DataLayout.cpp 33.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953
//===- DataLayout.cpp - Data size & alignment routines ---------------------==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines layout properties related to datatype size/offset/alignment
// information.
//
// This structure should be created once, filled in if the defaults are not
// correct and then passed around by const&.  None of the members functions
// require modification to the object.
//
//===----------------------------------------------------------------------===//

#include "llvm/IR/DataLayout.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Triple.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/GetElementPtrTypeIterator.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/TypeSize.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <cstdlib>
#include <tuple>
#include <utility>

using namespace llvm;

//===----------------------------------------------------------------------===//
// Support for StructLayout
//===----------------------------------------------------------------------===//

StructLayout::StructLayout(StructType *ST, const DataLayout &DL) {
  assert(!ST->isOpaque() && "Cannot get layout of opaque structs");
  StructSize = 0;
  IsPadded = false;
  NumElements = ST->getNumElements();

  // Loop over each of the elements, placing them in memory.
  for (unsigned i = 0, e = NumElements; i != e; ++i) {
    Type *Ty = ST->getElementType(i);
    const Align TyAlign = ST->isPacked() ? Align(1) : DL.getABITypeAlign(Ty);

    // Add padding if necessary to align the data element properly.
    if (!isAligned(TyAlign, StructSize)) {
      IsPadded = true;
      StructSize = alignTo(StructSize, TyAlign);
    }

    // Keep track of maximum alignment constraint.
    StructAlignment = std::max(TyAlign, StructAlignment);

    MemberOffsets[i] = StructSize;
    StructSize += DL.getTypeAllocSize(Ty); // Consume space for this data item
  }

  // Add padding to the end of the struct so that it could be put in an array
  // and all array elements would be aligned correctly.
  if (!isAligned(StructAlignment, StructSize)) {
    IsPadded = true;
    StructSize = alignTo(StructSize, StructAlignment);
  }
}

/// getElementContainingOffset - Given a valid offset into the structure,
/// return the structure index that contains it.
unsigned StructLayout::getElementContainingOffset(uint64_t Offset) const {
  const uint64_t *SI =
    std::upper_bound(&MemberOffsets[0], &MemberOffsets[NumElements], Offset);
  assert(SI != &MemberOffsets[0] && "Offset not in structure type!");
  --SI;
  assert(*SI <= Offset && "upper_bound didn't work");
  assert((SI == &MemberOffsets[0] || *(SI-1) <= Offset) &&
         (SI+1 == &MemberOffsets[NumElements] || *(SI+1) > Offset) &&
         "Upper bound didn't work!");

  // Multiple fields can have the same offset if any of them are zero sized.
  // For example, in { i32, [0 x i32], i32 }, searching for offset 4 will stop
  // at the i32 element, because it is the last element at that offset.  This is
  // the right one to return, because anything after it will have a higher
  // offset, implying that this element is non-empty.
  return SI-&MemberOffsets[0];
}

//===----------------------------------------------------------------------===//
// LayoutAlignElem, LayoutAlign support
//===----------------------------------------------------------------------===//

LayoutAlignElem LayoutAlignElem::get(AlignTypeEnum align_type, Align abi_align,
                                     Align pref_align, uint32_t bit_width) {
  assert(abi_align <= pref_align && "Preferred alignment worse than ABI!");
  LayoutAlignElem retval;
  retval.AlignType = align_type;
  retval.ABIAlign = abi_align;
  retval.PrefAlign = pref_align;
  retval.TypeBitWidth = bit_width;
  return retval;
}

bool
LayoutAlignElem::operator==(const LayoutAlignElem &rhs) const {
  return (AlignType == rhs.AlignType
          && ABIAlign == rhs.ABIAlign
          && PrefAlign == rhs.PrefAlign
          && TypeBitWidth == rhs.TypeBitWidth);
}

//===----------------------------------------------------------------------===//
// PointerAlignElem, PointerAlign support
//===----------------------------------------------------------------------===//

PointerAlignElem PointerAlignElem::get(uint32_t AddressSpace, Align ABIAlign,
                                       Align PrefAlign, uint32_t TypeByteWidth,
                                       uint32_t IndexWidth) {
  assert(ABIAlign <= PrefAlign && "Preferred alignment worse than ABI!");
  PointerAlignElem retval;
  retval.AddressSpace = AddressSpace;
  retval.ABIAlign = ABIAlign;
  retval.PrefAlign = PrefAlign;
  retval.TypeByteWidth = TypeByteWidth;
  retval.IndexWidth = IndexWidth;
  return retval;
}

bool
PointerAlignElem::operator==(const PointerAlignElem &rhs) const {
  return (ABIAlign == rhs.ABIAlign
          && AddressSpace == rhs.AddressSpace
          && PrefAlign == rhs.PrefAlign
          && TypeByteWidth == rhs.TypeByteWidth
          && IndexWidth == rhs.IndexWidth);
}

//===----------------------------------------------------------------------===//
//                       DataLayout Class Implementation
//===----------------------------------------------------------------------===//

const char *DataLayout::getManglingComponent(const Triple &T) {
  if (T.isOSBinFormatMachO())
    return "-m:o";
  if (T.isOSWindows() && T.isOSBinFormatCOFF())
    return T.getArch() == Triple::x86 ? "-m:x" : "-m:w";
  if (T.isOSBinFormatXCOFF())
    return "-m:a";
  return "-m:e";
}

static const LayoutAlignElem DefaultAlignments[] = {
    {INTEGER_ALIGN, 1, Align(1), Align(1)},    // i1
    {INTEGER_ALIGN, 8, Align(1), Align(1)},    // i8
    {INTEGER_ALIGN, 16, Align(2), Align(2)},   // i16
    {INTEGER_ALIGN, 32, Align(4), Align(4)},   // i32
    {INTEGER_ALIGN, 64, Align(4), Align(8)},   // i64
    {FLOAT_ALIGN, 16, Align(2), Align(2)},     // half, bfloat
    {FLOAT_ALIGN, 32, Align(4), Align(4)},     // float
    {FLOAT_ALIGN, 64, Align(8), Align(8)},     // double
    {FLOAT_ALIGN, 128, Align(16), Align(16)},  // ppcf128, quad, ...
    {VECTOR_ALIGN, 64, Align(8), Align(8)},    // v2i32, v1i64, ...
    {VECTOR_ALIGN, 128, Align(16), Align(16)}, // v16i8, v8i16, v4i32, ...
    {AGGREGATE_ALIGN, 0, Align(1), Align(8)}   // struct
};

void DataLayout::reset(StringRef Desc) {
  clear();

  LayoutMap = nullptr;
  BigEndian = false;
  AllocaAddrSpace = 0;
  StackNaturalAlign.reset();
  ProgramAddrSpace = 0;
  FunctionPtrAlign.reset();
  TheFunctionPtrAlignType = FunctionPtrAlignType::Independent;
  ManglingMode = MM_None;
  NonIntegralAddressSpaces.clear();

  // Default alignments
  for (const LayoutAlignElem &E : DefaultAlignments) {
    if (Error Err = setAlignment((AlignTypeEnum)E.AlignType, E.ABIAlign,
                                 E.PrefAlign, E.TypeBitWidth))
      return report_fatal_error(std::move(Err));
  }
  if (Error Err = setPointerAlignment(0, Align(8), Align(8), 8, 8))
    return report_fatal_error(std::move(Err));

  if (Error Err = parseSpecifier(Desc))
    return report_fatal_error(std::move(Err));
}

Expected<DataLayout> DataLayout::parse(StringRef LayoutDescription) {
  DataLayout Layout("");
  if (Error Err = Layout.parseSpecifier(LayoutDescription))
    return std::move(Err);
  return Layout;
}

static Error reportError(const Twine &Message) {
  return createStringError(inconvertibleErrorCode(), Message);
}

/// Checked version of split, to ensure mandatory subparts.
static Error split(StringRef Str, char Separator,
                   std::pair<StringRef, StringRef> &Split) {
  assert(!Str.empty() && "parse error, string can't be empty here");
  Split = Str.split(Separator);
  if (Split.second.empty() && Split.first != Str)
    return reportError("Trailing separator in datalayout string");
  if (!Split.second.empty() && Split.first.empty())
    return reportError("Expected token before separator in datalayout string");
  return Error::success();
}

/// Get an unsigned integer, including error checks.
template <typename IntTy> static Error getInt(StringRef R, IntTy &Result) {
  bool error = R.getAsInteger(10, Result); (void)error;
  if (error)
    return reportError("not a number, or does not fit in an unsigned int");
  return Error::success();
}

/// Get an unsigned integer representing the number of bits and convert it into
/// bytes. Error out of not a byte width multiple.
template <typename IntTy>
static Error getIntInBytes(StringRef R, IntTy &Result) {
  if (Error Err = getInt<IntTy>(R, Result))
    return Err;
  if (Result % 8)
    return reportError("number of bits must be a byte width multiple");
  Result /= 8;
  return Error::success();
}

static Error getAddrSpace(StringRef R, unsigned &AddrSpace) {
  if (Error Err = getInt(R, AddrSpace))
    return Err;
  if (!isUInt<24>(AddrSpace))
    return reportError("Invalid address space, must be a 24-bit integer");
  return Error::success();
}

Error DataLayout::parseSpecifier(StringRef Desc) {
  StringRepresentation = std::string(Desc);
  while (!Desc.empty()) {
    // Split at '-'.
    std::pair<StringRef, StringRef> Split;
    if (Error Err = split(Desc, '-', Split))
      return Err;
    Desc = Split.second;

    // Split at ':'.
    if (Error Err = split(Split.first, ':', Split))
      return Err;

    // Aliases used below.
    StringRef &Tok  = Split.first;  // Current token.
    StringRef &Rest = Split.second; // The rest of the string.

    if (Tok == "ni") {
      do {
        if (Error Err = split(Rest, ':', Split))
          return Err;
        Rest = Split.second;
        unsigned AS;
        if (Error Err = getInt(Split.first, AS))
          return Err;
        if (AS == 0)
          return reportError("Address space 0 can never be non-integral");
        NonIntegralAddressSpaces.push_back(AS);
      } while (!Rest.empty());

      continue;
    }

    char Specifier = Tok.front();
    Tok = Tok.substr(1);

    switch (Specifier) {
    case 's':
      // Deprecated, but ignoring here to preserve loading older textual llvm
      // ASM file
      break;
    case 'E':
      BigEndian = true;
      break;
    case 'e':
      BigEndian = false;
      break;
    case 'p': {
      // Address space.
      unsigned AddrSpace = 0;
      if (!Tok.empty())
        if (Error Err = getInt(Tok, AddrSpace))
          return Err;
      if (!isUInt<24>(AddrSpace))
        return reportError("Invalid address space, must be a 24bit integer");

      // Size.
      if (Rest.empty())
        return reportError(
            "Missing size specification for pointer in datalayout string");
      if (Error Err = split(Rest, ':', Split))
        return Err;
      unsigned PointerMemSize;
      if (Error Err = getIntInBytes(Tok, PointerMemSize))
        return Err;
      if (!PointerMemSize)
        return reportError("Invalid pointer size of 0 bytes");

      // ABI alignment.
      if (Rest.empty())
        return reportError(
            "Missing alignment specification for pointer in datalayout string");
      if (Error Err = split(Rest, ':', Split))
        return Err;
      unsigned PointerABIAlign;
      if (Error Err = getIntInBytes(Tok, PointerABIAlign))
        return Err;
      if (!isPowerOf2_64(PointerABIAlign))
        return reportError("Pointer ABI alignment must be a power of 2");

      // Size of index used in GEP for address calculation.
      // The parameter is optional. By default it is equal to size of pointer.
      unsigned IndexSize = PointerMemSize;

      // Preferred alignment.
      unsigned PointerPrefAlign = PointerABIAlign;
      if (!Rest.empty()) {
        if (Error Err = split(Rest, ':', Split))
          return Err;
        if (Error Err = getIntInBytes(Tok, PointerPrefAlign))
          return Err;
        if (!isPowerOf2_64(PointerPrefAlign))
          return reportError(
              "Pointer preferred alignment must be a power of 2");

        // Now read the index. It is the second optional parameter here.
        if (!Rest.empty()) {
          if (Error Err = split(Rest, ':', Split))
            return Err;
          if (Error Err = getIntInBytes(Tok, IndexSize))
            return Err;
          if (!IndexSize)
            return reportError("Invalid index size of 0 bytes");
        }
      }
      if (Error Err = setPointerAlignment(
              AddrSpace, assumeAligned(PointerABIAlign),
              assumeAligned(PointerPrefAlign), PointerMemSize, IndexSize))
        return Err;
      break;
    }
    case 'i':
    case 'v':
    case 'f':
    case 'a': {
      AlignTypeEnum AlignType;
      switch (Specifier) {
      default: llvm_unreachable("Unexpected specifier!");
      case 'i': AlignType = INTEGER_ALIGN; break;
      case 'v': AlignType = VECTOR_ALIGN; break;
      case 'f': AlignType = FLOAT_ALIGN; break;
      case 'a': AlignType = AGGREGATE_ALIGN; break;
      }

      // Bit size.
      unsigned Size = 0;
      if (!Tok.empty())
        if (Error Err = getInt(Tok, Size))
          return Err;

      if (AlignType == AGGREGATE_ALIGN && Size != 0)
        return reportError(
            "Sized aggregate specification in datalayout string");

      // ABI alignment.
      if (Rest.empty())
        return reportError(
            "Missing alignment specification in datalayout string");
      if (Error Err = split(Rest, ':', Split))
        return Err;
      unsigned ABIAlign;
      if (Error Err = getIntInBytes(Tok, ABIAlign))
        return Err;
      if (AlignType != AGGREGATE_ALIGN && !ABIAlign)
        return reportError(
            "ABI alignment specification must be >0 for non-aggregate types");

      if (!isUInt<16>(ABIAlign))
        return reportError("Invalid ABI alignment, must be a 16bit integer");
      if (ABIAlign != 0 && !isPowerOf2_64(ABIAlign))
        return reportError("Invalid ABI alignment, must be a power of 2");

      // Preferred alignment.
      unsigned PrefAlign = ABIAlign;
      if (!Rest.empty()) {
        if (Error Err = split(Rest, ':', Split))
          return Err;
        if (Error Err = getIntInBytes(Tok, PrefAlign))
          return Err;
      }

      if (!isUInt<16>(PrefAlign))
        return reportError(
            "Invalid preferred alignment, must be a 16bit integer");
      if (PrefAlign != 0 && !isPowerOf2_64(PrefAlign))
        return reportError("Invalid preferred alignment, must be a power of 2");

      if (Error Err = setAlignment(AlignType, assumeAligned(ABIAlign),
                                   assumeAligned(PrefAlign), Size))
        return Err;

      break;
    }
    case 'n':  // Native integer types.
      while (true) {
        unsigned Width;
        if (Error Err = getInt(Tok, Width))
          return Err;
        if (Width == 0)
          return reportError(
              "Zero width native integer type in datalayout string");
        LegalIntWidths.push_back(Width);
        if (Rest.empty())
          break;
        if (Error Err = split(Rest, ':', Split))
          return Err;
      }
      break;
    case 'S': { // Stack natural alignment.
      uint64_t Alignment;
      if (Error Err = getIntInBytes(Tok, Alignment))
        return Err;
      if (Alignment != 0 && !llvm::isPowerOf2_64(Alignment))
        return reportError("Alignment is neither 0 nor a power of 2");
      StackNaturalAlign = MaybeAlign(Alignment);
      break;
    }
    case 'F': {
      switch (Tok.front()) {
      case 'i':
        TheFunctionPtrAlignType = FunctionPtrAlignType::Independent;
        break;
      case 'n':
        TheFunctionPtrAlignType = FunctionPtrAlignType::MultipleOfFunctionAlign;
        break;
      default:
        return reportError("Unknown function pointer alignment type in "
                           "datalayout string");
      }
      Tok = Tok.substr(1);
      uint64_t Alignment;
      if (Error Err = getIntInBytes(Tok, Alignment))
        return Err;
      if (Alignment != 0 && !llvm::isPowerOf2_64(Alignment))
        return reportError("Alignment is neither 0 nor a power of 2");
      FunctionPtrAlign = MaybeAlign(Alignment);
      break;
    }
    case 'P': { // Function address space.
      if (Error Err = getAddrSpace(Tok, ProgramAddrSpace))
        return Err;
      break;
    }
    case 'A': { // Default stack/alloca address space.
      if (Error Err = getAddrSpace(Tok, AllocaAddrSpace))
        return Err;
      break;
    }
    case 'm':
      if (!Tok.empty())
        return reportError("Unexpected trailing characters after mangling "
                           "specifier in datalayout string");
      if (Rest.empty())
        return reportError("Expected mangling specifier in datalayout string");
      if (Rest.size() > 1)
        return reportError("Unknown mangling specifier in datalayout string");
      switch(Rest[0]) {
      default:
        return reportError("Unknown mangling in datalayout string");
      case 'e':
        ManglingMode = MM_ELF;
        break;
      case 'o':
        ManglingMode = MM_MachO;
        break;
      case 'm':
        ManglingMode = MM_Mips;
        break;
      case 'w':
        ManglingMode = MM_WinCOFF;
        break;
      case 'x':
        ManglingMode = MM_WinCOFFX86;
        break;
      case 'a':
        ManglingMode = MM_XCOFF;
        break;
      }
      break;
    default:
      return reportError("Unknown specifier in datalayout string");
      break;
    }
  }

  return Error::success();
}

DataLayout::DataLayout(const Module *M) {
  init(M);
}

void DataLayout::init(const Module *M) { *this = M->getDataLayout(); }

bool DataLayout::operator==(const DataLayout &Other) const {
  bool Ret = BigEndian == Other.BigEndian &&
             AllocaAddrSpace == Other.AllocaAddrSpace &&
             StackNaturalAlign == Other.StackNaturalAlign &&
             ProgramAddrSpace == Other.ProgramAddrSpace &&
             FunctionPtrAlign == Other.FunctionPtrAlign &&
             TheFunctionPtrAlignType == Other.TheFunctionPtrAlignType &&
             ManglingMode == Other.ManglingMode &&
             LegalIntWidths == Other.LegalIntWidths &&
             Alignments == Other.Alignments && Pointers == Other.Pointers;
  // Note: getStringRepresentation() might differs, it is not canonicalized
  return Ret;
}

DataLayout::AlignmentsTy::iterator
DataLayout::findAlignmentLowerBound(AlignTypeEnum AlignType,
                                    uint32_t BitWidth) {
  auto Pair = std::make_pair((unsigned)AlignType, BitWidth);
  return partition_point(Alignments, [=](const LayoutAlignElem &E) {
    return std::make_pair(E.AlignType, E.TypeBitWidth) < Pair;
  });
}

Error DataLayout::setAlignment(AlignTypeEnum align_type, Align abi_align,
                               Align pref_align, uint32_t bit_width) {
  // AlignmentsTy::ABIAlign and AlignmentsTy::PrefAlign were once stored as
  // uint16_t, it is unclear if there are requirements for alignment to be less
  // than 2^16 other than storage. In the meantime we leave the restriction as
  // an assert. See D67400 for context.
  assert(Log2(abi_align) < 16 && Log2(pref_align) < 16 && "Alignment too big");
  if (!isUInt<24>(bit_width))
    return reportError("Invalid bit width, must be a 24bit integer");
  if (pref_align < abi_align)
    return reportError(
        "Preferred alignment cannot be less than the ABI alignment");

  AlignmentsTy::iterator I = findAlignmentLowerBound(align_type, bit_width);
  if (I != Alignments.end() &&
      I->AlignType == (unsigned)align_type && I->TypeBitWidth == bit_width) {
    // Update the abi, preferred alignments.
    I->ABIAlign = abi_align;
    I->PrefAlign = pref_align;
  } else {
    // Insert before I to keep the vector sorted.
    Alignments.insert(I, LayoutAlignElem::get(align_type, abi_align,
                                              pref_align, bit_width));
  }
  return Error::success();
}

DataLayout::PointersTy::iterator
DataLayout::findPointerLowerBound(uint32_t AddressSpace) {
  return std::lower_bound(Pointers.begin(), Pointers.end(), AddressSpace,
                          [](const PointerAlignElem &A, uint32_t AddressSpace) {
    return A.AddressSpace < AddressSpace;
  });
}

Error DataLayout::setPointerAlignment(uint32_t AddrSpace, Align ABIAlign,
                                      Align PrefAlign, uint32_t TypeByteWidth,
                                      uint32_t IndexWidth) {
  if (PrefAlign < ABIAlign)
    return reportError(
        "Preferred alignment cannot be less than the ABI alignment");

  PointersTy::iterator I = findPointerLowerBound(AddrSpace);
  if (I == Pointers.end() || I->AddressSpace != AddrSpace) {
    Pointers.insert(I, PointerAlignElem::get(AddrSpace, ABIAlign, PrefAlign,
                                             TypeByteWidth, IndexWidth));
  } else {
    I->ABIAlign = ABIAlign;
    I->PrefAlign = PrefAlign;
    I->TypeByteWidth = TypeByteWidth;
    I->IndexWidth = IndexWidth;
  }
  return Error::success();
}

/// getAlignmentInfo - Return the alignment (either ABI if ABIInfo = true or
/// preferred if ABIInfo = false) the layout wants for the specified datatype.
Align DataLayout::getAlignmentInfo(AlignTypeEnum AlignType, uint32_t BitWidth,
                                   bool ABIInfo, Type *Ty) const {
  AlignmentsTy::const_iterator I = findAlignmentLowerBound(AlignType, BitWidth);
  // See if we found an exact match. Of if we are looking for an integer type,
  // but don't have an exact match take the next largest integer. This is where
  // the lower_bound will point to when it fails an exact match.
  if (I != Alignments.end() && I->AlignType == (unsigned)AlignType &&
      (I->TypeBitWidth == BitWidth || AlignType == INTEGER_ALIGN))
    return ABIInfo ? I->ABIAlign : I->PrefAlign;

  if (AlignType == INTEGER_ALIGN) {
    // If we didn't have a larger value try the largest value we have.
    if (I != Alignments.begin()) {
      --I; // Go to the previous entry and see if its an integer.
      if (I->AlignType == INTEGER_ALIGN)
        return ABIInfo ? I->ABIAlign : I->PrefAlign;
    }
  } else if (AlignType == VECTOR_ALIGN) {
    // By default, use natural alignment for vector types. This is consistent
    // with what clang and llvm-gcc do.
    unsigned Alignment =
        getTypeAllocSize(cast<VectorType>(Ty)->getElementType());
    // We're only calculating a natural alignment, so it doesn't have to be
    // based on the full size for scalable vectors. Using the minimum element
    // count should be enough here.
    Alignment *= cast<VectorType>(Ty)->getElementCount().getKnownMinValue();
    Alignment = PowerOf2Ceil(Alignment);
    return Align(Alignment);
   }

  // If we still couldn't find a reasonable default alignment, fall back
  // to a simple heuristic that the alignment is the first power of two
  // greater-or-equal to the store size of the type.  This is a reasonable
  // approximation of reality, and if the user wanted something less
  // less conservative, they should have specified it explicitly in the data
  // layout.
   unsigned Alignment = getTypeStoreSize(Ty);
   Alignment = PowerOf2Ceil(Alignment);
   return Align(Alignment);
}

namespace {

class StructLayoutMap {
  using LayoutInfoTy = DenseMap<StructType*, StructLayout*>;
  LayoutInfoTy LayoutInfo;

public:
  ~StructLayoutMap() {
    // Remove any layouts.
    for (const auto &I : LayoutInfo) {
      StructLayout *Value = I.second;
      Value->~StructLayout();
      free(Value);
    }
  }

  StructLayout *&operator[](StructType *STy) {
    return LayoutInfo[STy];
  }
};

} // end anonymous namespace

void DataLayout::clear() {
  LegalIntWidths.clear();
  Alignments.clear();
  Pointers.clear();
  delete static_cast<StructLayoutMap *>(LayoutMap);
  LayoutMap = nullptr;
}

DataLayout::~DataLayout() {
  clear();
}

const StructLayout *DataLayout::getStructLayout(StructType *Ty) const {
  if (!LayoutMap)
    LayoutMap = new StructLayoutMap();

  StructLayoutMap *STM = static_cast<StructLayoutMap*>(LayoutMap);
  StructLayout *&SL = (*STM)[Ty];
  if (SL) return SL;

  // Otherwise, create the struct layout.  Because it is variable length, we
  // malloc it, then use placement new.
  int NumElts = Ty->getNumElements();
  StructLayout *L = (StructLayout *)
      safe_malloc(sizeof(StructLayout)+(NumElts-1) * sizeof(uint64_t));

  // Set SL before calling StructLayout's ctor.  The ctor could cause other
  // entries to be added to TheMap, invalidating our reference.
  SL = L;

  new (L) StructLayout(Ty, *this);

  return L;
}

Align DataLayout::getPointerABIAlignment(unsigned AS) const {
  PointersTy::const_iterator I = findPointerLowerBound(AS);
  if (I == Pointers.end() || I->AddressSpace != AS) {
    I = findPointerLowerBound(0);
    assert(I->AddressSpace == 0);
  }
  return I->ABIAlign;
}

Align DataLayout::getPointerPrefAlignment(unsigned AS) const {
  PointersTy::const_iterator I = findPointerLowerBound(AS);
  if (I == Pointers.end() || I->AddressSpace != AS) {
    I = findPointerLowerBound(0);
    assert(I->AddressSpace == 0);
  }
  return I->PrefAlign;
}

unsigned DataLayout::getPointerSize(unsigned AS) const {
  PointersTy::const_iterator I = findPointerLowerBound(AS);
  if (I == Pointers.end() || I->AddressSpace != AS) {
    I = findPointerLowerBound(0);
    assert(I->AddressSpace == 0);
  }
  return I->TypeByteWidth;
}

unsigned DataLayout::getMaxPointerSize() const {
  unsigned MaxPointerSize = 0;
  for (auto &P : Pointers)
    MaxPointerSize = std::max(MaxPointerSize, P.TypeByteWidth);

  return MaxPointerSize;
}

unsigned DataLayout::getPointerTypeSizeInBits(Type *Ty) const {
  assert(Ty->isPtrOrPtrVectorTy() &&
         "This should only be called with a pointer or pointer vector type");
  Ty = Ty->getScalarType();
  return getPointerSizeInBits(cast<PointerType>(Ty)->getAddressSpace());
}

unsigned DataLayout::getIndexSize(unsigned AS) const {
  PointersTy::const_iterator I = findPointerLowerBound(AS);
  if (I == Pointers.end() || I->AddressSpace != AS) {
    I = findPointerLowerBound(0);
    assert(I->AddressSpace == 0);
  }
  return I->IndexWidth;
}

unsigned DataLayout::getIndexTypeSizeInBits(Type *Ty) const {
  assert(Ty->isPtrOrPtrVectorTy() &&
         "This should only be called with a pointer or pointer vector type");
  Ty = Ty->getScalarType();
  return getIndexSizeInBits(cast<PointerType>(Ty)->getAddressSpace());
}

/*!
  \param abi_or_pref Flag that determines which alignment is returned. true
  returns the ABI alignment, false returns the preferred alignment.
  \param Ty The underlying type for which alignment is determined.

  Get the ABI (\a abi_or_pref == true) or preferred alignment (\a abi_or_pref
  == false) for the requested type \a Ty.
 */
Align DataLayout::getAlignment(Type *Ty, bool abi_or_pref) const {
  AlignTypeEnum AlignType;

  assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!");
  switch (Ty->getTypeID()) {
  // Early escape for the non-numeric types.
  case Type::LabelTyID:
    return abi_or_pref ? getPointerABIAlignment(0) : getPointerPrefAlignment(0);
  case Type::PointerTyID: {
    unsigned AS = cast<PointerType>(Ty)->getAddressSpace();
    return abi_or_pref ? getPointerABIAlignment(AS)
                       : getPointerPrefAlignment(AS);
    }
  case Type::ArrayTyID:
    return getAlignment(cast<ArrayType>(Ty)->getElementType(), abi_or_pref);

  case Type::StructTyID: {
    // Packed structure types always have an ABI alignment of one.
    if (cast<StructType>(Ty)->isPacked() && abi_or_pref)
      return Align(1);

    // Get the layout annotation... which is lazily created on demand.
    const StructLayout *Layout = getStructLayout(cast<StructType>(Ty));
    const Align Align = getAlignmentInfo(AGGREGATE_ALIGN, 0, abi_or_pref, Ty);
    return std::max(Align, Layout->getAlignment());
  }
  case Type::IntegerTyID:
    AlignType = INTEGER_ALIGN;
    break;
  case Type::HalfTyID:
  case Type::BFloatTyID:
  case Type::FloatTyID:
  case Type::DoubleTyID:
  // PPC_FP128TyID and FP128TyID have different data contents, but the
  // same size and alignment, so they look the same here.
  case Type::PPC_FP128TyID:
  case Type::FP128TyID:
  case Type::X86_FP80TyID:
    AlignType = FLOAT_ALIGN;
    break;
  case Type::X86_MMXTyID:
  case Type::FixedVectorTyID:
  case Type::ScalableVectorTyID:
    AlignType = VECTOR_ALIGN;
    break;
  default:
    llvm_unreachable("Bad type for getAlignment!!!");
  }

  // If we're dealing with a scalable vector, we just need the known minimum
  // size for determining alignment. If not, we'll get the exact size.
  return getAlignmentInfo(AlignType, getTypeSizeInBits(Ty).getKnownMinSize(),
                          abi_or_pref, Ty);
}

/// TODO: Remove this function once the transition to Align is over.
unsigned DataLayout::getABITypeAlignment(Type *Ty) const {
  return getABITypeAlign(Ty).value();
}

Align DataLayout::getABITypeAlign(Type *Ty) const {
  return getAlignment(Ty, true);
}

/// getABIIntegerTypeAlignment - Return the minimum ABI-required alignment for
/// an integer type of the specified bitwidth.
Align DataLayout::getABIIntegerTypeAlignment(unsigned BitWidth) const {
  return getAlignmentInfo(INTEGER_ALIGN, BitWidth, true, nullptr);
}

/// TODO: Remove this function once the transition to Align is over.
unsigned DataLayout::getPrefTypeAlignment(Type *Ty) const {
  return getPrefTypeAlign(Ty).value();
}

Align DataLayout::getPrefTypeAlign(Type *Ty) const {
  return getAlignment(Ty, false);
}

IntegerType *DataLayout::getIntPtrType(LLVMContext &C,
                                       unsigned AddressSpace) const {
  return IntegerType::get(C, getPointerSizeInBits(AddressSpace));
}

Type *DataLayout::getIntPtrType(Type *Ty) const {
  assert(Ty->isPtrOrPtrVectorTy() &&
         "Expected a pointer or pointer vector type.");
  unsigned NumBits = getPointerTypeSizeInBits(Ty);
  IntegerType *IntTy = IntegerType::get(Ty->getContext(), NumBits);
  if (VectorType *VecTy = dyn_cast<VectorType>(Ty))
    return VectorType::get(IntTy, VecTy);
  return IntTy;
}

Type *DataLayout::getSmallestLegalIntType(LLVMContext &C, unsigned Width) const {
  for (unsigned LegalIntWidth : LegalIntWidths)
    if (Width <= LegalIntWidth)
      return Type::getIntNTy(C, LegalIntWidth);
  return nullptr;
}

unsigned DataLayout::getLargestLegalIntTypeSizeInBits() const {
  auto Max = std::max_element(LegalIntWidths.begin(), LegalIntWidths.end());
  return Max != LegalIntWidths.end() ? *Max : 0;
}

Type *DataLayout::getIndexType(Type *Ty) const {
  assert(Ty->isPtrOrPtrVectorTy() &&
         "Expected a pointer or pointer vector type.");
  unsigned NumBits = getIndexTypeSizeInBits(Ty);
  IntegerType *IntTy = IntegerType::get(Ty->getContext(), NumBits);
  if (VectorType *VecTy = dyn_cast<VectorType>(Ty))
    return VectorType::get(IntTy, VecTy);
  return IntTy;
}

int64_t DataLayout::getIndexedOffsetInType(Type *ElemTy,
                                           ArrayRef<Value *> Indices) const {
  int64_t Result = 0;

  generic_gep_type_iterator<Value* const*>
    GTI = gep_type_begin(ElemTy, Indices),
    GTE = gep_type_end(ElemTy, Indices);
  for (; GTI != GTE; ++GTI) {
    Value *Idx = GTI.getOperand();
    if (StructType *STy = GTI.getStructTypeOrNull()) {
      assert(Idx->getType()->isIntegerTy(32) && "Illegal struct idx");
      unsigned FieldNo = cast<ConstantInt>(Idx)->getZExtValue();

      // Get structure layout information...
      const StructLayout *Layout = getStructLayout(STy);

      // Add in the offset, as calculated by the structure layout info...
      Result += Layout->getElementOffset(FieldNo);
    } else {
      // Get the array index and the size of each array element.
      if (int64_t arrayIdx = cast<ConstantInt>(Idx)->getSExtValue())
        Result += arrayIdx * getTypeAllocSize(GTI.getIndexedType());
    }
  }

  return Result;
}

/// getPreferredAlign - Return the preferred alignment of the specified global.
/// This includes an explicitly requested alignment (if the global has one).
Align DataLayout::getPreferredAlign(const GlobalVariable *GV) const {
  MaybeAlign GVAlignment = GV->getAlign();
  // If a section is specified, always precisely honor explicit alignment,
  // so we don't insert padding into a section we don't control.
  if (GVAlignment && GV->hasSection())
    return *GVAlignment;

  // If no explicit alignment is specified, compute the alignment based on
  // the IR type. If an alignment is specified, increase it to match the ABI
  // alignment of the IR type.
  //
  // FIXME: Not sure it makes sense to use the alignment of the type if
  // there's already an explicit alignment specification.
  Type *ElemType = GV->getValueType();
  Align Alignment = getPrefTypeAlign(ElemType);
  if (GVAlignment) {
    if (*GVAlignment >= Alignment)
      Alignment = *GVAlignment;
    else
      Alignment = std::max(*GVAlignment, getABITypeAlign(ElemType));
  }

  // If no explicit alignment is specified, and the global is large, increase
  // the alignment to 16.
  // FIXME: Why 16, specifically?
  if (GV->hasInitializer() && !GVAlignment) {
    if (Alignment < Align(16)) {
      // If the global is not external, see if it is large.  If so, give it a
      // larger alignment.
      if (getTypeSizeInBits(ElemType) > 128)
        Alignment = Align(16); // 16-byte alignment.
    }
  }
  return Alignment;
}