SafeStack.cpp 34.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917
//===- SafeStack.cpp - Safe Stack Insertion -------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass splits the stack into the safe stack (kept as-is for LLVM backend)
// and the unsafe stack (explicitly allocated and managed through the runtime
// support library).
//
// http://clang.llvm.org/docs/SafeStack.html
//
//===----------------------------------------------------------------------===//

#include "SafeStackLayout.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/BranchProbabilityInfo.h"
#include "llvm/Analysis/InlineCost.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/StackLifetime.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/ConstantRange.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DIBuilder.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/Local.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <string>
#include <utility>

using namespace llvm;
using namespace llvm::safestack;

#define DEBUG_TYPE "safe-stack"

namespace llvm {

STATISTIC(NumFunctions, "Total number of functions");
STATISTIC(NumUnsafeStackFunctions, "Number of functions with unsafe stack");
STATISTIC(NumUnsafeStackRestorePointsFunctions,
          "Number of functions that use setjmp or exceptions");

STATISTIC(NumAllocas, "Total number of allocas");
STATISTIC(NumUnsafeStaticAllocas, "Number of unsafe static allocas");
STATISTIC(NumUnsafeDynamicAllocas, "Number of unsafe dynamic allocas");
STATISTIC(NumUnsafeByValArguments, "Number of unsafe byval arguments");
STATISTIC(NumUnsafeStackRestorePoints, "Number of setjmps and landingpads");

} // namespace llvm

/// Use __safestack_pointer_address even if the platform has a faster way of
/// access safe stack pointer.
static cl::opt<bool>
    SafeStackUsePointerAddress("safestack-use-pointer-address",
                                  cl::init(false), cl::Hidden);

// Disabled by default due to PR32143.
static cl::opt<bool> ClColoring("safe-stack-coloring",
                                cl::desc("enable safe stack coloring"),
                                cl::Hidden, cl::init(false));

namespace {

/// Rewrite an SCEV expression for a memory access address to an expression that
/// represents offset from the given alloca.
///
/// The implementation simply replaces all mentions of the alloca with zero.
class AllocaOffsetRewriter : public SCEVRewriteVisitor<AllocaOffsetRewriter> {
  const Value *AllocaPtr;

public:
  AllocaOffsetRewriter(ScalarEvolution &SE, const Value *AllocaPtr)
      : SCEVRewriteVisitor(SE), AllocaPtr(AllocaPtr) {}

  const SCEV *visitUnknown(const SCEVUnknown *Expr) {
    if (Expr->getValue() == AllocaPtr)
      return SE.getZero(Expr->getType());
    return Expr;
  }
};

/// The SafeStack pass splits the stack of each function into the safe
/// stack, which is only accessed through memory safe dereferences (as
/// determined statically), and the unsafe stack, which contains all
/// local variables that are accessed in ways that we can't prove to
/// be safe.
class SafeStack {
  Function &F;
  const TargetLoweringBase &TL;
  const DataLayout &DL;
  ScalarEvolution &SE;

  Type *StackPtrTy;
  Type *IntPtrTy;
  Type *Int32Ty;
  Type *Int8Ty;

  Value *UnsafeStackPtr = nullptr;

  /// Unsafe stack alignment. Each stack frame must ensure that the stack is
  /// aligned to this value. We need to re-align the unsafe stack if the
  /// alignment of any object on the stack exceeds this value.
  ///
  /// 16 seems like a reasonable upper bound on the alignment of objects that we
  /// might expect to appear on the stack on most common targets.
  enum { StackAlignment = 16 };

  /// Return the value of the stack canary.
  Value *getStackGuard(IRBuilder<> &IRB, Function &F);

  /// Load stack guard from the frame and check if it has changed.
  void checkStackGuard(IRBuilder<> &IRB, Function &F, ReturnInst &RI,
                       AllocaInst *StackGuardSlot, Value *StackGuard);

  /// Find all static allocas, dynamic allocas, return instructions and
  /// stack restore points (exception unwind blocks and setjmp calls) in the
  /// given function and append them to the respective vectors.
  void findInsts(Function &F, SmallVectorImpl<AllocaInst *> &StaticAllocas,
                 SmallVectorImpl<AllocaInst *> &DynamicAllocas,
                 SmallVectorImpl<Argument *> &ByValArguments,
                 SmallVectorImpl<ReturnInst *> &Returns,
                 SmallVectorImpl<Instruction *> &StackRestorePoints);

  /// Calculate the allocation size of a given alloca. Returns 0 if the
  /// size can not be statically determined.
  uint64_t getStaticAllocaAllocationSize(const AllocaInst* AI);

  /// Allocate space for all static allocas in \p StaticAllocas,
  /// replace allocas with pointers into the unsafe stack and generate code to
  /// restore the stack pointer before all return instructions in \p Returns.
  ///
  /// \returns A pointer to the top of the unsafe stack after all unsafe static
  /// allocas are allocated.
  Value *moveStaticAllocasToUnsafeStack(IRBuilder<> &IRB, Function &F,
                                        ArrayRef<AllocaInst *> StaticAllocas,
                                        ArrayRef<Argument *> ByValArguments,
                                        ArrayRef<ReturnInst *> Returns,
                                        Instruction *BasePointer,
                                        AllocaInst *StackGuardSlot);

  /// Generate code to restore the stack after all stack restore points
  /// in \p StackRestorePoints.
  ///
  /// \returns A local variable in which to maintain the dynamic top of the
  /// unsafe stack if needed.
  AllocaInst *
  createStackRestorePoints(IRBuilder<> &IRB, Function &F,
                           ArrayRef<Instruction *> StackRestorePoints,
                           Value *StaticTop, bool NeedDynamicTop);

  /// Replace all allocas in \p DynamicAllocas with code to allocate
  /// space dynamically on the unsafe stack and store the dynamic unsafe stack
  /// top to \p DynamicTop if non-null.
  void moveDynamicAllocasToUnsafeStack(Function &F, Value *UnsafeStackPtr,
                                       AllocaInst *DynamicTop,
                                       ArrayRef<AllocaInst *> DynamicAllocas);

  bool IsSafeStackAlloca(const Value *AllocaPtr, uint64_t AllocaSize);

  bool IsMemIntrinsicSafe(const MemIntrinsic *MI, const Use &U,
                          const Value *AllocaPtr, uint64_t AllocaSize);
  bool IsAccessSafe(Value *Addr, uint64_t Size, const Value *AllocaPtr,
                    uint64_t AllocaSize);

  bool ShouldInlinePointerAddress(CallInst &CI);
  void TryInlinePointerAddress();

public:
  SafeStack(Function &F, const TargetLoweringBase &TL, const DataLayout &DL,
            ScalarEvolution &SE)
      : F(F), TL(TL), DL(DL), SE(SE),
        StackPtrTy(Type::getInt8PtrTy(F.getContext())),
        IntPtrTy(DL.getIntPtrType(F.getContext())),
        Int32Ty(Type::getInt32Ty(F.getContext())),
        Int8Ty(Type::getInt8Ty(F.getContext())) {}

  // Run the transformation on the associated function.
  // Returns whether the function was changed.
  bool run();
};

uint64_t SafeStack::getStaticAllocaAllocationSize(const AllocaInst* AI) {
  uint64_t Size = DL.getTypeAllocSize(AI->getAllocatedType());
  if (AI->isArrayAllocation()) {
    auto C = dyn_cast<ConstantInt>(AI->getArraySize());
    if (!C)
      return 0;
    Size *= C->getZExtValue();
  }
  return Size;
}

bool SafeStack::IsAccessSafe(Value *Addr, uint64_t AccessSize,
                             const Value *AllocaPtr, uint64_t AllocaSize) {
  AllocaOffsetRewriter Rewriter(SE, AllocaPtr);
  const SCEV *Expr = Rewriter.visit(SE.getSCEV(Addr));

  uint64_t BitWidth = SE.getTypeSizeInBits(Expr->getType());
  ConstantRange AccessStartRange = SE.getUnsignedRange(Expr);
  ConstantRange SizeRange =
      ConstantRange(APInt(BitWidth, 0), APInt(BitWidth, AccessSize));
  ConstantRange AccessRange = AccessStartRange.add(SizeRange);
  ConstantRange AllocaRange =
      ConstantRange(APInt(BitWidth, 0), APInt(BitWidth, AllocaSize));
  bool Safe = AllocaRange.contains(AccessRange);

  LLVM_DEBUG(
      dbgs() << "[SafeStack] "
             << (isa<AllocaInst>(AllocaPtr) ? "Alloca " : "ByValArgument ")
             << *AllocaPtr << "\n"
             << "            Access " << *Addr << "\n"
             << "            SCEV " << *Expr
             << " U: " << SE.getUnsignedRange(Expr)
             << ", S: " << SE.getSignedRange(Expr) << "\n"
             << "            Range " << AccessRange << "\n"
             << "            AllocaRange " << AllocaRange << "\n"
             << "            " << (Safe ? "safe" : "unsafe") << "\n");

  return Safe;
}

bool SafeStack::IsMemIntrinsicSafe(const MemIntrinsic *MI, const Use &U,
                                   const Value *AllocaPtr,
                                   uint64_t AllocaSize) {
  if (auto MTI = dyn_cast<MemTransferInst>(MI)) {
    if (MTI->getRawSource() != U && MTI->getRawDest() != U)
      return true;
  } else {
    if (MI->getRawDest() != U)
      return true;
  }

  const auto *Len = dyn_cast<ConstantInt>(MI->getLength());
  // Non-constant size => unsafe. FIXME: try SCEV getRange.
  if (!Len) return false;
  return IsAccessSafe(U, Len->getZExtValue(), AllocaPtr, AllocaSize);
}

/// Check whether a given allocation must be put on the safe
/// stack or not. The function analyzes all uses of AI and checks whether it is
/// only accessed in a memory safe way (as decided statically).
bool SafeStack::IsSafeStackAlloca(const Value *AllocaPtr, uint64_t AllocaSize) {
  // Go through all uses of this alloca and check whether all accesses to the
  // allocated object are statically known to be memory safe and, hence, the
  // object can be placed on the safe stack.
  SmallPtrSet<const Value *, 16> Visited;
  SmallVector<const Value *, 8> WorkList;
  WorkList.push_back(AllocaPtr);

  // A DFS search through all uses of the alloca in bitcasts/PHI/GEPs/etc.
  while (!WorkList.empty()) {
    const Value *V = WorkList.pop_back_val();
    for (const Use &UI : V->uses()) {
      auto I = cast<const Instruction>(UI.getUser());
      assert(V == UI.get());

      switch (I->getOpcode()) {
      case Instruction::Load:
        if (!IsAccessSafe(UI, DL.getTypeStoreSize(I->getType()), AllocaPtr,
                          AllocaSize))
          return false;
        break;

      case Instruction::VAArg:
        // "va-arg" from a pointer is safe.
        break;
      case Instruction::Store:
        if (V == I->getOperand(0)) {
          // Stored the pointer - conservatively assume it may be unsafe.
          LLVM_DEBUG(dbgs()
                     << "[SafeStack] Unsafe alloca: " << *AllocaPtr
                     << "\n            store of address: " << *I << "\n");
          return false;
        }

        if (!IsAccessSafe(UI, DL.getTypeStoreSize(I->getOperand(0)->getType()),
                          AllocaPtr, AllocaSize))
          return false;
        break;

      case Instruction::Ret:
        // Information leak.
        return false;

      case Instruction::Call:
      case Instruction::Invoke: {
        const CallBase &CS = *cast<CallBase>(I);

        if (I->isLifetimeStartOrEnd())
          continue;

        if (const MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) {
          if (!IsMemIntrinsicSafe(MI, UI, AllocaPtr, AllocaSize)) {
            LLVM_DEBUG(dbgs()
                       << "[SafeStack] Unsafe alloca: " << *AllocaPtr
                       << "\n            unsafe memintrinsic: " << *I << "\n");
            return false;
          }
          continue;
        }

        // LLVM 'nocapture' attribute is only set for arguments whose address
        // is not stored, passed around, or used in any other non-trivial way.
        // We assume that passing a pointer to an object as a 'nocapture
        // readnone' argument is safe.
        // FIXME: a more precise solution would require an interprocedural
        // analysis here, which would look at all uses of an argument inside
        // the function being called.
        auto B = CS.arg_begin(), E = CS.arg_end();
        for (auto A = B; A != E; ++A)
          if (A->get() == V)
            if (!(CS.doesNotCapture(A - B) && (CS.doesNotAccessMemory(A - B) ||
                                               CS.doesNotAccessMemory()))) {
              LLVM_DEBUG(dbgs() << "[SafeStack] Unsafe alloca: " << *AllocaPtr
                                << "\n            unsafe call: " << *I << "\n");
              return false;
            }
        continue;
      }

      default:
        if (Visited.insert(I).second)
          WorkList.push_back(cast<const Instruction>(I));
      }
    }
  }

  // All uses of the alloca are safe, we can place it on the safe stack.
  return true;
}

Value *SafeStack::getStackGuard(IRBuilder<> &IRB, Function &F) {
  Value *StackGuardVar = TL.getIRStackGuard(IRB);
  if (!StackGuardVar)
    StackGuardVar =
        F.getParent()->getOrInsertGlobal("__stack_chk_guard", StackPtrTy);
  return IRB.CreateLoad(StackPtrTy, StackGuardVar, "StackGuard");
}

void SafeStack::findInsts(Function &F,
                          SmallVectorImpl<AllocaInst *> &StaticAllocas,
                          SmallVectorImpl<AllocaInst *> &DynamicAllocas,
                          SmallVectorImpl<Argument *> &ByValArguments,
                          SmallVectorImpl<ReturnInst *> &Returns,
                          SmallVectorImpl<Instruction *> &StackRestorePoints) {
  for (Instruction &I : instructions(&F)) {
    if (auto AI = dyn_cast<AllocaInst>(&I)) {
      ++NumAllocas;

      uint64_t Size = getStaticAllocaAllocationSize(AI);
      if (IsSafeStackAlloca(AI, Size))
        continue;

      if (AI->isStaticAlloca()) {
        ++NumUnsafeStaticAllocas;
        StaticAllocas.push_back(AI);
      } else {
        ++NumUnsafeDynamicAllocas;
        DynamicAllocas.push_back(AI);
      }
    } else if (auto RI = dyn_cast<ReturnInst>(&I)) {
      Returns.push_back(RI);
    } else if (auto CI = dyn_cast<CallInst>(&I)) {
      // setjmps require stack restore.
      if (CI->getCalledFunction() && CI->canReturnTwice())
        StackRestorePoints.push_back(CI);
    } else if (auto LP = dyn_cast<LandingPadInst>(&I)) {
      // Exception landing pads require stack restore.
      StackRestorePoints.push_back(LP);
    } else if (auto II = dyn_cast<IntrinsicInst>(&I)) {
      if (II->getIntrinsicID() == Intrinsic::gcroot)
        report_fatal_error(
            "gcroot intrinsic not compatible with safestack attribute");
    }
  }
  for (Argument &Arg : F.args()) {
    if (!Arg.hasByValAttr())
      continue;
    uint64_t Size =
        DL.getTypeStoreSize(Arg.getType()->getPointerElementType());
    if (IsSafeStackAlloca(&Arg, Size))
      continue;

    ++NumUnsafeByValArguments;
    ByValArguments.push_back(&Arg);
  }
}

AllocaInst *
SafeStack::createStackRestorePoints(IRBuilder<> &IRB, Function &F,
                                    ArrayRef<Instruction *> StackRestorePoints,
                                    Value *StaticTop, bool NeedDynamicTop) {
  assert(StaticTop && "The stack top isn't set.");

  if (StackRestorePoints.empty())
    return nullptr;

  // We need the current value of the shadow stack pointer to restore
  // after longjmp or exception catching.

  // FIXME: On some platforms this could be handled by the longjmp/exception
  // runtime itself.

  AllocaInst *DynamicTop = nullptr;
  if (NeedDynamicTop) {
    // If we also have dynamic alloca's, the stack pointer value changes
    // throughout the function. For now we store it in an alloca.
    DynamicTop = IRB.CreateAlloca(StackPtrTy, /*ArraySize=*/nullptr,
                                  "unsafe_stack_dynamic_ptr");
    IRB.CreateStore(StaticTop, DynamicTop);
  }

  // Restore current stack pointer after longjmp/exception catch.
  for (Instruction *I : StackRestorePoints) {
    ++NumUnsafeStackRestorePoints;

    IRB.SetInsertPoint(I->getNextNode());
    Value *CurrentTop =
        DynamicTop ? IRB.CreateLoad(StackPtrTy, DynamicTop) : StaticTop;
    IRB.CreateStore(CurrentTop, UnsafeStackPtr);
  }

  return DynamicTop;
}

void SafeStack::checkStackGuard(IRBuilder<> &IRB, Function &F, ReturnInst &RI,
                                AllocaInst *StackGuardSlot, Value *StackGuard) {
  Value *V = IRB.CreateLoad(StackPtrTy, StackGuardSlot);
  Value *Cmp = IRB.CreateICmpNE(StackGuard, V);

  auto SuccessProb = BranchProbabilityInfo::getBranchProbStackProtector(true);
  auto FailureProb = BranchProbabilityInfo::getBranchProbStackProtector(false);
  MDNode *Weights = MDBuilder(F.getContext())
                        .createBranchWeights(SuccessProb.getNumerator(),
                                             FailureProb.getNumerator());
  Instruction *CheckTerm =
      SplitBlockAndInsertIfThen(Cmp, &RI,
                                /* Unreachable */ true, Weights);
  IRBuilder<> IRBFail(CheckTerm);
  // FIXME: respect -fsanitize-trap / -ftrap-function here?
  FunctionCallee StackChkFail =
      F.getParent()->getOrInsertFunction("__stack_chk_fail", IRB.getVoidTy());
  IRBFail.CreateCall(StackChkFail, {});
}

/// We explicitly compute and set the unsafe stack layout for all unsafe
/// static alloca instructions. We save the unsafe "base pointer" in the
/// prologue into a local variable and restore it in the epilogue.
Value *SafeStack::moveStaticAllocasToUnsafeStack(
    IRBuilder<> &IRB, Function &F, ArrayRef<AllocaInst *> StaticAllocas,
    ArrayRef<Argument *> ByValArguments, ArrayRef<ReturnInst *> Returns,
    Instruction *BasePointer, AllocaInst *StackGuardSlot) {
  if (StaticAllocas.empty() && ByValArguments.empty())
    return BasePointer;

  DIBuilder DIB(*F.getParent());

  StackLifetime SSC(F, StaticAllocas, StackLifetime::LivenessType::May);
  static const StackLifetime::LiveRange NoColoringRange(1, true);
  if (ClColoring)
    SSC.run();

  for (auto *I : SSC.getMarkers()) {
    auto *Op = dyn_cast<Instruction>(I->getOperand(1));
    const_cast<IntrinsicInst *>(I)->eraseFromParent();
    // Remove the operand bitcast, too, if it has no more uses left.
    if (Op && Op->use_empty())
      Op->eraseFromParent();
  }

  // Unsafe stack always grows down.
  StackLayout SSL(StackAlignment);
  if (StackGuardSlot) {
    Type *Ty = StackGuardSlot->getAllocatedType();
    unsigned Align =
        std::max(DL.getPrefTypeAlignment(Ty), StackGuardSlot->getAlignment());
    SSL.addObject(StackGuardSlot, getStaticAllocaAllocationSize(StackGuardSlot),
                  Align, SSC.getFullLiveRange());
  }

  for (Argument *Arg : ByValArguments) {
    Type *Ty = Arg->getType()->getPointerElementType();
    uint64_t Size = DL.getTypeStoreSize(Ty);
    if (Size == 0)
      Size = 1; // Don't create zero-sized stack objects.

    // Ensure the object is properly aligned.
    unsigned Align = std::max((unsigned)DL.getPrefTypeAlignment(Ty),
                              Arg->getParamAlignment());
    SSL.addObject(Arg, Size, Align, SSC.getFullLiveRange());
  }

  for (AllocaInst *AI : StaticAllocas) {
    Type *Ty = AI->getAllocatedType();
    uint64_t Size = getStaticAllocaAllocationSize(AI);
    if (Size == 0)
      Size = 1; // Don't create zero-sized stack objects.

    // Ensure the object is properly aligned.
    unsigned Align =
        std::max((unsigned)DL.getPrefTypeAlignment(Ty), AI->getAlignment());

    SSL.addObject(AI, Size, Align,
                  ClColoring ? SSC.getLiveRange(AI) : NoColoringRange);
  }

  SSL.computeLayout();
  unsigned FrameAlignment = SSL.getFrameAlignment();

  // FIXME: tell SSL that we start at a less-then-MaxAlignment aligned location
  // (AlignmentSkew).
  if (FrameAlignment > StackAlignment) {
    // Re-align the base pointer according to the max requested alignment.
    assert(isPowerOf2_32(FrameAlignment));
    IRB.SetInsertPoint(BasePointer->getNextNode());
    BasePointer = cast<Instruction>(IRB.CreateIntToPtr(
        IRB.CreateAnd(IRB.CreatePtrToInt(BasePointer, IntPtrTy),
                      ConstantInt::get(IntPtrTy, ~uint64_t(FrameAlignment - 1))),
        StackPtrTy));
  }

  IRB.SetInsertPoint(BasePointer->getNextNode());

  if (StackGuardSlot) {
    unsigned Offset = SSL.getObjectOffset(StackGuardSlot);
    Value *Off = IRB.CreateGEP(Int8Ty, BasePointer, // BasePointer is i8*
                               ConstantInt::get(Int32Ty, -Offset));
    Value *NewAI =
        IRB.CreateBitCast(Off, StackGuardSlot->getType(), "StackGuardSlot");

    // Replace alloc with the new location.
    StackGuardSlot->replaceAllUsesWith(NewAI);
    StackGuardSlot->eraseFromParent();
  }

  for (Argument *Arg : ByValArguments) {
    unsigned Offset = SSL.getObjectOffset(Arg);
    MaybeAlign Align(SSL.getObjectAlignment(Arg));
    Type *Ty = Arg->getType()->getPointerElementType();

    uint64_t Size = DL.getTypeStoreSize(Ty);
    if (Size == 0)
      Size = 1; // Don't create zero-sized stack objects.

    Value *Off = IRB.CreateGEP(Int8Ty, BasePointer, // BasePointer is i8*
                               ConstantInt::get(Int32Ty, -Offset));
    Value *NewArg = IRB.CreateBitCast(Off, Arg->getType(),
                                     Arg->getName() + ".unsafe-byval");

    // Replace alloc with the new location.
    replaceDbgDeclare(Arg, BasePointer, DIB, DIExpression::ApplyOffset,
                      -Offset);
    Arg->replaceAllUsesWith(NewArg);
    IRB.SetInsertPoint(cast<Instruction>(NewArg)->getNextNode());
    IRB.CreateMemCpy(Off, Align, Arg, Arg->getParamAlign(), Size);
  }

  // Allocate space for every unsafe static AllocaInst on the unsafe stack.
  for (AllocaInst *AI : StaticAllocas) {
    IRB.SetInsertPoint(AI);
    unsigned Offset = SSL.getObjectOffset(AI);

    replaceDbgDeclare(AI, BasePointer, DIB, DIExpression::ApplyOffset, -Offset);
    replaceDbgValueForAlloca(AI, BasePointer, DIB, -Offset);

    // Replace uses of the alloca with the new location.
    // Insert address calculation close to each use to work around PR27844.
    std::string Name = std::string(AI->getName()) + ".unsafe";
    while (!AI->use_empty()) {
      Use &U = *AI->use_begin();
      Instruction *User = cast<Instruction>(U.getUser());

      Instruction *InsertBefore;
      if (auto *PHI = dyn_cast<PHINode>(User))
        InsertBefore = PHI->getIncomingBlock(U)->getTerminator();
      else
        InsertBefore = User;

      IRBuilder<> IRBUser(InsertBefore);
      Value *Off = IRBUser.CreateGEP(Int8Ty, BasePointer, // BasePointer is i8*
                                     ConstantInt::get(Int32Ty, -Offset));
      Value *Replacement = IRBUser.CreateBitCast(Off, AI->getType(), Name);

      if (auto *PHI = dyn_cast<PHINode>(User))
        // PHI nodes may have multiple incoming edges from the same BB (why??),
        // all must be updated at once with the same incoming value.
        PHI->setIncomingValueForBlock(PHI->getIncomingBlock(U), Replacement);
      else
        U.set(Replacement);
    }

    AI->eraseFromParent();
  }

  // Re-align BasePointer so that our callees would see it aligned as
  // expected.
  // FIXME: no need to update BasePointer in leaf functions.
  unsigned FrameSize = alignTo(SSL.getFrameSize(), StackAlignment);

  // Update shadow stack pointer in the function epilogue.
  IRB.SetInsertPoint(BasePointer->getNextNode());

  Value *StaticTop =
      IRB.CreateGEP(Int8Ty, BasePointer, ConstantInt::get(Int32Ty, -FrameSize),
                    "unsafe_stack_static_top");
  IRB.CreateStore(StaticTop, UnsafeStackPtr);
  return StaticTop;
}

void SafeStack::moveDynamicAllocasToUnsafeStack(
    Function &F, Value *UnsafeStackPtr, AllocaInst *DynamicTop,
    ArrayRef<AllocaInst *> DynamicAllocas) {
  DIBuilder DIB(*F.getParent());

  for (AllocaInst *AI : DynamicAllocas) {
    IRBuilder<> IRB(AI);

    // Compute the new SP value (after AI).
    Value *ArraySize = AI->getArraySize();
    if (ArraySize->getType() != IntPtrTy)
      ArraySize = IRB.CreateIntCast(ArraySize, IntPtrTy, false);

    Type *Ty = AI->getAllocatedType();
    uint64_t TySize = DL.getTypeAllocSize(Ty);
    Value *Size = IRB.CreateMul(ArraySize, ConstantInt::get(IntPtrTy, TySize));

    Value *SP = IRB.CreatePtrToInt(IRB.CreateLoad(StackPtrTy, UnsafeStackPtr),
                                   IntPtrTy);
    SP = IRB.CreateSub(SP, Size);

    // Align the SP value to satisfy the AllocaInst, type and stack alignments.
    unsigned Align = std::max(
        std::max((unsigned)DL.getPrefTypeAlignment(Ty), AI->getAlignment()),
        (unsigned)StackAlignment);

    assert(isPowerOf2_32(Align));
    Value *NewTop = IRB.CreateIntToPtr(
        IRB.CreateAnd(SP, ConstantInt::get(IntPtrTy, ~uint64_t(Align - 1))),
        StackPtrTy);

    // Save the stack pointer.
    IRB.CreateStore(NewTop, UnsafeStackPtr);
    if (DynamicTop)
      IRB.CreateStore(NewTop, DynamicTop);

    Value *NewAI = IRB.CreatePointerCast(NewTop, AI->getType());
    if (AI->hasName() && isa<Instruction>(NewAI))
      NewAI->takeName(AI);

    replaceDbgDeclare(AI, NewAI, DIB, DIExpression::ApplyOffset, 0);
    AI->replaceAllUsesWith(NewAI);
    AI->eraseFromParent();
  }

  if (!DynamicAllocas.empty()) {
    // Now go through the instructions again, replacing stacksave/stackrestore.
    for (inst_iterator It = inst_begin(&F), Ie = inst_end(&F); It != Ie;) {
      Instruction *I = &*(It++);
      auto II = dyn_cast<IntrinsicInst>(I);
      if (!II)
        continue;

      if (II->getIntrinsicID() == Intrinsic::stacksave) {
        IRBuilder<> IRB(II);
        Instruction *LI = IRB.CreateLoad(StackPtrTy, UnsafeStackPtr);
        LI->takeName(II);
        II->replaceAllUsesWith(LI);
        II->eraseFromParent();
      } else if (II->getIntrinsicID() == Intrinsic::stackrestore) {
        IRBuilder<> IRB(II);
        Instruction *SI = IRB.CreateStore(II->getArgOperand(0), UnsafeStackPtr);
        SI->takeName(II);
        assert(II->use_empty());
        II->eraseFromParent();
      }
    }
  }
}

bool SafeStack::ShouldInlinePointerAddress(CallInst &CI) {
  Function *Callee = CI.getCalledFunction();
  if (CI.hasFnAttr(Attribute::AlwaysInline) &&
      isInlineViable(*Callee).isSuccess())
    return true;
  if (Callee->isInterposable() || Callee->hasFnAttribute(Attribute::NoInline) ||
      CI.isNoInline())
    return false;
  return true;
}

void SafeStack::TryInlinePointerAddress() {
  auto *CI = dyn_cast<CallInst>(UnsafeStackPtr);
  if (!CI)
    return;

  if(F.hasOptNone())
    return;

  Function *Callee = CI->getCalledFunction();
  if (!Callee || Callee->isDeclaration())
    return;

  if (!ShouldInlinePointerAddress(*CI))
    return;

  InlineFunctionInfo IFI;
  InlineFunction(*CI, IFI);
}

bool SafeStack::run() {
  assert(F.hasFnAttribute(Attribute::SafeStack) &&
         "Can't run SafeStack on a function without the attribute");
  assert(!F.isDeclaration() && "Can't run SafeStack on a function declaration");

  ++NumFunctions;

  SmallVector<AllocaInst *, 16> StaticAllocas;
  SmallVector<AllocaInst *, 4> DynamicAllocas;
  SmallVector<Argument *, 4> ByValArguments;
  SmallVector<ReturnInst *, 4> Returns;

  // Collect all points where stack gets unwound and needs to be restored
  // This is only necessary because the runtime (setjmp and unwind code) is
  // not aware of the unsafe stack and won't unwind/restore it properly.
  // To work around this problem without changing the runtime, we insert
  // instrumentation to restore the unsafe stack pointer when necessary.
  SmallVector<Instruction *, 4> StackRestorePoints;

  // Find all static and dynamic alloca instructions that must be moved to the
  // unsafe stack, all return instructions and stack restore points.
  findInsts(F, StaticAllocas, DynamicAllocas, ByValArguments, Returns,
            StackRestorePoints);

  if (StaticAllocas.empty() && DynamicAllocas.empty() &&
      ByValArguments.empty() && StackRestorePoints.empty())
    return false; // Nothing to do in this function.

  if (!StaticAllocas.empty() || !DynamicAllocas.empty() ||
      !ByValArguments.empty())
    ++NumUnsafeStackFunctions; // This function has the unsafe stack.

  if (!StackRestorePoints.empty())
    ++NumUnsafeStackRestorePointsFunctions;

  IRBuilder<> IRB(&F.front(), F.begin()->getFirstInsertionPt());
  // Calls must always have a debug location, or else inlining breaks. So
  // we explicitly set a artificial debug location here.
  if (DISubprogram *SP = F.getSubprogram())
    IRB.SetCurrentDebugLocation(DebugLoc::get(SP->getScopeLine(), 0, SP));
  if (SafeStackUsePointerAddress) {
    FunctionCallee Fn = F.getParent()->getOrInsertFunction(
        "__safestack_pointer_address", StackPtrTy->getPointerTo(0));
    UnsafeStackPtr = IRB.CreateCall(Fn);
  } else {
    UnsafeStackPtr = TL.getSafeStackPointerLocation(IRB);
  }

  // Load the current stack pointer (we'll also use it as a base pointer).
  // FIXME: use a dedicated register for it ?
  Instruction *BasePointer =
      IRB.CreateLoad(StackPtrTy, UnsafeStackPtr, false, "unsafe_stack_ptr");
  assert(BasePointer->getType() == StackPtrTy);

  AllocaInst *StackGuardSlot = nullptr;
  // FIXME: implement weaker forms of stack protector.
  if (F.hasFnAttribute(Attribute::StackProtect) ||
      F.hasFnAttribute(Attribute::StackProtectStrong) ||
      F.hasFnAttribute(Attribute::StackProtectReq)) {
    Value *StackGuard = getStackGuard(IRB, F);
    StackGuardSlot = IRB.CreateAlloca(StackPtrTy, nullptr);
    IRB.CreateStore(StackGuard, StackGuardSlot);

    for (ReturnInst *RI : Returns) {
      IRBuilder<> IRBRet(RI);
      checkStackGuard(IRBRet, F, *RI, StackGuardSlot, StackGuard);
    }
  }

  // The top of the unsafe stack after all unsafe static allocas are
  // allocated.
  Value *StaticTop =
      moveStaticAllocasToUnsafeStack(IRB, F, StaticAllocas, ByValArguments,
                                     Returns, BasePointer, StackGuardSlot);

  // Safe stack object that stores the current unsafe stack top. It is updated
  // as unsafe dynamic (non-constant-sized) allocas are allocated and freed.
  // This is only needed if we need to restore stack pointer after longjmp
  // or exceptions, and we have dynamic allocations.
  // FIXME: a better alternative might be to store the unsafe stack pointer
  // before setjmp / invoke instructions.
  AllocaInst *DynamicTop = createStackRestorePoints(
      IRB, F, StackRestorePoints, StaticTop, !DynamicAllocas.empty());

  // Handle dynamic allocas.
  moveDynamicAllocasToUnsafeStack(F, UnsafeStackPtr, DynamicTop,
                                  DynamicAllocas);

  // Restore the unsafe stack pointer before each return.
  for (ReturnInst *RI : Returns) {
    IRB.SetInsertPoint(RI);
    IRB.CreateStore(BasePointer, UnsafeStackPtr);
  }

  TryInlinePointerAddress();

  LLVM_DEBUG(dbgs() << "[SafeStack]     safestack applied\n");
  return true;
}

class SafeStackLegacyPass : public FunctionPass {
  const TargetMachine *TM = nullptr;

public:
  static char ID; // Pass identification, replacement for typeid..

  SafeStackLegacyPass() : FunctionPass(ID) {
    initializeSafeStackLegacyPassPass(*PassRegistry::getPassRegistry());
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<TargetPassConfig>();
    AU.addRequired<TargetLibraryInfoWrapperPass>();
    AU.addRequired<AssumptionCacheTracker>();
  }

  bool runOnFunction(Function &F) override {
    LLVM_DEBUG(dbgs() << "[SafeStack] Function: " << F.getName() << "\n");

    if (!F.hasFnAttribute(Attribute::SafeStack)) {
      LLVM_DEBUG(dbgs() << "[SafeStack]     safestack is not requested"
                           " for this function\n");
      return false;
    }

    if (F.isDeclaration()) {
      LLVM_DEBUG(dbgs() << "[SafeStack]     function definition"
                           " is not available\n");
      return false;
    }

    TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>();
    auto *TL = TM->getSubtargetImpl(F)->getTargetLowering();
    if (!TL)
      report_fatal_error("TargetLowering instance is required");

    auto *DL = &F.getParent()->getDataLayout();
    auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
    auto &ACT = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);

    // Compute DT and LI only for functions that have the attribute.
    // This is only useful because the legacy pass manager doesn't let us
    // compute analyzes lazily.
    // In the backend pipeline, nothing preserves DT before SafeStack, so we
    // would otherwise always compute it wastefully, even if there is no
    // function with the safestack attribute.
    DominatorTree DT(F);
    LoopInfo LI(DT);

    ScalarEvolution SE(F, TLI, ACT, DT, LI);

    return SafeStack(F, *TL, *DL, SE).run();
  }
};

} // end anonymous namespace

char SafeStackLegacyPass::ID = 0;

INITIALIZE_PASS_BEGIN(SafeStackLegacyPass, DEBUG_TYPE,
                      "Safe Stack instrumentation pass", false, false)
INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
INITIALIZE_PASS_END(SafeStackLegacyPass, DEBUG_TYPE,
                    "Safe Stack instrumentation pass", false, false)

FunctionPass *llvm::createSafeStackPass() { return new SafeStackLegacyPass(); }