two number sequences have the same length (J-I), just memcmp them.
      if (int Res = compareMemory(Data + I, RHS.Data + I, J - I))
        return Res < 0 ? -1 : 1;
      // Identical number sequences, continue search after the numbers.
      I = J - 1;
      continue;
    }
    if (Data[I] != RHS.Data[I])
      return (unsigned char)Data[I] < (unsigned char)RHS.Data[I] ? -1 : 1;
  }
  if (Length == RHS.Length)
    return 0;
  return Length < RHS.Length ? -1 : 1;
}

// Compute the edit distance between the two given strings.
unsigned StringRef::edit_distance(llvm::StringRef Other,
                                  bool AllowReplacements,
                                  unsigned MaxEditDistance) const {
  return llvm::ComputeEditDistance(
      makeArrayRef(data(), size()),
      makeArrayRef(Other.data(), Other.size()),
      AllowReplacements, MaxEditDistance);
}

//===----------------------------------------------------------------------===//
// String Operations
//===----------------------------------------------------------------------===//

std::string StringRef::lower() const {
  return std::string(map_iterator(begin(), toLower),
                     map_iterator(end(), toLower));
}

std::string StringRef::upper() const {
  return std::string(map_iterator(begin(), toUpper),
                     map_iterator(end(), toUpper));
}

//===----------------------------------------------------------------------===//
// String Searching
//===----------------------------------------------------------------------===//


/// find - Search for the first string \arg Str in the string.
///
/// \return - The index of the first occurrence of \arg Str, or npos if not
/// found.
size_t StringRef::find(StringRef Str, size_t From) const {
  if (From > Length)
    return npos;

  const char *Start = Data + From;
  size_t Size = Length - From;

  const char *Needle = Str.data();
  size_t N = Str.size();
  if (N == 0)
    return From;
  if (Size < N)
    return npos;
  if (N == 1) {
    const char *Ptr = (const char *)::memchr(Start, Needle[0], Size);
    return Ptr == nullptr ? npos : Ptr - Data;
  }

  const char *Stop = Start + (Size - N + 1);

  // For short haystacks or unsupported needles fall back to the naive algorithm
  if (Size < 16 || N > 255) {
    do {
      if (std::memcmp(Start, Needle, N) == 0)
        return Start - Data;
      ++Start;
    } while (Start < Stop);
    return npos;
  }

  // Build the bad char heuristic table, with uint8_t to reduce cache thrashing.
  uint8_t BadCharSkip[256];
  std::memset(BadCharSkip, N, 256);
  for (unsigned i = 0; i != N-1; ++i)
    BadCharSkip[(uint8_t)Str[i]] = N-1-i;

  do {
    uint8_t Last = Start[N - 1];
    if (LLVM_UNLIKELY(Last == (uint8_t)Needle[N - 1]))
      if (std::memcmp(Start, Needle, N - 1) == 0)
        return Start - Data;

    // Otherwise skip the appropriate number of bytes.
    Start += BadCharSkip[Last];
  } while (Start < Stop);

  return npos;
}

size_t StringRef::find_lower(StringRef Str, size_t From) const {
  StringRef This = substr(From);
  while (This.size() >= Str.size()) {
    if (This.startswith_lower(Str))
      return From;
    This = This.drop_front();
    ++From;
  }
  return npos;
}

size_t StringRef::rfind_lower(char C, size_t From) const {
  From = std::min(From, Length);
  size_t i = From;
  while (i != 0) {
    --i;
    if (toLower(Data[i]) == toLower(C))
      return i;
  }
  return npos;
}

/// rfind - Search for the last string \arg Str in the string.
///
/// \return - The index of the last occurrence of \arg Str, or npos if not
/// found.
size_t StringRef::rfind(StringRef Str) const {
  size_t N = Str.size();
  if (N > Length)
    return npos;
  for (size_t i = Length - N + 1, e = 0; i != e;) {
    --i;
    if (substr(i, N).equals(Str))
      return i;
  }
  return npos;
}

size_t StringRef::rfind_lower(StringRef Str) const {
  size_t N = Str.size();
  if (N > Length)
    return npos;
  for (size_t i = Length - N + 1, e = 0; i != e;) {
    --i;
    if (substr(i, N).equals_lower(Str))
      return i;
  }
  return npos;
}

/// find_first_of - Find the first character in the string that is in \arg
/// Chars, or npos if not found.
///
/// Note: O(size() + Chars.size())
StringRef::size_type StringRef::find_first_of(StringRef Chars,
                                              size_t From) const {
  std::bitset<1 << CHAR_BIT> CharBits;
  for (size_type i = 0; i != Chars.size(); ++i)
    CharBits.set((unsigned char)Chars[i]);

  for (size_type i = std::min(From, Length), e = Length; i != e; ++i)
    if (CharBits.test((unsigned char)Data[i]))
      return i;
  return npos;
}

/// find_first_not_of - Find the first character in the string that is not
/// \arg C or npos if not found.
StringRef::size_type StringRef::find_first_not_of(char C, size_t From) const {
  for (size_type i = std::min(From, Length), e = Length; i != e; ++i)
    if (Data[i] != C)
      return i;
  return npos;
}

/// find_first_not_of - Find the first character in the string that is not
/// in the string \arg Chars, or npos if not found.
///
/// Note: O(size() + Chars.size())
StringRef::size_type StringRef::find_first_not_of(StringRef Chars,
                                                  size_t From) const {
  std::bitset<1 << CHAR_BIT> CharBits;
  for (size_type i = 0; i != Chars.size(); ++i)
    CharBits.set((unsigned char)Chars[i]);

  for (size_type i = std::min(From, Length), e = Length; i != e; ++i)
    if (!CharBits.test((unsigned char)Data[i]))
      return i;
  return npos;
}

/// find_last_of - Find the last character in the string that is in \arg C,
/// or npos if not found.
///
/// Note: O(size() + Chars.size())
StringRef::size_type StringRef::find_last_of(StringRef Chars,
                                             size_t From) const {
  std::bitset<1 << CHAR_BIT> CharBits;
  for (size_type i = 0; i != Chars.size(); ++i)
    CharBits.set((unsigned char)Chars[i]);

  for (size_type i = std::min(From, Length) - 1, e = -1; i != e; --i)
    if (CharBits.test((unsigned char)Data[i]))
      return i;
  return npos;
}

/// find_last_not_of - Find the last character in the string that is not
/// \arg C, or npos if not found.
StringRef::size_type StringRef::find_last_not_of(char C, size_t From) const {
  for (size_type i = std::min(From, Length) - 1, e = -1; i != e; --i)
    if (Data[i] != C)
      return i;
  return npos;
}

/// find_last_not_of - Find the last character in the string that is not in
/// \arg Chars, or npos if not found.
///
/// Note: O(size() + Chars.size())
StringRef::size_type StringRef::find_last_not_of(StringRef Chars,
                                                 size_t From) const {
  std::bitset<1 << CHAR_BIT> CharBits;
  for (size_type i = 0, e = Chars.size(); i != e; ++i)
    CharBits.set((unsigned char)Chars[i]);

  for (size_type i = std::min(From, Length) - 1, e = -1; i != e; --i)
    if (!CharBits.test((unsigned char)Data[i]))
      return i;
  return npos;
}

void StringRef::split(SmallVectorImpl<StringRef> &A,
                      StringRef Separator, int MaxSplit,
                      bool KeepEmpty) const {
  StringRef S = *this;

  // Count down from MaxSplit. When MaxSplit is -1, this will just split
  // "forever". This doesn't support splitting more than 2^31 times
  // intentionally; if we ever want that we can make MaxSplit a 64-bit integer
  // but that seems unlikely to be useful.
  while (MaxSplit-- != 0) {
    size_t Idx = S.find(Separator);
    if (Idx == npos)
      break;

    // Push this split.
    if (KeepEmpty || Idx > 0)
      A.push_back(S.slice(0, Idx));

    // Jump forward.
    S = S.slice(Idx + Separator.size(), npos);
  }

  // Push the tail.
  if (KeepEmpty || !S.empty())
    A.push_back(S);
}

void StringRef::split(SmallVectorImpl<StringRef> &A, char Separator,
                      int MaxSplit, bool KeepEmpty) const {
  StringRef S = *this;

  // Count down from MaxSplit. When MaxSplit is -1, this will just split
  // "forever". This doesn't support splitting more than 2^31 times
  // intentionally; if we ever want that we can make MaxSplit a 64-bit integer
  // but that seems unlikely to be useful.
  while (MaxSplit-- != 0) {
    size_t Idx = S.find(Separator);
    if (Idx == npos)
      break;

    // Push this split.
    if (KeepEmpty || Idx > 0)
      A.push_back(S.slice(0, Idx));

    // Jump forward.
    S = S.slice(Idx + 1, npos);
  }

  // Push the tail.
  if (KeepEmpty || !S.empty())
    A.push_back(S);
}

//===----------------------------------------------------------------------===//
// Helpful Algorithms
//===----------------------------------------------------------------------===//

/// count - Return the number of non-overlapped occurrences of \arg Str in
/// the string.
size_t StringRef::count(StringRef Str) const {
  size_t Count = 0;
  size_t N = Str.size();
  if (!N || N > Length)
    return 0;
  for (size_t i = 0, e = Length - N + 1; i < e;) {
    if (substr(i, N).equals(Str)) {
      ++Count;
      i += N;
    }
    else
      ++i;
  }
  return Count;
}

static unsigned GetAutoSenseRadix(StringRef &Str) {
  if (Str.empty())
    return 10;

  if (Str.startswith("0x") || Str.startswith("0X")) {
    Str = Str.substr(2);
    return 16;
  }

  if (Str.startswith("0b") || Str.startswith("0B")) {
    Str = Str.substr(2);
    return 2;
  }

  if (Str.startswith("0o")) {
    Str = Str.substr(2);
    return 8;
  }

  if (Str[0] == '0' && Str.size() > 1 && isDigit(Str[1])) {
    Str = Str.substr(1);
    return 8;
  }

  return 10;
}

bool llvm::consumeUnsignedInteger(StringRef &Str, unsigned Radix,
                                  unsigned long long &Result) {
  // Autosense radix if not specified.
  if (Radix == 0)
    Radix = GetAutoSenseRadix(Str);

  // Empty strings (after the radix autosense) are invalid.
  if (Str.empty()) return true;

  // Parse all the bytes of the string given this radix.  Watch for overflow.
  StringRef Str2 = Str;
  Result = 0;
  while (!Str2.empty()) {
    unsigned CharVal;
    if (Str2[0] >= '0' && Str2[0] <= '9')
      CharVal = Str2[0] - '0';
    else if (Str2[0] >= 'a' && Str2[0] <= 'z')
      CharVal = Str2[0] - 'a' + 10;
    else if (Str2[0] >= 'A' && Str2[0] <= 'Z')
      CharVal = Str2[0] - 'A' + 10;
    else
      break;

    // If the parsed value is larger than the integer radix, we cannot
    // consume any more characters.
    if (CharVal >= Radix)
      break;

    // Add in this character.
    unsigned long long PrevResult = Result;
    Result = Result * Radix + CharVal;

    // Check for overflow by shifting back and seeing if bits were lost.
    if (Result / Radix < PrevResult)
      return true;

    Str2 = Str2.substr(1);
  }

  // We consider the operation a failure if no characters were consumed
  // successfully.
  if (Str.size() == Str2.size())
    return true;

  Str = Str2;
  return false;
}

bool llvm::consumeSignedInteger(StringRef &Str, unsigned Radix,
                                long long &Result) {
  unsigned long long ULLVal;

  // Handle positive strings first.
  if (Str.empty() || Str.front() != '-') {
    if (consumeUnsignedInteger(Str, Radix, ULLVal) ||
        // Check for value so large it overflows a signed value.
        (long long)ULLVal < 0)
      return true;
    Result = ULLVal;
    return false;
  }

  // Get the positive part of the value.
  StringRef Str2 = Str.drop_front(1);
  if (consumeUnsignedInteger(Str2, Radix, ULLVal) ||
      // Reject values so large they'd overflow as negative signed, but allow
      // "-0".  This negates the unsigned so that the negative isn't undefined
      // on signed overflow.
      (long long)-ULLVal > 0)
    return true;

  Str = Str2;
  Result = -ULLVal;
  return false;
}

/// GetAsUnsignedInteger - Workhorse method that converts a integer character
/// sequence of radix up to 36 to an unsigned long long value.
bool llvm::getAsUnsignedInteger(StringRef Str, unsigned Radix,
                                unsigned long long &Result) {
  if (consumeUnsignedInteger(Str, Radix, Result))
    return true;

  // For getAsUnsignedInteger, we require the whole string to be consumed or
  // else we consider it a failure.
  return !Str.empty();
}

bool llvm::getAsSignedInteger(StringRef Str, unsigned Radix,
                              long long &Result) {
  if (consumeSignedInteger(Str, Radix, Result))
    return true;

  // For getAsSignedInteger, we require the whole string to be consumed or else
  // we consider it a failure.
  return !Str.empty();
}

bool StringRef::getAsInteger(unsigned Radix, APInt &Result) const {
  StringRef Str = *this;

  // Autosense radix if not specified.
  if (Radix == 0)
    Radix = GetAutoSenseRadix(Str);

  assert(Radix > 1 && Radix <= 36);

  // Empty strings (after the radix autosense) are invalid.
  if (Str.empty()) return true;

  // Skip leading zeroes.  This can be a significant improvement if
  // it means we don't need > 64 bits.
  while (!Str.empty() && Str.front() == '0')
    Str = Str.substr(1);

  // If it was nothing but zeroes....
  if (Str.empty()) {
    Result = APInt(64, 0);
    return false;
  }

  // (Over-)estimate the required number of bits.
  unsigned Log2Radix = 0;
  while ((1U << Log2Radix) < Radix) Log2Radix++;
  bool IsPowerOf2Radix = ((1U << Log2Radix) == Radix);

  unsigned BitWidth = Log2Radix * Str.size();
  if (BitWidth < Result.getBitWidth())
    BitWidth = Result.getBitWidth(); // don't shrink the result
  else if (BitWidth > Result.getBitWidth())
    Result = Result.zext(BitWidth);

  APInt RadixAP, CharAP; // unused unless !IsPowerOf2Radix
  if (!IsPowerOf2Radix) {
    // These must have the same bit-width as Result.
    RadixAP = APInt(BitWidth, Radix);
    CharAP = APInt(BitWidth, 0);
  }

  // Parse all the bytes of the string given this radix.
  Result = 0;
  while (!Str.empty()) {
    unsigned CharVal;
    if (Str[0] >= '0' && Str[0] <= '9')
      CharVal = Str[0]-'0';
    else if (Str[0] >= 'a' && Str[0] <= 'z')
      CharVal = Str[0]-'a'+10;
    else if (Str[0] >= 'A' && Str[0] <= 'Z')
      CharVal = Str[0]-'A'+10;
    else
      return true;

    // If the parsed value is larger than the integer radix, the string is
    // invalid.
    if (CharVal >= Radix)
      return true;

    // Add in this character.
    if (IsPowerOf2Radix) {
      Result <<= Log2Radix;
      Result |= CharVal;
    } else {
      Result *= RadixAP;
      CharAP = CharVal;
      Result += CharAP;
    }

    Str = Str.substr(1);
  }

  return false;
}

bool StringRef::getAsDouble(double &Result, bool AllowInexact) const {
  APFloat F(0.0);
  auto StatusOrErr = F.convertFromString(*this, APFloat::rmNearestTiesToEven);
  if (errorToBool(StatusOrErr.takeError()))
    return true;

  APFloat::opStatus Status = *StatusOrErr;
  if (Status != APFloat::opOK) {
    if (!AllowInexact || !(Status & APFloat::opInexact))
      return true;
  }

  Result = F.convertToDouble();
  return false;
}

// Implementation of StringRef hashing.
hash_code llvm::hash_value(StringRef S) {
  return hash_combine_range(S.begin(), S.end());
}