MCAssembler.cpp 44.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
//===- lib/MC/MCAssembler.cpp - Assembler Backend Implementation ----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "llvm/MC/MCAssembler.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/MC/MCAsmBackend.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCAsmLayout.h"
#include "llvm/MC/MCCodeEmitter.h"
#include "llvm/MC/MCCodeView.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCDwarf.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCFixup.h"
#include "llvm/MC/MCFixupKindInfo.h"
#include "llvm/MC/MCFragment.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCObjectWriter.h"
#include "llvm/MC/MCSection.h"
#include "llvm/MC/MCSectionELF.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/MC/MCValue.h"
#include "llvm/Support/Alignment.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/EndianStream.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/LEB128.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <cstdint>
#include <cstring>
#include <tuple>
#include <utility>

using namespace llvm;

#define DEBUG_TYPE "assembler"

namespace {
namespace stats {

STATISTIC(EmittedFragments, "Number of emitted assembler fragments - total");
STATISTIC(EmittedRelaxableFragments,
          "Number of emitted assembler fragments - relaxable");
STATISTIC(EmittedDataFragments,
          "Number of emitted assembler fragments - data");
STATISTIC(EmittedCompactEncodedInstFragments,
          "Number of emitted assembler fragments - compact encoded inst");
STATISTIC(EmittedAlignFragments,
          "Number of emitted assembler fragments - align");
STATISTIC(EmittedFillFragments,
          "Number of emitted assembler fragments - fill");
STATISTIC(EmittedNopsFragments, "Number of emitted assembler fragments - nops");
STATISTIC(EmittedOrgFragments, "Number of emitted assembler fragments - org");
STATISTIC(evaluateFixup, "Number of evaluated fixups");
STATISTIC(FragmentLayouts, "Number of fragment layouts");
STATISTIC(ObjectBytes, "Number of emitted object file bytes");
STATISTIC(RelaxationSteps, "Number of assembler layout and relaxation steps");
STATISTIC(RelaxedInstructions, "Number of relaxed instructions");

} // end namespace stats
} // end anonymous namespace

// FIXME FIXME FIXME: There are number of places in this file where we convert
// what is a 64-bit assembler value used for computation into a value in the
// object file, which may truncate it. We should detect that truncation where
// invalid and report errors back.

/* *** */

MCAssembler::MCAssembler(MCContext &Context,
                         std::unique_ptr<MCAsmBackend> Backend,
                         std::unique_ptr<MCCodeEmitter> Emitter,
                         std::unique_ptr<MCObjectWriter> Writer)
    : Context(Context), Backend(std::move(Backend)),
      Emitter(std::move(Emitter)), Writer(std::move(Writer)),
      BundleAlignSize(0), RelaxAll(false), SubsectionsViaSymbols(false),
      IncrementalLinkerCompatible(false), ELFHeaderEFlags(0) {
  VersionInfo.Major = 0; // Major version == 0 for "none specified"
}

MCAssembler::~MCAssembler() = default;

void MCAssembler::reset() {
  Sections.clear();
  Symbols.clear();
  IndirectSymbols.clear();
  DataRegions.clear();
  LinkerOptions.clear();
  FileNames.clear();
  ThumbFuncs.clear();
  BundleAlignSize = 0;
  RelaxAll = false;
  SubsectionsViaSymbols = false;
  IncrementalLinkerCompatible = false;
  ELFHeaderEFlags = 0;
  LOHContainer.reset();
  VersionInfo.Major = 0;
  VersionInfo.SDKVersion = VersionTuple();

  // reset objects owned by us
  if (getBackendPtr())
    getBackendPtr()->reset();
  if (getEmitterPtr())
    getEmitterPtr()->reset();
  if (getWriterPtr())
    getWriterPtr()->reset();
  getLOHContainer().reset();
}

bool MCAssembler::registerSection(MCSection &Section) {
  if (Section.isRegistered())
    return false;
  Sections.push_back(&Section);
  Section.setIsRegistered(true);
  return true;
}

bool MCAssembler::isThumbFunc(const MCSymbol *Symbol) const {
  if (ThumbFuncs.count(Symbol))
    return true;

  if (!Symbol->isVariable())
    return false;

  const MCExpr *Expr = Symbol->getVariableValue();

  MCValue V;
  if (!Expr->evaluateAsRelocatable(V, nullptr, nullptr))
    return false;

  if (V.getSymB() || V.getRefKind() != MCSymbolRefExpr::VK_None)
    return false;

  const MCSymbolRefExpr *Ref = V.getSymA();
  if (!Ref)
    return false;

  if (Ref->getKind() != MCSymbolRefExpr::VK_None)
    return false;

  const MCSymbol &Sym = Ref->getSymbol();
  if (!isThumbFunc(&Sym))
    return false;

  ThumbFuncs.insert(Symbol); // Cache it.
  return true;
}

bool MCAssembler::isSymbolLinkerVisible(const MCSymbol &Symbol) const {
  // Non-temporary labels should always be visible to the linker.
  if (!Symbol.isTemporary())
    return true;

  if (Symbol.isUsedInReloc())
    return true;

  return false;
}

const MCSymbol *MCAssembler::getAtom(const MCSymbol &S) const {
  // Linker visible symbols define atoms.
  if (isSymbolLinkerVisible(S))
    return &S;

  // Absolute and undefined symbols have no defining atom.
  if (!S.isInSection())
    return nullptr;

  // Non-linker visible symbols in sections which can't be atomized have no
  // defining atom.
  if (!getContext().getAsmInfo()->isSectionAtomizableBySymbols(
          *S.getFragment()->getParent()))
    return nullptr;

  // Otherwise, return the atom for the containing fragment.
  return S.getFragment()->getAtom();
}

bool MCAssembler::evaluateFixup(const MCAsmLayout &Layout,
                                const MCFixup &Fixup, const MCFragment *DF,
                                MCValue &Target, uint64_t &Value,
                                bool &WasForced) const {
  ++stats::evaluateFixup;

  // FIXME: This code has some duplication with recordRelocation. We should
  // probably merge the two into a single callback that tries to evaluate a
  // fixup and records a relocation if one is needed.

  // On error claim to have completely evaluated the fixup, to prevent any
  // further processing from being done.
  const MCExpr *Expr = Fixup.getValue();
  MCContext &Ctx = getContext();
  Value = 0;
  WasForced = false;
  if (!Expr->evaluateAsRelocatable(Target, &Layout, &Fixup)) {
    Ctx.reportError(Fixup.getLoc(), "expected relocatable expression");
    return true;
  }
  if (const MCSymbolRefExpr *RefB = Target.getSymB()) {
    if (RefB->getKind() != MCSymbolRefExpr::VK_None) {
      Ctx.reportError(Fixup.getLoc(),
                      "unsupported subtraction of qualified symbol");
      return true;
    }
  }

  assert(getBackendPtr() && "Expected assembler backend");
  bool IsTarget = getBackendPtr()->getFixupKindInfo(Fixup.getKind()).Flags &
                  MCFixupKindInfo::FKF_IsTarget;

  if (IsTarget)
    return getBackend().evaluateTargetFixup(*this, Layout, Fixup, DF, Target,
                                            Value, WasForced);

  unsigned FixupFlags = getBackendPtr()->getFixupKindInfo(Fixup.getKind()).Flags;
  bool IsPCRel = getBackendPtr()->getFixupKindInfo(Fixup.getKind()).Flags &
                 MCFixupKindInfo::FKF_IsPCRel;

  bool IsResolved = false;
  if (IsPCRel) {
    if (Target.getSymB()) {
      IsResolved = false;
    } else if (!Target.getSymA()) {
      IsResolved = false;
    } else {
      const MCSymbolRefExpr *A = Target.getSymA();
      const MCSymbol &SA = A->getSymbol();
      if (A->getKind() != MCSymbolRefExpr::VK_None || SA.isUndefined()) {
        IsResolved = false;
      } else if (auto *Writer = getWriterPtr()) {
        IsResolved = (FixupFlags & MCFixupKindInfo::FKF_Constant) ||
                     Writer->isSymbolRefDifferenceFullyResolvedImpl(
                         *this, SA, *DF, false, true);
      }
    }
  } else {
    IsResolved = Target.isAbsolute();
  }

  Value = Target.getConstant();

  if (const MCSymbolRefExpr *A = Target.getSymA()) {
    const MCSymbol &Sym = A->getSymbol();
    if (Sym.isDefined())
      Value += Layout.getSymbolOffset(Sym);
  }
  if (const MCSymbolRefExpr *B = Target.getSymB()) {
    const MCSymbol &Sym = B->getSymbol();
    if (Sym.isDefined())
      Value -= Layout.getSymbolOffset(Sym);
  }

  bool ShouldAlignPC = getBackend().getFixupKindInfo(Fixup.getKind()).Flags &
                       MCFixupKindInfo::FKF_IsAlignedDownTo32Bits;
  assert((ShouldAlignPC ? IsPCRel : true) &&
    "FKF_IsAlignedDownTo32Bits is only allowed on PC-relative fixups!");

  if (IsPCRel) {
    uint32_t Offset = Layout.getFragmentOffset(DF) + Fixup.getOffset();

    // A number of ARM fixups in Thumb mode require that the effective PC
    // address be determined as the 32-bit aligned version of the actual offset.
    if (ShouldAlignPC) Offset &= ~0x3;
    Value -= Offset;
  }

  // Let the backend force a relocation if needed.
  if (IsResolved && getBackend().shouldForceRelocation(*this, Fixup, Target)) {
    IsResolved = false;
    WasForced = true;
  }

  return IsResolved;
}

uint64_t MCAssembler::computeFragmentSize(const MCAsmLayout &Layout,
                                          const MCFragment &F) const {
  assert(getBackendPtr() && "Requires assembler backend");
  switch (F.getKind()) {
  case MCFragment::FT_Data:
    return cast<MCDataFragment>(F).getContents().size();
  case MCFragment::FT_Relaxable:
    return cast<MCRelaxableFragment>(F).getContents().size();
  case MCFragment::FT_CompactEncodedInst:
    return cast<MCCompactEncodedInstFragment>(F).getContents().size();
  case MCFragment::FT_Fill: {
    auto &FF = cast<MCFillFragment>(F);
    int64_t NumValues = 0;
    if (!FF.getNumValues().evaluateAsAbsolute(NumValues, Layout)) {
      getContext().reportError(FF.getLoc(),
                               "expected assembly-time absolute expression");
      return 0;
    }
    int64_t Size = NumValues * FF.getValueSize();
    if (Size < 0) {
      getContext().reportError(FF.getLoc(), "invalid number of bytes");
      return 0;
    }
    return Size;
  }

  case MCFragment::FT_Nops:
    return cast<MCNopsFragment>(F).getNumBytes();

  case MCFragment::FT_LEB:
    return cast<MCLEBFragment>(F).getContents().size();

  case MCFragment::FT_BoundaryAlign:
    return cast<MCBoundaryAlignFragment>(F).getSize();

  case MCFragment::FT_SymbolId:
    return 4;

  case MCFragment::FT_Align: {
    const MCAlignFragment &AF = cast<MCAlignFragment>(F);
    unsigned Offset = Layout.getFragmentOffset(&AF);
    unsigned Size = offsetToAlignment(Offset, Align(AF.getAlignment()));

    // Insert extra Nops for code alignment if the target define
    // shouldInsertExtraNopBytesForCodeAlign target hook.
    if (AF.getParent()->UseCodeAlign() && AF.hasEmitNops() &&
        getBackend().shouldInsertExtraNopBytesForCodeAlign(AF, Size))
      return Size;

    // If we are padding with nops, force the padding to be larger than the
    // minimum nop size.
    if (Size > 0 && AF.hasEmitNops()) {
      while (Size % getBackend().getMinimumNopSize())
        Size += AF.getAlignment();
    }
    if (Size > AF.getMaxBytesToEmit())
      return 0;
    return Size;
  }

  case MCFragment::FT_Org: {
    const MCOrgFragment &OF = cast<MCOrgFragment>(F);
    MCValue Value;
    if (!OF.getOffset().evaluateAsValue(Value, Layout)) {
      getContext().reportError(OF.getLoc(),
                               "expected assembly-time absolute expression");
        return 0;
    }

    uint64_t FragmentOffset = Layout.getFragmentOffset(&OF);
    int64_t TargetLocation = Value.getConstant();
    if (const MCSymbolRefExpr *A = Value.getSymA()) {
      uint64_t Val;
      if (!Layout.getSymbolOffset(A->getSymbol(), Val)) {
        getContext().reportError(OF.getLoc(), "expected absolute expression");
        return 0;
      }
      TargetLocation += Val;
    }
    int64_t Size = TargetLocation - FragmentOffset;
    if (Size < 0 || Size >= 0x40000000) {
      getContext().reportError(
          OF.getLoc(), "invalid .org offset '" + Twine(TargetLocation) +
                           "' (at offset '" + Twine(FragmentOffset) + "')");
      return 0;
    }
    return Size;
  }

  case MCFragment::FT_Dwarf:
    return cast<MCDwarfLineAddrFragment>(F).getContents().size();
  case MCFragment::FT_DwarfFrame:
    return cast<MCDwarfCallFrameFragment>(F).getContents().size();
  case MCFragment::FT_CVInlineLines:
    return cast<MCCVInlineLineTableFragment>(F).getContents().size();
  case MCFragment::FT_CVDefRange:
    return cast<MCCVDefRangeFragment>(F).getContents().size();
  case MCFragment::FT_Dummy:
    llvm_unreachable("Should not have been added");
  }

  llvm_unreachable("invalid fragment kind");
}

void MCAsmLayout::layoutFragment(MCFragment *F) {
  MCFragment *Prev = F->getPrevNode();

  // We should never try to recompute something which is valid.
  assert(!isFragmentValid(F) && "Attempt to recompute a valid fragment!");
  // We should never try to compute the fragment layout if its predecessor
  // isn't valid.
  assert((!Prev || isFragmentValid(Prev)) &&
         "Attempt to compute fragment before its predecessor!");

  assert(!F->IsBeingLaidOut && "Already being laid out!");
  F->IsBeingLaidOut = true;

  ++stats::FragmentLayouts;

  // Compute fragment offset and size.
  if (Prev)
    F->Offset = Prev->Offset + getAssembler().computeFragmentSize(*this, *Prev);
  else
    F->Offset = 0;
  F->IsBeingLaidOut = false;
  LastValidFragment[F->getParent()] = F;

  // If bundling is enabled and this fragment has instructions in it, it has to
  // obey the bundling restrictions. With padding, we'll have:
  //
  //
  //        BundlePadding
  //             |||
  // -------------------------------------
  //   Prev  |##########|       F        |
  // -------------------------------------
  //                    ^
  //                    |
  //                    F->Offset
  //
  // The fragment's offset will point to after the padding, and its computed
  // size won't include the padding.
  //
  // When the -mc-relax-all flag is used, we optimize bundling by writting the
  // padding directly into fragments when the instructions are emitted inside
  // the streamer. When the fragment is larger than the bundle size, we need to
  // ensure that it's bundle aligned. This means that if we end up with
  // multiple fragments, we must emit bundle padding between fragments.
  //
  // ".align N" is an example of a directive that introduces multiple
  // fragments. We could add a special case to handle ".align N" by emitting
  // within-fragment padding (which would produce less padding when N is less
  // than the bundle size), but for now we don't.
  //
  if (Assembler.isBundlingEnabled() && F->hasInstructions()) {
    assert(isa<MCEncodedFragment>(F) &&
           "Only MCEncodedFragment implementations have instructions");
    MCEncodedFragment *EF = cast<MCEncodedFragment>(F);
    uint64_t FSize = Assembler.computeFragmentSize(*this, *EF);

    if (!Assembler.getRelaxAll() && FSize > Assembler.getBundleAlignSize())
      report_fatal_error("Fragment can't be larger than a bundle size");

    uint64_t RequiredBundlePadding =
        computeBundlePadding(Assembler, EF, EF->Offset, FSize);
    if (RequiredBundlePadding > UINT8_MAX)
      report_fatal_error("Padding cannot exceed 255 bytes");
    EF->setBundlePadding(static_cast<uint8_t>(RequiredBundlePadding));
    EF->Offset += RequiredBundlePadding;
  }
}

void MCAssembler::registerSymbol(const MCSymbol &Symbol, bool *Created) {
  bool New = !Symbol.isRegistered();
  if (Created)
    *Created = New;
  if (New) {
    Symbol.setIsRegistered(true);
    Symbols.push_back(&Symbol);
  }
}

void MCAssembler::writeFragmentPadding(raw_ostream &OS,
                                       const MCEncodedFragment &EF,
                                       uint64_t FSize) const {
  assert(getBackendPtr() && "Expected assembler backend");
  // Should NOP padding be written out before this fragment?
  unsigned BundlePadding = EF.getBundlePadding();
  if (BundlePadding > 0) {
    assert(isBundlingEnabled() &&
           "Writing bundle padding with disabled bundling");
    assert(EF.hasInstructions() &&
           "Writing bundle padding for a fragment without instructions");

    unsigned TotalLength = BundlePadding + static_cast<unsigned>(FSize);
    if (EF.alignToBundleEnd() && TotalLength > getBundleAlignSize()) {
      // If the padding itself crosses a bundle boundary, it must be emitted
      // in 2 pieces, since even nop instructions must not cross boundaries.
      //             v--------------v   <- BundleAlignSize
      //        v---------v             <- BundlePadding
      // ----------------------------
      // | Prev |####|####|    F    |
      // ----------------------------
      //        ^-------------------^   <- TotalLength
      unsigned DistanceToBoundary = TotalLength - getBundleAlignSize();
      if (!getBackend().writeNopData(OS, DistanceToBoundary))
        report_fatal_error("unable to write NOP sequence of " +
                           Twine(DistanceToBoundary) + " bytes");
      BundlePadding -= DistanceToBoundary;
    }
    if (!getBackend().writeNopData(OS, BundlePadding))
      report_fatal_error("unable to write NOP sequence of " +
                         Twine(BundlePadding) + " bytes");
  }
}

/// Write the fragment \p F to the output file.
static void writeFragment(raw_ostream &OS, const MCAssembler &Asm,
                          const MCAsmLayout &Layout, const MCFragment &F) {
  // FIXME: Embed in fragments instead?
  uint64_t FragmentSize = Asm.computeFragmentSize(Layout, F);

  support::endianness Endian = Asm.getBackend().Endian;

  if (const MCEncodedFragment *EF = dyn_cast<MCEncodedFragment>(&F))
    Asm.writeFragmentPadding(OS, *EF, FragmentSize);

  // This variable (and its dummy usage) is to participate in the assert at
  // the end of the function.
  uint64_t Start = OS.tell();
  (void) Start;

  ++stats::EmittedFragments;

  switch (F.getKind()) {
  case MCFragment::FT_Align: {
    ++stats::EmittedAlignFragments;
    const MCAlignFragment &AF = cast<MCAlignFragment>(F);
    assert(AF.getValueSize() && "Invalid virtual align in concrete fragment!");

    uint64_t Count = FragmentSize / AF.getValueSize();

    // FIXME: This error shouldn't actually occur (the front end should emit
    // multiple .align directives to enforce the semantics it wants), but is
    // severe enough that we want to report it. How to handle this?
    if (Count * AF.getValueSize() != FragmentSize)
      report_fatal_error("undefined .align directive, value size '" +
                        Twine(AF.getValueSize()) +
                        "' is not a divisor of padding size '" +
                        Twine(FragmentSize) + "'");

    // See if we are aligning with nops, and if so do that first to try to fill
    // the Count bytes.  Then if that did not fill any bytes or there are any
    // bytes left to fill use the Value and ValueSize to fill the rest.
    // If we are aligning with nops, ask that target to emit the right data.
    if (AF.hasEmitNops()) {
      if (!Asm.getBackend().writeNopData(OS, Count))
        report_fatal_error("unable to write nop sequence of " +
                          Twine(Count) + " bytes");
      break;
    }

    // Otherwise, write out in multiples of the value size.
    for (uint64_t i = 0; i != Count; ++i) {
      switch (AF.getValueSize()) {
      default: llvm_unreachable("Invalid size!");
      case 1: OS << char(AF.getValue()); break;
      case 2:
        support::endian::write<uint16_t>(OS, AF.getValue(), Endian);
        break;
      case 4:
        support::endian::write<uint32_t>(OS, AF.getValue(), Endian);
        break;
      case 8:
        support::endian::write<uint64_t>(OS, AF.getValue(), Endian);
        break;
      }
    }
    break;
  }

  case MCFragment::FT_Data:
    ++stats::EmittedDataFragments;
    OS << cast<MCDataFragment>(F).getContents();
    break;

  case MCFragment::FT_Relaxable:
    ++stats::EmittedRelaxableFragments;
    OS << cast<MCRelaxableFragment>(F).getContents();
    break;

  case MCFragment::FT_CompactEncodedInst:
    ++stats::EmittedCompactEncodedInstFragments;
    OS << cast<MCCompactEncodedInstFragment>(F).getContents();
    break;

  case MCFragment::FT_Fill: {
    ++stats::EmittedFillFragments;
    const MCFillFragment &FF = cast<MCFillFragment>(F);
    uint64_t V = FF.getValue();
    unsigned VSize = FF.getValueSize();
    const unsigned MaxChunkSize = 16;
    char Data[MaxChunkSize];
    assert(0 < VSize && VSize <= MaxChunkSize && "Illegal fragment fill size");
    // Duplicate V into Data as byte vector to reduce number of
    // writes done. As such, do endian conversion here.
    for (unsigned I = 0; I != VSize; ++I) {
      unsigned index = Endian == support::little ? I : (VSize - I - 1);
      Data[I] = uint8_t(V >> (index * 8));
    }
    for (unsigned I = VSize; I < MaxChunkSize; ++I)
      Data[I] = Data[I - VSize];

    // Set to largest multiple of VSize in Data.
    const unsigned NumPerChunk = MaxChunkSize / VSize;
    // Set ChunkSize to largest multiple of VSize in Data
    const unsigned ChunkSize = VSize * NumPerChunk;

    // Do copies by chunk.
    StringRef Ref(Data, ChunkSize);
    for (uint64_t I = 0, E = FragmentSize / ChunkSize; I != E; ++I)
      OS << Ref;

    // do remainder if needed.
    unsigned TrailingCount = FragmentSize % ChunkSize;
    if (TrailingCount)
      OS.write(Data, TrailingCount);
    break;
  }

  case MCFragment::FT_Nops: {
    ++stats::EmittedNopsFragments;
    const MCNopsFragment &NF = cast<MCNopsFragment>(F);
    int64_t NumBytes = NF.getNumBytes();
    int64_t ControlledNopLength = NF.getControlledNopLength();
    int64_t MaximumNopLength = Asm.getBackend().getMaximumNopSize();

    assert(NumBytes > 0 && "Expected positive NOPs fragment size");
    assert(ControlledNopLength >= 0 && "Expected non-negative NOP size");

    if (ControlledNopLength > MaximumNopLength) {
      Asm.getContext().reportError(NF.getLoc(),
                                   "illegal NOP size " +
                                       std::to_string(ControlledNopLength) +
                                       ". (expected within [0, " +
                                       std::to_string(MaximumNopLength) + "])");
      // Clamp the NOP length as reportError does not stop the execution
      // immediately.
      ControlledNopLength = MaximumNopLength;
    }

    // Use maximum value if the size of each NOP is not specified
    if (!ControlledNopLength)
      ControlledNopLength = MaximumNopLength;

    while (NumBytes) {
      uint64_t NumBytesToEmit =
          (uint64_t)std::min(NumBytes, ControlledNopLength);
      assert(NumBytesToEmit && "try to emit empty NOP instruction");
      if (!Asm.getBackend().writeNopData(OS, NumBytesToEmit)) {
        report_fatal_error("unable to write nop sequence of the remaining " +
                           Twine(NumBytesToEmit) + " bytes");
        break;
      }
      NumBytes -= NumBytesToEmit;
    }
    break;
  }

  case MCFragment::FT_LEB: {
    const MCLEBFragment &LF = cast<MCLEBFragment>(F);
    OS << LF.getContents();
    break;
  }

  case MCFragment::FT_BoundaryAlign: {
    if (!Asm.getBackend().writeNopData(OS, FragmentSize))
      report_fatal_error("unable to write nop sequence of " +
                         Twine(FragmentSize) + " bytes");
    break;
  }

  case MCFragment::FT_SymbolId: {
    const MCSymbolIdFragment &SF = cast<MCSymbolIdFragment>(F);
    support::endian::write<uint32_t>(OS, SF.getSymbol()->getIndex(), Endian);
    break;
  }

  case MCFragment::FT_Org: {
    ++stats::EmittedOrgFragments;
    const MCOrgFragment &OF = cast<MCOrgFragment>(F);

    for (uint64_t i = 0, e = FragmentSize; i != e; ++i)
      OS << char(OF.getValue());

    break;
  }

  case MCFragment::FT_Dwarf: {
    const MCDwarfLineAddrFragment &OF = cast<MCDwarfLineAddrFragment>(F);
    OS << OF.getContents();
    break;
  }
  case MCFragment::FT_DwarfFrame: {
    const MCDwarfCallFrameFragment &CF = cast<MCDwarfCallFrameFragment>(F);
    OS << CF.getContents();
    break;
  }
  case MCFragment::FT_CVInlineLines: {
    const auto &OF = cast<MCCVInlineLineTableFragment>(F);
    OS << OF.getContents();
    break;
  }
  case MCFragment::FT_CVDefRange: {
    const auto &DRF = cast<MCCVDefRangeFragment>(F);
    OS << DRF.getContents();
    break;
  }
  case MCFragment::FT_Dummy:
    llvm_unreachable("Should not have been added");
  }

  assert(OS.tell() - Start == FragmentSize &&
         "The stream should advance by fragment size");
}

void MCAssembler::writeSectionData(raw_ostream &OS, const MCSection *Sec,
                                   const MCAsmLayout &Layout) const {
  assert(getBackendPtr() && "Expected assembler backend");

  // Ignore virtual sections.
  if (Sec->isVirtualSection()) {
    assert(Layout.getSectionFileSize(Sec) == 0 && "Invalid size for section!");

    // Check that contents are only things legal inside a virtual section.
    for (const MCFragment &F : *Sec) {
      switch (F.getKind()) {
      default: llvm_unreachable("Invalid fragment in virtual section!");
      case MCFragment::FT_Data: {
        // Check that we aren't trying to write a non-zero contents (or fixups)
        // into a virtual section. This is to support clients which use standard
        // directives to fill the contents of virtual sections.
        const MCDataFragment &DF = cast<MCDataFragment>(F);
        if (DF.fixup_begin() != DF.fixup_end())
          getContext().reportError(SMLoc(), Sec->getVirtualSectionKind() +
                                                " section '" + Sec->getName() +
                                                "' cannot have fixups");
        for (unsigned i = 0, e = DF.getContents().size(); i != e; ++i)
          if (DF.getContents()[i]) {
            getContext().reportError(SMLoc(),
                                     Sec->getVirtualSectionKind() +
                                         " section '" + Sec->getName() +
                                         "' cannot have non-zero initializers");
            break;
          }
        break;
      }
      case MCFragment::FT_Align:
        // Check that we aren't trying to write a non-zero value into a virtual
        // section.
        assert((cast<MCAlignFragment>(F).getValueSize() == 0 ||
                cast<MCAlignFragment>(F).getValue() == 0) &&
               "Invalid align in virtual section!");
        break;
      case MCFragment::FT_Fill:
        assert((cast<MCFillFragment>(F).getValue() == 0) &&
               "Invalid fill in virtual section!");
        break;
      case MCFragment::FT_Org:
        break;
      }
    }

    return;
  }

  uint64_t Start = OS.tell();
  (void)Start;

  for (const MCFragment &F : *Sec)
    writeFragment(OS, *this, Layout, F);

  assert(OS.tell() - Start == Layout.getSectionAddressSize(Sec));
}

std::tuple<MCValue, uint64_t, bool>
MCAssembler::handleFixup(const MCAsmLayout &Layout, MCFragment &F,
                         const MCFixup &Fixup) {
  // Evaluate the fixup.
  MCValue Target;
  uint64_t FixedValue;
  bool WasForced;
  bool IsResolved = evaluateFixup(Layout, Fixup, &F, Target, FixedValue,
                                  WasForced);
  if (!IsResolved) {
    // The fixup was unresolved, we need a relocation. Inform the object
    // writer of the relocation, and give it an opportunity to adjust the
    // fixup value if need be.
    if (Target.getSymA() && Target.getSymB() &&
        getBackend().requiresDiffExpressionRelocations()) {
      // The fixup represents the difference between two symbols, which the
      // backend has indicated must be resolved at link time. Split up the fixup
      // into two relocations, one for the add, and one for the sub, and emit
      // both of these. The constant will be associated with the add half of the
      // expression.
      MCFixup FixupAdd = MCFixup::createAddFor(Fixup);
      MCValue TargetAdd =
          MCValue::get(Target.getSymA(), nullptr, Target.getConstant());
      getWriter().recordRelocation(*this, Layout, &F, FixupAdd, TargetAdd,
                                   FixedValue);
      MCFixup FixupSub = MCFixup::createSubFor(Fixup);
      MCValue TargetSub = MCValue::get(Target.getSymB());
      getWriter().recordRelocation(*this, Layout, &F, FixupSub, TargetSub,
                                   FixedValue);
    } else {
      getWriter().recordRelocation(*this, Layout, &F, Fixup, Target,
                                   FixedValue);
    }
  }
  return std::make_tuple(Target, FixedValue, IsResolved);
}

void MCAssembler::layout(MCAsmLayout &Layout) {
  assert(getBackendPtr() && "Expected assembler backend");
  DEBUG_WITH_TYPE("mc-dump", {
      errs() << "assembler backend - pre-layout\n--\n";
      dump(); });

  // Create dummy fragments and assign section ordinals.
  unsigned SectionIndex = 0;
  for (MCSection &Sec : *this) {
    // Create dummy fragments to eliminate any empty sections, this simplifies
    // layout.
    if (Sec.getFragmentList().empty())
      new MCDataFragment(&Sec);

    Sec.setOrdinal(SectionIndex++);
  }

  // Assign layout order indices to sections and fragments.
  for (unsigned i = 0, e = Layout.getSectionOrder().size(); i != e; ++i) {
    MCSection *Sec = Layout.getSectionOrder()[i];
    Sec->setLayoutOrder(i);

    unsigned FragmentIndex = 0;
    for (MCFragment &Frag : *Sec)
      Frag.setLayoutOrder(FragmentIndex++);
  }

  // Layout until everything fits.
  while (layoutOnce(Layout)) {
    if (getContext().hadError())
      return;
    // Size of fragments in one section can depend on the size of fragments in
    // another. If any fragment has changed size, we have to re-layout (and
    // as a result possibly further relax) all.
    for (MCSection &Sec : *this)
      Layout.invalidateFragmentsFrom(&*Sec.begin());
  }

  DEBUG_WITH_TYPE("mc-dump", {
      errs() << "assembler backend - post-relaxation\n--\n";
      dump(); });

  // Finalize the layout, including fragment lowering.
  finishLayout(Layout);

  DEBUG_WITH_TYPE("mc-dump", {
      errs() << "assembler backend - final-layout\n--\n";
      dump(); });

  // Allow the object writer a chance to perform post-layout binding (for
  // example, to set the index fields in the symbol data).
  getWriter().executePostLayoutBinding(*this, Layout);

  // Evaluate and apply the fixups, generating relocation entries as necessary.
  for (MCSection &Sec : *this) {
    for (MCFragment &Frag : Sec) {
      ArrayRef<MCFixup> Fixups;
      MutableArrayRef<char> Contents;
      const MCSubtargetInfo *STI = nullptr;

      // Process MCAlignFragment and MCEncodedFragmentWithFixups here.
      switch (Frag.getKind()) {
      default:
        continue;
      case MCFragment::FT_Align: {
        MCAlignFragment &AF = cast<MCAlignFragment>(Frag);
        // Insert fixup type for code alignment if the target define
        // shouldInsertFixupForCodeAlign target hook.
        if (Sec.UseCodeAlign() && AF.hasEmitNops())
          getBackend().shouldInsertFixupForCodeAlign(*this, Layout, AF);
        continue;
      }
      case MCFragment::FT_Data: {
        MCDataFragment &DF = cast<MCDataFragment>(Frag);
        Fixups = DF.getFixups();
        Contents = DF.getContents();
        STI = DF.getSubtargetInfo();
        assert(!DF.hasInstructions() || STI != nullptr);
        break;
      }
      case MCFragment::FT_Relaxable: {
        MCRelaxableFragment &RF = cast<MCRelaxableFragment>(Frag);
        Fixups = RF.getFixups();
        Contents = RF.getContents();
        STI = RF.getSubtargetInfo();
        assert(!RF.hasInstructions() || STI != nullptr);
        break;
      }
      case MCFragment::FT_CVDefRange: {
        MCCVDefRangeFragment &CF = cast<MCCVDefRangeFragment>(Frag);
        Fixups = CF.getFixups();
        Contents = CF.getContents();
        break;
      }
      case MCFragment::FT_Dwarf: {
        MCDwarfLineAddrFragment &DF = cast<MCDwarfLineAddrFragment>(Frag);
        Fixups = DF.getFixups();
        Contents = DF.getContents();
        break;
      }
      case MCFragment::FT_DwarfFrame: {
        MCDwarfCallFrameFragment &DF = cast<MCDwarfCallFrameFragment>(Frag);
        Fixups = DF.getFixups();
        Contents = DF.getContents();
        break;
      }
      }
      for (const MCFixup &Fixup : Fixups) {
        uint64_t FixedValue;
        bool IsResolved;
        MCValue Target;
        std::tie(Target, FixedValue, IsResolved) =
            handleFixup(Layout, Frag, Fixup);
        getBackend().applyFixup(*this, Fixup, Target, Contents, FixedValue,
                                IsResolved, STI);
      }
    }
  }
}

void MCAssembler::Finish() {
  // Create the layout object.
  MCAsmLayout Layout(*this);
  layout(Layout);

  // Write the object file.
  stats::ObjectBytes += getWriter().writeObject(*this, Layout);
}

bool MCAssembler::fixupNeedsRelaxation(const MCFixup &Fixup,
                                       const MCRelaxableFragment *DF,
                                       const MCAsmLayout &Layout) const {
  assert(getBackendPtr() && "Expected assembler backend");
  MCValue Target;
  uint64_t Value;
  bool WasForced;
  bool Resolved = evaluateFixup(Layout, Fixup, DF, Target, Value, WasForced);
  if (Target.getSymA() &&
      Target.getSymA()->getKind() == MCSymbolRefExpr::VK_X86_ABS8 &&
      Fixup.getKind() == FK_Data_1)
    return false;
  return getBackend().fixupNeedsRelaxationAdvanced(Fixup, Resolved, Value, DF,
                                                   Layout, WasForced);
}

bool MCAssembler::fragmentNeedsRelaxation(const MCRelaxableFragment *F,
                                          const MCAsmLayout &Layout) const {
  assert(getBackendPtr() && "Expected assembler backend");
  // If this inst doesn't ever need relaxation, ignore it. This occurs when we
  // are intentionally pushing out inst fragments, or because we relaxed a
  // previous instruction to one that doesn't need relaxation.
  if (!getBackend().mayNeedRelaxation(F->getInst(), *F->getSubtargetInfo()))
    return false;

  for (const MCFixup &Fixup : F->getFixups())
    if (fixupNeedsRelaxation(Fixup, F, Layout))
      return true;

  return false;
}

bool MCAssembler::relaxInstruction(MCAsmLayout &Layout,
                                   MCRelaxableFragment &F) {
  assert(getEmitterPtr() &&
         "Expected CodeEmitter defined for relaxInstruction");
  if (!fragmentNeedsRelaxation(&F, Layout))
    return false;

  ++stats::RelaxedInstructions;

  // FIXME-PERF: We could immediately lower out instructions if we can tell
  // they are fully resolved, to avoid retesting on later passes.

  // Relax the fragment.

  MCInst Relaxed = F.getInst();
  getBackend().relaxInstruction(Relaxed, *F.getSubtargetInfo());

  // Encode the new instruction.
  //
  // FIXME-PERF: If it matters, we could let the target do this. It can
  // probably do so more efficiently in many cases.
  SmallVector<MCFixup, 4> Fixups;
  SmallString<256> Code;
  raw_svector_ostream VecOS(Code);
  getEmitter().encodeInstruction(Relaxed, VecOS, Fixups, *F.getSubtargetInfo());

  // Update the fragment.
  F.setInst(Relaxed);
  F.getContents() = Code;
  F.getFixups() = Fixups;

  return true;
}

bool MCAssembler::relaxLEB(MCAsmLayout &Layout, MCLEBFragment &LF) {
  uint64_t OldSize = LF.getContents().size();
  int64_t Value;
  bool Abs = LF.getValue().evaluateKnownAbsolute(Value, Layout);
  if (!Abs)
    report_fatal_error("sleb128 and uleb128 expressions must be absolute");
  SmallString<8> &Data = LF.getContents();
  Data.clear();
  raw_svector_ostream OSE(Data);
  // The compiler can generate EH table assembly that is impossible to assemble
  // without either adding padding to an LEB fragment or adding extra padding
  // to a later alignment fragment. To accommodate such tables, relaxation can
  // only increase an LEB fragment size here, not decrease it. See PR35809.
  if (LF.isSigned())
    encodeSLEB128(Value, OSE, OldSize);
  else
    encodeULEB128(Value, OSE, OldSize);
  return OldSize != LF.getContents().size();
}

/// Check if the branch crosses the boundary.
///
/// \param StartAddr start address of the fused/unfused branch.
/// \param Size size of the fused/unfused branch.
/// \param BoundaryAlignment alignment requirement of the branch.
/// \returns true if the branch cross the boundary.
static bool mayCrossBoundary(uint64_t StartAddr, uint64_t Size,
                             Align BoundaryAlignment) {
  uint64_t EndAddr = StartAddr + Size;
  return (StartAddr >> Log2(BoundaryAlignment)) !=
         ((EndAddr - 1) >> Log2(BoundaryAlignment));
}

/// Check if the branch is against the boundary.
///
/// \param StartAddr start address of the fused/unfused branch.
/// \param Size size of the fused/unfused branch.
/// \param BoundaryAlignment alignment requirement of the branch.
/// \returns true if the branch is against the boundary.
static bool isAgainstBoundary(uint64_t StartAddr, uint64_t Size,
                              Align BoundaryAlignment) {
  uint64_t EndAddr = StartAddr + Size;
  return (EndAddr & (BoundaryAlignment.value() - 1)) == 0;
}

/// Check if the branch needs padding.
///
/// \param StartAddr start address of the fused/unfused branch.
/// \param Size size of the fused/unfused branch.
/// \param BoundaryAlignment alignment requirement of the branch.
/// \returns true if the branch needs padding.
static bool needPadding(uint64_t StartAddr, uint64_t Size,
                        Align BoundaryAlignment) {
  return mayCrossBoundary(StartAddr, Size, BoundaryAlignment) ||
         isAgainstBoundary(StartAddr, Size, BoundaryAlignment);
}

bool MCAssembler::relaxBoundaryAlign(MCAsmLayout &Layout,
                                     MCBoundaryAlignFragment &BF) {
  // BoundaryAlignFragment that doesn't need to align any fragment should not be
  // relaxed.
  if (!BF.getLastFragment())
    return false;

  uint64_t AlignedOffset = Layout.getFragmentOffset(&BF);
  uint64_t AlignedSize = 0;
  for (const MCFragment *F = BF.getLastFragment(); F != &BF;
       F = F->getPrevNode())
    AlignedSize += computeFragmentSize(Layout, *F);

  Align BoundaryAlignment = BF.getAlignment();
  uint64_t NewSize = needPadding(AlignedOffset, AlignedSize, BoundaryAlignment)
                         ? offsetToAlignment(AlignedOffset, BoundaryAlignment)
                         : 0U;
  if (NewSize == BF.getSize())
    return false;
  BF.setSize(NewSize);
  Layout.invalidateFragmentsFrom(&BF);
  return true;
}

bool MCAssembler::relaxDwarfLineAddr(MCAsmLayout &Layout,
                                     MCDwarfLineAddrFragment &DF) {
  MCContext &Context = Layout.getAssembler().getContext();
  uint64_t OldSize = DF.getContents().size();
  int64_t AddrDelta;
  bool Abs = DF.getAddrDelta().evaluateKnownAbsolute(AddrDelta, Layout);
  assert(Abs && "We created a line delta with an invalid expression");
  (void)Abs;
  int64_t LineDelta;
  LineDelta = DF.getLineDelta();
  SmallVectorImpl<char> &Data = DF.getContents();
  Data.clear();
  raw_svector_ostream OSE(Data);
  DF.getFixups().clear();

  if (!getBackend().requiresDiffExpressionRelocations()) {
    MCDwarfLineAddr::Encode(Context, getDWARFLinetableParams(), LineDelta,
                            AddrDelta, OSE);
  } else {
    uint32_t Offset;
    uint32_t Size;
    bool SetDelta = MCDwarfLineAddr::FixedEncode(Context,
                                                 getDWARFLinetableParams(),
                                                 LineDelta, AddrDelta,
                                                 OSE, &Offset, &Size);
    // Add Fixups for address delta or new address.
    const MCExpr *FixupExpr;
    if (SetDelta) {
      FixupExpr = &DF.getAddrDelta();
    } else {
      const MCBinaryExpr *ABE = cast<MCBinaryExpr>(&DF.getAddrDelta());
      FixupExpr = ABE->getLHS();
    }
    DF.getFixups().push_back(
        MCFixup::create(Offset, FixupExpr,
                        MCFixup::getKindForSize(Size, false /*isPCRel*/)));
  }

  return OldSize != Data.size();
}

bool MCAssembler::relaxDwarfCallFrameFragment(MCAsmLayout &Layout,
                                              MCDwarfCallFrameFragment &DF) {
  MCContext &Context = Layout.getAssembler().getContext();
  uint64_t OldSize = DF.getContents().size();
  int64_t AddrDelta;
  bool Abs = DF.getAddrDelta().evaluateKnownAbsolute(AddrDelta, Layout);
  assert(Abs && "We created call frame with an invalid expression");
  (void) Abs;
  SmallVectorImpl<char> &Data = DF.getContents();
  Data.clear();
  raw_svector_ostream OSE(Data);
  DF.getFixups().clear();

  if (getBackend().requiresDiffExpressionRelocations()) {
    uint32_t Offset;
    uint32_t Size;
    MCDwarfFrameEmitter::EncodeAdvanceLoc(Context, AddrDelta, OSE, &Offset,
                                          &Size);
    if (Size) {
      DF.getFixups().push_back(MCFixup::create(
          Offset, &DF.getAddrDelta(),
          MCFixup::getKindForSizeInBits(Size /*In bits.*/, false /*isPCRel*/)));
    }
  } else {
    MCDwarfFrameEmitter::EncodeAdvanceLoc(Context, AddrDelta, OSE);
  }

  return OldSize != Data.size();
}

bool MCAssembler::relaxCVInlineLineTable(MCAsmLayout &Layout,
                                         MCCVInlineLineTableFragment &F) {
  unsigned OldSize = F.getContents().size();
  getContext().getCVContext().encodeInlineLineTable(Layout, F);
  return OldSize != F.getContents().size();
}

bool MCAssembler::relaxCVDefRange(MCAsmLayout &Layout,
                                  MCCVDefRangeFragment &F) {
  unsigned OldSize = F.getContents().size();
  getContext().getCVContext().encodeDefRange(Layout, F);
  return OldSize != F.getContents().size();
}

bool MCAssembler::relaxFragment(MCAsmLayout &Layout, MCFragment &F) {
  switch(F.getKind()) {
  default:
    return false;
  case MCFragment::FT_Relaxable:
    assert(!getRelaxAll() &&
           "Did not expect a MCRelaxableFragment in RelaxAll mode");
    return relaxInstruction(Layout, cast<MCRelaxableFragment>(F));
  case MCFragment::FT_Dwarf:
    return relaxDwarfLineAddr(Layout, cast<MCDwarfLineAddrFragment>(F));
  case MCFragment::FT_DwarfFrame:
    return relaxDwarfCallFrameFragment(Layout,
                                       cast<MCDwarfCallFrameFragment>(F));
  case MCFragment::FT_LEB:
    return relaxLEB(Layout, cast<MCLEBFragment>(F));
  case MCFragment::FT_BoundaryAlign:
    return relaxBoundaryAlign(Layout, cast<MCBoundaryAlignFragment>(F));
  case MCFragment::FT_CVInlineLines:
    return relaxCVInlineLineTable(Layout, cast<MCCVInlineLineTableFragment>(F));
  case MCFragment::FT_CVDefRange:
    return relaxCVDefRange(Layout, cast<MCCVDefRangeFragment>(F));
  }
}

bool MCAssembler::layoutSectionOnce(MCAsmLayout &Layout, MCSection &Sec) {
  // Holds the first fragment which needed relaxing during this layout. It will
  // remain NULL if none were relaxed.
  // When a fragment is relaxed, all the fragments following it should get
  // invalidated because their offset is going to change.
  MCFragment *FirstRelaxedFragment = nullptr;

  // Attempt to relax all the fragments in the section.
  for (MCFragment &Frag : Sec) {
    // Check if this is a fragment that needs relaxation.
    bool RelaxedFrag = relaxFragment(Layout, Frag);
    if (RelaxedFrag && !FirstRelaxedFragment)
      FirstRelaxedFragment = &Frag;
  }
  if (FirstRelaxedFragment) {
    Layout.invalidateFragmentsFrom(FirstRelaxedFragment);
    return true;
  }
  return false;
}

bool MCAssembler::layoutOnce(MCAsmLayout &Layout) {
  ++stats::RelaxationSteps;

  bool WasRelaxed = false;
  for (MCSection &Sec : *this) {
    while (layoutSectionOnce(Layout, Sec))
      WasRelaxed = true;
  }

  return WasRelaxed;
}

void MCAssembler::finishLayout(MCAsmLayout &Layout) {
  assert(getBackendPtr() && "Expected assembler backend");
  // The layout is done. Mark every fragment as valid.
  for (unsigned int i = 0, n = Layout.getSectionOrder().size(); i != n; ++i) {
    MCSection &Section = *Layout.getSectionOrder()[i];
    Layout.getFragmentOffset(&*Section.getFragmentList().rbegin());
    computeFragmentSize(Layout, *Section.getFragmentList().rbegin());
  }
  getBackend().finishLayout(*this, Layout);
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void MCAssembler::dump() const{
  raw_ostream &OS = errs();

  OS << "<MCAssembler\n";
  OS << "  Sections:[\n    ";
  for (const_iterator it = begin(), ie = end(); it != ie; ++it) {
    if (it != begin()) OS << ",\n    ";
    it->dump();
  }
  OS << "],\n";
  OS << "  Symbols:[";

  for (const_symbol_iterator it = symbol_begin(), ie = symbol_end(); it != ie; ++it) {
    if (it != symbol_begin()) OS << ",\n           ";
    OS << "(";
    it->dump();
    OS << ", Index:" << it->getIndex() << ", ";
    OS << ")";
  }
  OS << "]>\n";
}
#endif