IRTranslator.cpp 114 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100
//===- llvm/CodeGen/GlobalISel/IRTranslator.cpp - IRTranslator ---*- C++ -*-==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
/// This file implements the IRTranslator class.
//===----------------------------------------------------------------------===//

#include "llvm/CodeGen/GlobalISel/IRTranslator.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/ScopeExit.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/BranchProbabilityInfo.h"
#include "llvm/Analysis/Loads.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/CodeGen/Analysis.h"
#include "llvm/CodeGen/GlobalISel/CallLowering.h"
#include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
#include "llvm/CodeGen/GlobalISel/InlineAsmLowering.h"
#include "llvm/CodeGen/LowLevelType.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/StackProtector.h"
#include "llvm/CodeGen/SwitchLoweringUtils.h"
#include "llvm/CodeGen/TargetFrameLowering.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GetElementPtrTypeIterator.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/InitializePasses.h"
#include "llvm/MC/MCContext.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/LowLevelTypeImpl.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetIntrinsicInfo.h"
#include "llvm/Target/TargetMachine.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <iterator>
#include <string>
#include <utility>
#include <vector>

#define DEBUG_TYPE "irtranslator"

using namespace llvm;

static cl::opt<bool>
    EnableCSEInIRTranslator("enable-cse-in-irtranslator",
                            cl::desc("Should enable CSE in irtranslator"),
                            cl::Optional, cl::init(false));
char IRTranslator::ID = 0;

INITIALIZE_PASS_BEGIN(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI",
                false, false)
INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
INITIALIZE_PASS_DEPENDENCY(GISelCSEAnalysisWrapperPass)
INITIALIZE_PASS_END(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI",
                false, false)

static void reportTranslationError(MachineFunction &MF,
                                   const TargetPassConfig &TPC,
                                   OptimizationRemarkEmitter &ORE,
                                   OptimizationRemarkMissed &R) {
  MF.getProperties().set(MachineFunctionProperties::Property::FailedISel);

  // Print the function name explicitly if we don't have a debug location (which
  // makes the diagnostic less useful) or if we're going to emit a raw error.
  if (!R.getLocation().isValid() || TPC.isGlobalISelAbortEnabled())
    R << (" (in function: " + MF.getName() + ")").str();

  if (TPC.isGlobalISelAbortEnabled())
    report_fatal_error(R.getMsg());
  else
    ORE.emit(R);
}

IRTranslator::IRTranslator(CodeGenOpt::Level optlevel)
    : MachineFunctionPass(ID), OptLevel(optlevel) {}

#ifndef NDEBUG
namespace {
/// Verify that every instruction created has the same DILocation as the
/// instruction being translated.
class DILocationVerifier : public GISelChangeObserver {
  const Instruction *CurrInst = nullptr;

public:
  DILocationVerifier() = default;
  ~DILocationVerifier() = default;

  const Instruction *getCurrentInst() const { return CurrInst; }
  void setCurrentInst(const Instruction *Inst) { CurrInst = Inst; }

  void erasingInstr(MachineInstr &MI) override {}
  void changingInstr(MachineInstr &MI) override {}
  void changedInstr(MachineInstr &MI) override {}

  void createdInstr(MachineInstr &MI) override {
    assert(getCurrentInst() && "Inserted instruction without a current MI");

    // Only print the check message if we're actually checking it.
#ifndef NDEBUG
    LLVM_DEBUG(dbgs() << "Checking DILocation from " << *CurrInst
                      << " was copied to " << MI);
#endif
    // We allow insts in the entry block to have a debug loc line of 0 because
    // they could have originated from constants, and we don't want a jumpy
    // debug experience.
    assert((CurrInst->getDebugLoc() == MI.getDebugLoc() ||
            MI.getDebugLoc().getLine() == 0) &&
           "Line info was not transferred to all instructions");
  }
};
} // namespace
#endif // ifndef NDEBUG


void IRTranslator::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.addRequired<StackProtector>();
  AU.addRequired<TargetPassConfig>();
  AU.addRequired<GISelCSEAnalysisWrapperPass>();
  if (OptLevel != CodeGenOpt::None)
    AU.addRequired<BranchProbabilityInfoWrapperPass>();
  getSelectionDAGFallbackAnalysisUsage(AU);
  MachineFunctionPass::getAnalysisUsage(AU);
}

IRTranslator::ValueToVRegInfo::VRegListT &
IRTranslator::allocateVRegs(const Value &Val) {
  assert(!VMap.contains(Val) && "Value already allocated in VMap");
  auto *Regs = VMap.getVRegs(Val);
  auto *Offsets = VMap.getOffsets(Val);
  SmallVector<LLT, 4> SplitTys;
  computeValueLLTs(*DL, *Val.getType(), SplitTys,
                   Offsets->empty() ? Offsets : nullptr);
  for (unsigned i = 0; i < SplitTys.size(); ++i)
    Regs->push_back(0);
  return *Regs;
}

ArrayRef<Register> IRTranslator::getOrCreateVRegs(const Value &Val) {
  auto VRegsIt = VMap.findVRegs(Val);
  if (VRegsIt != VMap.vregs_end())
    return *VRegsIt->second;

  if (Val.getType()->isVoidTy())
    return *VMap.getVRegs(Val);

  // Create entry for this type.
  auto *VRegs = VMap.getVRegs(Val);
  auto *Offsets = VMap.getOffsets(Val);

  assert(Val.getType()->isSized() &&
         "Don't know how to create an empty vreg");

  SmallVector<LLT, 4> SplitTys;
  computeValueLLTs(*DL, *Val.getType(), SplitTys,
                   Offsets->empty() ? Offsets : nullptr);

  if (!isa<Constant>(Val)) {
    for (auto Ty : SplitTys)
      VRegs->push_back(MRI->createGenericVirtualRegister(Ty));
    return *VRegs;
  }

  if (Val.getType()->isAggregateType()) {
    // UndefValue, ConstantAggregateZero
    auto &C = cast<Constant>(Val);
    unsigned Idx = 0;
    while (auto Elt = C.getAggregateElement(Idx++)) {
      auto EltRegs = getOrCreateVRegs(*Elt);
      llvm::copy(EltRegs, std::back_inserter(*VRegs));
    }
  } else {
    assert(SplitTys.size() == 1 && "unexpectedly split LLT");
    VRegs->push_back(MRI->createGenericVirtualRegister(SplitTys[0]));
    bool Success = translate(cast<Constant>(Val), VRegs->front());
    if (!Success) {
      OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
                                 MF->getFunction().getSubprogram(),
                                 &MF->getFunction().getEntryBlock());
      R << "unable to translate constant: " << ore::NV("Type", Val.getType());
      reportTranslationError(*MF, *TPC, *ORE, R);
      return *VRegs;
    }
  }

  return *VRegs;
}

int IRTranslator::getOrCreateFrameIndex(const AllocaInst &AI) {
  auto MapEntry = FrameIndices.find(&AI);
  if (MapEntry != FrameIndices.end())
    return MapEntry->second;

  uint64_t ElementSize = DL->getTypeAllocSize(AI.getAllocatedType());
  uint64_t Size =
      ElementSize * cast<ConstantInt>(AI.getArraySize())->getZExtValue();

  // Always allocate at least one byte.
  Size = std::max<uint64_t>(Size, 1u);

  int &FI = FrameIndices[&AI];
  FI = MF->getFrameInfo().CreateStackObject(Size, AI.getAlign(), false, &AI);
  return FI;
}

Align IRTranslator::getMemOpAlign(const Instruction &I) {
  if (const StoreInst *SI = dyn_cast<StoreInst>(&I))
    return SI->getAlign();
  if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) {
    return LI->getAlign();
  }
  if (const AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(&I)) {
    // TODO(PR27168): This instruction has no alignment attribute, but unlike
    // the default alignment for load/store, the default here is to assume
    // it has NATURAL alignment, not DataLayout-specified alignment.
    const DataLayout &DL = AI->getModule()->getDataLayout();
    return Align(DL.getTypeStoreSize(AI->getCompareOperand()->getType()));
  }
  if (const AtomicRMWInst *AI = dyn_cast<AtomicRMWInst>(&I)) {
    // TODO(PR27168): This instruction has no alignment attribute, but unlike
    // the default alignment for load/store, the default here is to assume
    // it has NATURAL alignment, not DataLayout-specified alignment.
    const DataLayout &DL = AI->getModule()->getDataLayout();
    return Align(DL.getTypeStoreSize(AI->getValOperand()->getType()));
  }
  OptimizationRemarkMissed R("gisel-irtranslator", "", &I);
  R << "unable to translate memop: " << ore::NV("Opcode", &I);
  reportTranslationError(*MF, *TPC, *ORE, R);
  return Align(1);
}

MachineBasicBlock &IRTranslator::getMBB(const BasicBlock &BB) {
  MachineBasicBlock *&MBB = BBToMBB[&BB];
  assert(MBB && "BasicBlock was not encountered before");
  return *MBB;
}

void IRTranslator::addMachineCFGPred(CFGEdge Edge, MachineBasicBlock *NewPred) {
  assert(NewPred && "new predecessor must be a real MachineBasicBlock");
  MachinePreds[Edge].push_back(NewPred);
}

bool IRTranslator::translateBinaryOp(unsigned Opcode, const User &U,
                                     MachineIRBuilder &MIRBuilder) {
  // Get or create a virtual register for each value.
  // Unless the value is a Constant => loadimm cst?
  // or inline constant each time?
  // Creation of a virtual register needs to have a size.
  Register Op0 = getOrCreateVReg(*U.getOperand(0));
  Register Op1 = getOrCreateVReg(*U.getOperand(1));
  Register Res = getOrCreateVReg(U);
  uint16_t Flags = 0;
  if (isa<Instruction>(U)) {
    const Instruction &I = cast<Instruction>(U);
    Flags = MachineInstr::copyFlagsFromInstruction(I);
  }

  MIRBuilder.buildInstr(Opcode, {Res}, {Op0, Op1}, Flags);
  return true;
}

bool IRTranslator::translateUnaryOp(unsigned Opcode, const User &U,
                                    MachineIRBuilder &MIRBuilder) {
  Register Op0 = getOrCreateVReg(*U.getOperand(0));
  Register Res = getOrCreateVReg(U);
  uint16_t Flags = 0;
  if (isa<Instruction>(U)) {
    const Instruction &I = cast<Instruction>(U);
    Flags = MachineInstr::copyFlagsFromInstruction(I);
  }
  MIRBuilder.buildInstr(Opcode, {Res}, {Op0}, Flags);
  return true;
}

bool IRTranslator::translateFNeg(const User &U, MachineIRBuilder &MIRBuilder) {
  return translateUnaryOp(TargetOpcode::G_FNEG, U, MIRBuilder);
}

bool IRTranslator::translateCompare(const User &U,
                                    MachineIRBuilder &MIRBuilder) {
  auto *CI = dyn_cast<CmpInst>(&U);
  Register Op0 = getOrCreateVReg(*U.getOperand(0));
  Register Op1 = getOrCreateVReg(*U.getOperand(1));
  Register Res = getOrCreateVReg(U);
  CmpInst::Predicate Pred =
      CI ? CI->getPredicate() : static_cast<CmpInst::Predicate>(
                                    cast<ConstantExpr>(U).getPredicate());
  if (CmpInst::isIntPredicate(Pred))
    MIRBuilder.buildICmp(Pred, Res, Op0, Op1);
  else if (Pred == CmpInst::FCMP_FALSE)
    MIRBuilder.buildCopy(
        Res, getOrCreateVReg(*Constant::getNullValue(U.getType())));
  else if (Pred == CmpInst::FCMP_TRUE)
    MIRBuilder.buildCopy(
        Res, getOrCreateVReg(*Constant::getAllOnesValue(U.getType())));
  else {
    assert(CI && "Instruction should be CmpInst");
    MIRBuilder.buildFCmp(Pred, Res, Op0, Op1,
                         MachineInstr::copyFlagsFromInstruction(*CI));
  }

  return true;
}

bool IRTranslator::translateRet(const User &U, MachineIRBuilder &MIRBuilder) {
  const ReturnInst &RI = cast<ReturnInst>(U);
  const Value *Ret = RI.getReturnValue();
  if (Ret && DL->getTypeStoreSize(Ret->getType()) == 0)
    Ret = nullptr;

  ArrayRef<Register> VRegs;
  if (Ret)
    VRegs = getOrCreateVRegs(*Ret);

  Register SwiftErrorVReg = 0;
  if (CLI->supportSwiftError() && SwiftError.getFunctionArg()) {
    SwiftErrorVReg = SwiftError.getOrCreateVRegUseAt(
        &RI, &MIRBuilder.getMBB(), SwiftError.getFunctionArg());
  }

  // The target may mess up with the insertion point, but
  // this is not important as a return is the last instruction
  // of the block anyway.
  return CLI->lowerReturn(MIRBuilder, Ret, VRegs, SwiftErrorVReg);
}

void IRTranslator::emitBranchForMergedCondition(
    const Value *Cond, MachineBasicBlock *TBB, MachineBasicBlock *FBB,
    MachineBasicBlock *CurBB, MachineBasicBlock *SwitchBB,
    BranchProbability TProb, BranchProbability FProb, bool InvertCond) {
  // If the leaf of the tree is a comparison, merge the condition into
  // the caseblock.
  if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
    CmpInst::Predicate Condition;
    if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
      Condition = InvertCond ? IC->getInversePredicate() : IC->getPredicate();
    } else {
      const FCmpInst *FC = cast<FCmpInst>(Cond);
      Condition = InvertCond ? FC->getInversePredicate() : FC->getPredicate();
    }

    SwitchCG::CaseBlock CB(Condition, false, BOp->getOperand(0),
                           BOp->getOperand(1), nullptr, TBB, FBB, CurBB,
                           CurBuilder->getDebugLoc(), TProb, FProb);
    SL->SwitchCases.push_back(CB);
    return;
  }

  // Create a CaseBlock record representing this branch.
  CmpInst::Predicate Pred = InvertCond ? CmpInst::ICMP_NE : CmpInst::ICMP_EQ;
  SwitchCG::CaseBlock CB(
      Pred, false, Cond, ConstantInt::getTrue(MF->getFunction().getContext()),
      nullptr, TBB, FBB, CurBB, CurBuilder->getDebugLoc(), TProb, FProb);
  SL->SwitchCases.push_back(CB);
}

static bool isValInBlock(const Value *V, const BasicBlock *BB) {
  if (const Instruction *I = dyn_cast<Instruction>(V))
    return I->getParent() == BB;
  return true;
}

void IRTranslator::findMergedConditions(
    const Value *Cond, MachineBasicBlock *TBB, MachineBasicBlock *FBB,
    MachineBasicBlock *CurBB, MachineBasicBlock *SwitchBB,
    Instruction::BinaryOps Opc, BranchProbability TProb,
    BranchProbability FProb, bool InvertCond) {
  using namespace PatternMatch;
  assert((Opc == Instruction::And || Opc == Instruction::Or) &&
         "Expected Opc to be AND/OR");
  // Skip over not part of the tree and remember to invert op and operands at
  // next level.
  Value *NotCond;
  if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
      isValInBlock(NotCond, CurBB->getBasicBlock())) {
    findMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
                         !InvertCond);
    return;
  }

  const Instruction *BOp = dyn_cast<Instruction>(Cond);
  // Compute the effective opcode for Cond, taking into account whether it needs
  // to be inverted, e.g.
  //   and (not (or A, B)), C
  // gets lowered as
  //   and (and (not A, not B), C)
  unsigned BOpc = 0;
  if (BOp) {
    BOpc = BOp->getOpcode();
    if (InvertCond) {
      if (BOpc == Instruction::And)
        BOpc = Instruction::Or;
      else if (BOpc == Instruction::Or)
        BOpc = Instruction::And;
    }
  }

  // If this node is not part of the or/and tree, emit it as a branch.
  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
      BOpc != static_cast<unsigned>(Opc) || !BOp->hasOneUse() ||
      BOp->getParent() != CurBB->getBasicBlock() ||
      !isValInBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
      !isValInBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
    emitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, TProb, FProb,
                                 InvertCond);
    return;
  }

  //  Create TmpBB after CurBB.
  MachineFunction::iterator BBI(CurBB);
  MachineBasicBlock *TmpBB =
      MF->CreateMachineBasicBlock(CurBB->getBasicBlock());
  CurBB->getParent()->insert(++BBI, TmpBB);

  if (Opc == Instruction::Or) {
    // Codegen X | Y as:
    // BB1:
    //   jmp_if_X TBB
    //   jmp TmpBB
    // TmpBB:
    //   jmp_if_Y TBB
    //   jmp FBB
    //

    // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
    // The requirement is that
    //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
    //     = TrueProb for original BB.
    // Assuming the original probabilities are A and B, one choice is to set
    // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
    // A/(1+B) and 2B/(1+B). This choice assumes that
    //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
    // Another choice is to assume TrueProb for BB1 equals to TrueProb for
    // TmpBB, but the math is more complicated.

    auto NewTrueProb = TProb / 2;
    auto NewFalseProb = TProb / 2 + FProb;
    // Emit the LHS condition.
    findMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
                         NewTrueProb, NewFalseProb, InvertCond);

    // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
    SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
    BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
    // Emit the RHS condition into TmpBB.
    findMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
                         Probs[0], Probs[1], InvertCond);
  } else {
    assert(Opc == Instruction::And && "Unknown merge op!");
    // Codegen X & Y as:
    // BB1:
    //   jmp_if_X TmpBB
    //   jmp FBB
    // TmpBB:
    //   jmp_if_Y TBB
    //   jmp FBB
    //
    //  This requires creation of TmpBB after CurBB.

    // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
    // The requirement is that
    //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
    //     = FalseProb for original BB.
    // Assuming the original probabilities are A and B, one choice is to set
    // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
    // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
    // TrueProb for BB1 * FalseProb for TmpBB.

    auto NewTrueProb = TProb + FProb / 2;
    auto NewFalseProb = FProb / 2;
    // Emit the LHS condition.
    findMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
                         NewTrueProb, NewFalseProb, InvertCond);

    // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
    SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
    BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
    // Emit the RHS condition into TmpBB.
    findMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
                         Probs[0], Probs[1], InvertCond);
  }
}

bool IRTranslator::shouldEmitAsBranches(
    const std::vector<SwitchCG::CaseBlock> &Cases) {
  // For multiple cases, it's better to emit as branches.
  if (Cases.size() != 2)
    return true;

  // If this is two comparisons of the same values or'd or and'd together, they
  // will get folded into a single comparison, so don't emit two blocks.
  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
    return false;
  }

  // Handle: (X != null) | (Y != null) --> (X|Y) != 0
  // Handle: (X == null) & (Y == null) --> (X|Y) == 0
  if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
      Cases[0].PredInfo.Pred == Cases[1].PredInfo.Pred &&
      isa<Constant>(Cases[0].CmpRHS) &&
      cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
    if (Cases[0].PredInfo.Pred == CmpInst::ICMP_EQ &&
        Cases[0].TrueBB == Cases[1].ThisBB)
      return false;
    if (Cases[0].PredInfo.Pred == CmpInst::ICMP_NE &&
        Cases[0].FalseBB == Cases[1].ThisBB)
      return false;
  }

  return true;
}

bool IRTranslator::translateBr(const User &U, MachineIRBuilder &MIRBuilder) {
  const BranchInst &BrInst = cast<BranchInst>(U);
  auto &CurMBB = MIRBuilder.getMBB();
  auto *Succ0MBB = &getMBB(*BrInst.getSuccessor(0));

  if (BrInst.isUnconditional()) {
    // If the unconditional target is the layout successor, fallthrough.
    if (!CurMBB.isLayoutSuccessor(Succ0MBB))
      MIRBuilder.buildBr(*Succ0MBB);

    // Link successors.
    for (const BasicBlock *Succ : successors(&BrInst))
      CurMBB.addSuccessor(&getMBB(*Succ));
    return true;
  }

  // If this condition is one of the special cases we handle, do special stuff
  // now.
  const Value *CondVal = BrInst.getCondition();
  MachineBasicBlock *Succ1MBB = &getMBB(*BrInst.getSuccessor(1));

  const auto &TLI = *MF->getSubtarget().getTargetLowering();

  // If this is a series of conditions that are or'd or and'd together, emit
  // this as a sequence of branches instead of setcc's with and/or operations.
  // As long as jumps are not expensive (exceptions for multi-use logic ops,
  // unpredictable branches, and vector extracts because those jumps are likely
  // expensive for any target), this should improve performance.
  // For example, instead of something like:
  //     cmp A, B
  //     C = seteq
  //     cmp D, E
  //     F = setle
  //     or C, F
  //     jnz foo
  // Emit:
  //     cmp A, B
  //     je foo
  //     cmp D, E
  //     jle foo
  using namespace PatternMatch;
  if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
    Instruction::BinaryOps Opcode = BOp->getOpcode();
    Value *Vec, *BOp0 = BOp->getOperand(0), *BOp1 = BOp->getOperand(1);
    if (!TLI.isJumpExpensive() && BOp->hasOneUse() &&
        !BrInst.hasMetadata(LLVMContext::MD_unpredictable) &&
        (Opcode == Instruction::And || Opcode == Instruction::Or) &&
        !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) &&
          match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) {
      findMergedConditions(BOp, Succ0MBB, Succ1MBB, &CurMBB, &CurMBB, Opcode,
                           getEdgeProbability(&CurMBB, Succ0MBB),
                           getEdgeProbability(&CurMBB, Succ1MBB),
                           /*InvertCond=*/false);
      assert(SL->SwitchCases[0].ThisBB == &CurMBB && "Unexpected lowering!");

      // Allow some cases to be rejected.
      if (shouldEmitAsBranches(SL->SwitchCases)) {
        // Emit the branch for this block.
        emitSwitchCase(SL->SwitchCases[0], &CurMBB, *CurBuilder);
        SL->SwitchCases.erase(SL->SwitchCases.begin());
        return true;
      }

      // Okay, we decided not to do this, remove any inserted MBB's and clear
      // SwitchCases.
      for (unsigned I = 1, E = SL->SwitchCases.size(); I != E; ++I)
        MF->erase(SL->SwitchCases[I].ThisBB);

      SL->SwitchCases.clear();
    }
  }

  // Create a CaseBlock record representing this branch.
  SwitchCG::CaseBlock CB(CmpInst::ICMP_EQ, false, CondVal,
                         ConstantInt::getTrue(MF->getFunction().getContext()),
                         nullptr, Succ0MBB, Succ1MBB, &CurMBB,
                         CurBuilder->getDebugLoc());

  // Use emitSwitchCase to actually insert the fast branch sequence for this
  // cond branch.
  emitSwitchCase(CB, &CurMBB, *CurBuilder);
  return true;
}

void IRTranslator::addSuccessorWithProb(MachineBasicBlock *Src,
                                        MachineBasicBlock *Dst,
                                        BranchProbability Prob) {
  if (!FuncInfo.BPI) {
    Src->addSuccessorWithoutProb(Dst);
    return;
  }
  if (Prob.isUnknown())
    Prob = getEdgeProbability(Src, Dst);
  Src->addSuccessor(Dst, Prob);
}

BranchProbability
IRTranslator::getEdgeProbability(const MachineBasicBlock *Src,
                                 const MachineBasicBlock *Dst) const {
  const BasicBlock *SrcBB = Src->getBasicBlock();
  const BasicBlock *DstBB = Dst->getBasicBlock();
  if (!FuncInfo.BPI) {
    // If BPI is not available, set the default probability as 1 / N, where N is
    // the number of successors.
    auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
    return BranchProbability(1, SuccSize);
  }
  return FuncInfo.BPI->getEdgeProbability(SrcBB, DstBB);
}

bool IRTranslator::translateSwitch(const User &U, MachineIRBuilder &MIB) {
  using namespace SwitchCG;
  // Extract cases from the switch.
  const SwitchInst &SI = cast<SwitchInst>(U);
  BranchProbabilityInfo *BPI = FuncInfo.BPI;
  CaseClusterVector Clusters;
  Clusters.reserve(SI.getNumCases());
  for (auto &I : SI.cases()) {
    MachineBasicBlock *Succ = &getMBB(*I.getCaseSuccessor());
    assert(Succ && "Could not find successor mbb in mapping");
    const ConstantInt *CaseVal = I.getCaseValue();
    BranchProbability Prob =
        BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
            : BranchProbability(1, SI.getNumCases() + 1);
    Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
  }

  MachineBasicBlock *DefaultMBB = &getMBB(*SI.getDefaultDest());

  // Cluster adjacent cases with the same destination. We do this at all
  // optimization levels because it's cheap to do and will make codegen faster
  // if there are many clusters.
  sortAndRangeify(Clusters);

  MachineBasicBlock *SwitchMBB = &getMBB(*SI.getParent());

  // If there is only the default destination, jump there directly.
  if (Clusters.empty()) {
    SwitchMBB->addSuccessor(DefaultMBB);
    if (DefaultMBB != SwitchMBB->getNextNode())
      MIB.buildBr(*DefaultMBB);
    return true;
  }

  SL->findJumpTables(Clusters, &SI, DefaultMBB, nullptr, nullptr);
  SL->findBitTestClusters(Clusters, &SI);

  LLVM_DEBUG({
    dbgs() << "Case clusters: ";
    for (const CaseCluster &C : Clusters) {
      if (C.Kind == CC_JumpTable)
        dbgs() << "JT:";
      if (C.Kind == CC_BitTests)
        dbgs() << "BT:";

      C.Low->getValue().print(dbgs(), true);
      if (C.Low != C.High) {
        dbgs() << '-';
        C.High->getValue().print(dbgs(), true);
      }
      dbgs() << ' ';
    }
    dbgs() << '\n';
  });

  assert(!Clusters.empty());
  SwitchWorkList WorkList;
  CaseClusterIt First = Clusters.begin();
  CaseClusterIt Last = Clusters.end() - 1;
  auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB);
  WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb});

  // FIXME: At the moment we don't do any splitting optimizations here like
  // SelectionDAG does, so this worklist only has one entry.
  while (!WorkList.empty()) {
    SwitchWorkListItem W = WorkList.back();
    WorkList.pop_back();
    if (!lowerSwitchWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB, MIB))
      return false;
  }
  return true;
}

void IRTranslator::emitJumpTable(SwitchCG::JumpTable &JT,
                                 MachineBasicBlock *MBB) {
  // Emit the code for the jump table
  assert(JT.Reg != -1U && "Should lower JT Header first!");
  MachineIRBuilder MIB(*MBB->getParent());
  MIB.setMBB(*MBB);
  MIB.setDebugLoc(CurBuilder->getDebugLoc());

  Type *PtrIRTy = Type::getInt8PtrTy(MF->getFunction().getContext());
  const LLT PtrTy = getLLTForType(*PtrIRTy, *DL);

  auto Table = MIB.buildJumpTable(PtrTy, JT.JTI);
  MIB.buildBrJT(Table.getReg(0), JT.JTI, JT.Reg);
}

bool IRTranslator::emitJumpTableHeader(SwitchCG::JumpTable &JT,
                                       SwitchCG::JumpTableHeader &JTH,
                                       MachineBasicBlock *HeaderBB) {
  MachineIRBuilder MIB(*HeaderBB->getParent());
  MIB.setMBB(*HeaderBB);
  MIB.setDebugLoc(CurBuilder->getDebugLoc());

  const Value &SValue = *JTH.SValue;
  // Subtract the lowest switch case value from the value being switched on.
  const LLT SwitchTy = getLLTForType(*SValue.getType(), *DL);
  Register SwitchOpReg = getOrCreateVReg(SValue);
  auto FirstCst = MIB.buildConstant(SwitchTy, JTH.First);
  auto Sub = MIB.buildSub({SwitchTy}, SwitchOpReg, FirstCst);

  // This value may be smaller or larger than the target's pointer type, and
  // therefore require extension or truncating.
  Type *PtrIRTy = SValue.getType()->getPointerTo();
  const LLT PtrScalarTy = LLT::scalar(DL->getTypeSizeInBits(PtrIRTy));
  Sub = MIB.buildZExtOrTrunc(PtrScalarTy, Sub);

  JT.Reg = Sub.getReg(0);

  if (JTH.OmitRangeCheck) {
    if (JT.MBB != HeaderBB->getNextNode())
      MIB.buildBr(*JT.MBB);
    return true;
  }

  // Emit the range check for the jump table, and branch to the default block
  // for the switch statement if the value being switched on exceeds the
  // largest case in the switch.
  auto Cst = getOrCreateVReg(
      *ConstantInt::get(SValue.getType(), JTH.Last - JTH.First));
  Cst = MIB.buildZExtOrTrunc(PtrScalarTy, Cst).getReg(0);
  auto Cmp = MIB.buildICmp(CmpInst::ICMP_UGT, LLT::scalar(1), Sub, Cst);

  auto BrCond = MIB.buildBrCond(Cmp.getReg(0), *JT.Default);

  // Avoid emitting unnecessary branches to the next block.
  if (JT.MBB != HeaderBB->getNextNode())
    BrCond = MIB.buildBr(*JT.MBB);
  return true;
}

void IRTranslator::emitSwitchCase(SwitchCG::CaseBlock &CB,
                                  MachineBasicBlock *SwitchBB,
                                  MachineIRBuilder &MIB) {
  Register CondLHS = getOrCreateVReg(*CB.CmpLHS);
  Register Cond;
  DebugLoc OldDbgLoc = MIB.getDebugLoc();
  MIB.setDebugLoc(CB.DbgLoc);
  MIB.setMBB(*CB.ThisBB);

  if (CB.PredInfo.NoCmp) {
    // Branch or fall through to TrueBB.
    addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb);
    addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()},
                      CB.ThisBB);
    CB.ThisBB->normalizeSuccProbs();
    if (CB.TrueBB != CB.ThisBB->getNextNode())
      MIB.buildBr(*CB.TrueBB);
    MIB.setDebugLoc(OldDbgLoc);
    return;
  }

  const LLT i1Ty = LLT::scalar(1);
  // Build the compare.
  if (!CB.CmpMHS) {
    const auto *CI = dyn_cast<ConstantInt>(CB.CmpRHS);
    // For conditional branch lowering, we might try to do something silly like
    // emit an G_ICMP to compare an existing G_ICMP i1 result with true. If so,
    // just re-use the existing condition vreg.
    if (CI && CI->getZExtValue() == 1 &&
        MRI->getType(CondLHS).getSizeInBits() == 1 &&
        CB.PredInfo.Pred == CmpInst::ICMP_EQ) {
      Cond = CondLHS;
    } else {
      Register CondRHS = getOrCreateVReg(*CB.CmpRHS);
      if (CmpInst::isFPPredicate(CB.PredInfo.Pred))
        Cond =
            MIB.buildFCmp(CB.PredInfo.Pred, i1Ty, CondLHS, CondRHS).getReg(0);
      else
        Cond =
            MIB.buildICmp(CB.PredInfo.Pred, i1Ty, CondLHS, CondRHS).getReg(0);
    }
  } else {
    assert(CB.PredInfo.Pred == CmpInst::ICMP_SLE &&
           "Can only handle SLE ranges");

    const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
    const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();

    Register CmpOpReg = getOrCreateVReg(*CB.CmpMHS);
    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
      Register CondRHS = getOrCreateVReg(*CB.CmpRHS);
      Cond =
          MIB.buildICmp(CmpInst::ICMP_SLE, i1Ty, CmpOpReg, CondRHS).getReg(0);
    } else {
      const LLT CmpTy = MRI->getType(CmpOpReg);
      auto Sub = MIB.buildSub({CmpTy}, CmpOpReg, CondLHS);
      auto Diff = MIB.buildConstant(CmpTy, High - Low);
      Cond = MIB.buildICmp(CmpInst::ICMP_ULE, i1Ty, Sub, Diff).getReg(0);
    }
  }

  // Update successor info
  addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb);

  addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()},
                    CB.ThisBB);

  // TrueBB and FalseBB are always different unless the incoming IR is
  // degenerate. This only happens when running llc on weird IR.
  if (CB.TrueBB != CB.FalseBB)
    addSuccessorWithProb(CB.ThisBB, CB.FalseBB, CB.FalseProb);
  CB.ThisBB->normalizeSuccProbs();

  addMachineCFGPred({SwitchBB->getBasicBlock(), CB.FalseBB->getBasicBlock()},
                    CB.ThisBB);

  MIB.buildBrCond(Cond, *CB.TrueBB);
  MIB.buildBr(*CB.FalseBB);
  MIB.setDebugLoc(OldDbgLoc);
}

bool IRTranslator::lowerJumpTableWorkItem(SwitchCG::SwitchWorkListItem W,
                                          MachineBasicBlock *SwitchMBB,
                                          MachineBasicBlock *CurMBB,
                                          MachineBasicBlock *DefaultMBB,
                                          MachineIRBuilder &MIB,
                                          MachineFunction::iterator BBI,
                                          BranchProbability UnhandledProbs,
                                          SwitchCG::CaseClusterIt I,
                                          MachineBasicBlock *Fallthrough,
                                          bool FallthroughUnreachable) {
  using namespace SwitchCG;
  MachineFunction *CurMF = SwitchMBB->getParent();
  // FIXME: Optimize away range check based on pivot comparisons.
  JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
  SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
  BranchProbability DefaultProb = W.DefaultProb;

  // The jump block hasn't been inserted yet; insert it here.
  MachineBasicBlock *JumpMBB = JT->MBB;
  CurMF->insert(BBI, JumpMBB);

  // Since the jump table block is separate from the switch block, we need
  // to keep track of it as a machine predecessor to the default block,
  // otherwise we lose the phi edges.
  addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()},
                    CurMBB);
  addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()},
                    JumpMBB);

  auto JumpProb = I->Prob;
  auto FallthroughProb = UnhandledProbs;

  // If the default statement is a target of the jump table, we evenly
  // distribute the default probability to successors of CurMBB. Also
  // update the probability on the edge from JumpMBB to Fallthrough.
  for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
                                        SE = JumpMBB->succ_end();
       SI != SE; ++SI) {
    if (*SI == DefaultMBB) {
      JumpProb += DefaultProb / 2;
      FallthroughProb -= DefaultProb / 2;
      JumpMBB->setSuccProbability(SI, DefaultProb / 2);
      JumpMBB->normalizeSuccProbs();
    } else {
      // Also record edges from the jump table block to it's successors.
      addMachineCFGPred({SwitchMBB->getBasicBlock(), (*SI)->getBasicBlock()},
                        JumpMBB);
    }
  }

  // Skip the range check if the fallthrough block is unreachable.
  if (FallthroughUnreachable)
    JTH->OmitRangeCheck = true;

  if (!JTH->OmitRangeCheck)
    addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
  addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
  CurMBB->normalizeSuccProbs();

  // The jump table header will be inserted in our current block, do the
  // range check, and fall through to our fallthrough block.
  JTH->HeaderBB = CurMBB;
  JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.

  // If we're in the right place, emit the jump table header right now.
  if (CurMBB == SwitchMBB) {
    if (!emitJumpTableHeader(*JT, *JTH, CurMBB))
      return false;
    JTH->Emitted = true;
  }
  return true;
}
bool IRTranslator::lowerSwitchRangeWorkItem(SwitchCG::CaseClusterIt I,
                                            Value *Cond,
                                            MachineBasicBlock *Fallthrough,
                                            bool FallthroughUnreachable,
                                            BranchProbability UnhandledProbs,
                                            MachineBasicBlock *CurMBB,
                                            MachineIRBuilder &MIB,
                                            MachineBasicBlock *SwitchMBB) {
  using namespace SwitchCG;
  const Value *RHS, *LHS, *MHS;
  CmpInst::Predicate Pred;
  if (I->Low == I->High) {
    // Check Cond == I->Low.
    Pred = CmpInst::ICMP_EQ;
    LHS = Cond;
    RHS = I->Low;
    MHS = nullptr;
  } else {
    // Check I->Low <= Cond <= I->High.
    Pred = CmpInst::ICMP_SLE;
    LHS = I->Low;
    MHS = Cond;
    RHS = I->High;
  }

  // If Fallthrough is unreachable, fold away the comparison.
  // The false probability is the sum of all unhandled cases.
  CaseBlock CB(Pred, FallthroughUnreachable, LHS, RHS, MHS, I->MBB, Fallthrough,
               CurMBB, MIB.getDebugLoc(), I->Prob, UnhandledProbs);

  emitSwitchCase(CB, SwitchMBB, MIB);
  return true;
}

void IRTranslator::emitBitTestHeader(SwitchCG::BitTestBlock &B,
                                     MachineBasicBlock *SwitchBB) {
  MachineIRBuilder &MIB = *CurBuilder;
  MIB.setMBB(*SwitchBB);

  // Subtract the minimum value.
  Register SwitchOpReg = getOrCreateVReg(*B.SValue);

  LLT SwitchOpTy = MRI->getType(SwitchOpReg);
  Register MinValReg = MIB.buildConstant(SwitchOpTy, B.First).getReg(0);
  auto RangeSub = MIB.buildSub(SwitchOpTy, SwitchOpReg, MinValReg);

  // Ensure that the type will fit the mask value.
  LLT MaskTy = SwitchOpTy;
  for (unsigned I = 0, E = B.Cases.size(); I != E; ++I) {
    if (!isUIntN(SwitchOpTy.getSizeInBits(), B.Cases[I].Mask)) {
      // Switch table case range are encoded into series of masks.
      // Just use pointer type, it's guaranteed to fit.
      MaskTy = LLT::scalar(64);
      break;
    }
  }
  Register SubReg = RangeSub.getReg(0);
  if (SwitchOpTy != MaskTy)
    SubReg = MIB.buildZExtOrTrunc(MaskTy, SubReg).getReg(0);

  B.RegVT = getMVTForLLT(MaskTy);
  B.Reg = SubReg;

  MachineBasicBlock *MBB = B.Cases[0].ThisBB;

  if (!B.OmitRangeCheck)
    addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
  addSuccessorWithProb(SwitchBB, MBB, B.Prob);

  SwitchBB->normalizeSuccProbs();

  if (!B.OmitRangeCheck) {
    // Conditional branch to the default block.
    auto RangeCst = MIB.buildConstant(SwitchOpTy, B.Range);
    auto RangeCmp = MIB.buildICmp(CmpInst::Predicate::ICMP_UGT, LLT::scalar(1),
                                  RangeSub, RangeCst);
    MIB.buildBrCond(RangeCmp, *B.Default);
  }

  // Avoid emitting unnecessary branches to the next block.
  if (MBB != SwitchBB->getNextNode())
    MIB.buildBr(*MBB);
}

void IRTranslator::emitBitTestCase(SwitchCG::BitTestBlock &BB,
                                   MachineBasicBlock *NextMBB,
                                   BranchProbability BranchProbToNext,
                                   Register Reg, SwitchCG::BitTestCase &B,
                                   MachineBasicBlock *SwitchBB) {
  MachineIRBuilder &MIB = *CurBuilder;
  MIB.setMBB(*SwitchBB);

  LLT SwitchTy = getLLTForMVT(BB.RegVT);
  Register Cmp;
  unsigned PopCount = countPopulation(B.Mask);
  if (PopCount == 1) {
    // Testing for a single bit; just compare the shift count with what it
    // would need to be to shift a 1 bit in that position.
    auto MaskTrailingZeros =
        MIB.buildConstant(SwitchTy, countTrailingZeros(B.Mask));
    Cmp =
        MIB.buildICmp(ICmpInst::ICMP_EQ, LLT::scalar(1), Reg, MaskTrailingZeros)
            .getReg(0);
  } else if (PopCount == BB.Range) {
    // There is only one zero bit in the range, test for it directly.
    auto MaskTrailingOnes =
        MIB.buildConstant(SwitchTy, countTrailingOnes(B.Mask));
    Cmp = MIB.buildICmp(CmpInst::ICMP_NE, LLT::scalar(1), Reg, MaskTrailingOnes)
              .getReg(0);
  } else {
    // Make desired shift.
    auto CstOne = MIB.buildConstant(SwitchTy, 1);
    auto SwitchVal = MIB.buildShl(SwitchTy, CstOne, Reg);

    // Emit bit tests and jumps.
    auto CstMask = MIB.buildConstant(SwitchTy, B.Mask);
    auto AndOp = MIB.buildAnd(SwitchTy, SwitchVal, CstMask);
    auto CstZero = MIB.buildConstant(SwitchTy, 0);
    Cmp = MIB.buildICmp(CmpInst::ICMP_NE, LLT::scalar(1), AndOp, CstZero)
              .getReg(0);
  }

  // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
  addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
  // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
  addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
  // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
  // one as they are relative probabilities (and thus work more like weights),
  // and hence we need to normalize them to let the sum of them become one.
  SwitchBB->normalizeSuccProbs();

  // Record the fact that the IR edge from the header to the bit test target
  // will go through our new block. Neeeded for PHIs to have nodes added.
  addMachineCFGPred({BB.Parent->getBasicBlock(), B.TargetBB->getBasicBlock()},
                    SwitchBB);

  MIB.buildBrCond(Cmp, *B.TargetBB);

  // Avoid emitting unnecessary branches to the next block.
  if (NextMBB != SwitchBB->getNextNode())
    MIB.buildBr(*NextMBB);
}

bool IRTranslator::lowerBitTestWorkItem(
    SwitchCG::SwitchWorkListItem W, MachineBasicBlock *SwitchMBB,
    MachineBasicBlock *CurMBB, MachineBasicBlock *DefaultMBB,
    MachineIRBuilder &MIB, MachineFunction::iterator BBI,
    BranchProbability DefaultProb, BranchProbability UnhandledProbs,
    SwitchCG::CaseClusterIt I, MachineBasicBlock *Fallthrough,
    bool FallthroughUnreachable) {
  using namespace SwitchCG;
  MachineFunction *CurMF = SwitchMBB->getParent();
  // FIXME: Optimize away range check based on pivot comparisons.
  BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
  // The bit test blocks haven't been inserted yet; insert them here.
  for (BitTestCase &BTC : BTB->Cases)
    CurMF->insert(BBI, BTC.ThisBB);

  // Fill in fields of the BitTestBlock.
  BTB->Parent = CurMBB;
  BTB->Default = Fallthrough;

  BTB->DefaultProb = UnhandledProbs;
  // If the cases in bit test don't form a contiguous range, we evenly
  // distribute the probability on the edge to Fallthrough to two
  // successors of CurMBB.
  if (!BTB->ContiguousRange) {
    BTB->Prob += DefaultProb / 2;
    BTB->DefaultProb -= DefaultProb / 2;
  }

  if (FallthroughUnreachable) {
    // Skip the range check if the fallthrough block is unreachable.
    BTB->OmitRangeCheck = true;
  }

  // If we're in the right place, emit the bit test header right now.
  if (CurMBB == SwitchMBB) {
    emitBitTestHeader(*BTB, SwitchMBB);
    BTB->Emitted = true;
  }
  return true;
}

bool IRTranslator::lowerSwitchWorkItem(SwitchCG::SwitchWorkListItem W,
                                       Value *Cond,
                                       MachineBasicBlock *SwitchMBB,
                                       MachineBasicBlock *DefaultMBB,
                                       MachineIRBuilder &MIB) {
  using namespace SwitchCG;
  MachineFunction *CurMF = FuncInfo.MF;
  MachineBasicBlock *NextMBB = nullptr;
  MachineFunction::iterator BBI(W.MBB);
  if (++BBI != FuncInfo.MF->end())
    NextMBB = &*BBI;

  if (EnableOpts) {
    // Here, we order cases by probability so the most likely case will be
    // checked first. However, two clusters can have the same probability in
    // which case their relative ordering is non-deterministic. So we use Low
    // as a tie-breaker as clusters are guaranteed to never overlap.
    llvm::sort(W.FirstCluster, W.LastCluster + 1,
               [](const CaseCluster &a, const CaseCluster &b) {
                 return a.Prob != b.Prob
                            ? a.Prob > b.Prob
                            : a.Low->getValue().slt(b.Low->getValue());
               });

    // Rearrange the case blocks so that the last one falls through if possible
    // without changing the order of probabilities.
    for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster;) {
      --I;
      if (I->Prob > W.LastCluster->Prob)
        break;
      if (I->Kind == CC_Range && I->MBB == NextMBB) {
        std::swap(*I, *W.LastCluster);
        break;
      }
    }
  }

  // Compute total probability.
  BranchProbability DefaultProb = W.DefaultProb;
  BranchProbability UnhandledProbs = DefaultProb;
  for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
    UnhandledProbs += I->Prob;

  MachineBasicBlock *CurMBB = W.MBB;
  for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
    bool FallthroughUnreachable = false;
    MachineBasicBlock *Fallthrough;
    if (I == W.LastCluster) {
      // For the last cluster, fall through to the default destination.
      Fallthrough = DefaultMBB;
      FallthroughUnreachable = isa<UnreachableInst>(
          DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
    } else {
      Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
      CurMF->insert(BBI, Fallthrough);
    }
    UnhandledProbs -= I->Prob;

    switch (I->Kind) {
    case CC_BitTests: {
      if (!lowerBitTestWorkItem(W, SwitchMBB, CurMBB, DefaultMBB, MIB, BBI,
                                DefaultProb, UnhandledProbs, I, Fallthrough,
                                FallthroughUnreachable)) {
        LLVM_DEBUG(dbgs() << "Failed to lower bit test for switch");
        return false;
      }
      break;
    }

    case CC_JumpTable: {
      if (!lowerJumpTableWorkItem(W, SwitchMBB, CurMBB, DefaultMBB, MIB, BBI,
                                  UnhandledProbs, I, Fallthrough,
                                  FallthroughUnreachable)) {
        LLVM_DEBUG(dbgs() << "Failed to lower jump table");
        return false;
      }
      break;
    }
    case CC_Range: {
      if (!lowerSwitchRangeWorkItem(I, Cond, Fallthrough,
                                    FallthroughUnreachable, UnhandledProbs,
                                    CurMBB, MIB, SwitchMBB)) {
        LLVM_DEBUG(dbgs() << "Failed to lower switch range");
        return false;
      }
      break;
    }
    }
    CurMBB = Fallthrough;
  }

  return true;
}

bool IRTranslator::translateIndirectBr(const User &U,
                                       MachineIRBuilder &MIRBuilder) {
  const IndirectBrInst &BrInst = cast<IndirectBrInst>(U);

  const Register Tgt = getOrCreateVReg(*BrInst.getAddress());
  MIRBuilder.buildBrIndirect(Tgt);

  // Link successors.
  SmallPtrSet<const BasicBlock *, 32> AddedSuccessors;
  MachineBasicBlock &CurBB = MIRBuilder.getMBB();
  for (const BasicBlock *Succ : successors(&BrInst)) {
    // It's legal for indirectbr instructions to have duplicate blocks in the
    // destination list. We don't allow this in MIR. Skip anything that's
    // already a successor.
    if (!AddedSuccessors.insert(Succ).second)
      continue;
    CurBB.addSuccessor(&getMBB(*Succ));
  }

  return true;
}

static bool isSwiftError(const Value *V) {
  if (auto Arg = dyn_cast<Argument>(V))
    return Arg->hasSwiftErrorAttr();
  if (auto AI = dyn_cast<AllocaInst>(V))
    return AI->isSwiftError();
  return false;
}

bool IRTranslator::translateLoad(const User &U, MachineIRBuilder &MIRBuilder) {
  const LoadInst &LI = cast<LoadInst>(U);
  if (DL->getTypeStoreSize(LI.getType()) == 0)
    return true;

  ArrayRef<Register> Regs = getOrCreateVRegs(LI);
  ArrayRef<uint64_t> Offsets = *VMap.getOffsets(LI);
  Register Base = getOrCreateVReg(*LI.getPointerOperand());

  Type *OffsetIRTy = DL->getIntPtrType(LI.getPointerOperandType());
  LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL);

  if (CLI->supportSwiftError() && isSwiftError(LI.getPointerOperand())) {
    assert(Regs.size() == 1 && "swifterror should be single pointer");
    Register VReg = SwiftError.getOrCreateVRegUseAt(&LI, &MIRBuilder.getMBB(),
                                                    LI.getPointerOperand());
    MIRBuilder.buildCopy(Regs[0], VReg);
    return true;
  }

  auto &TLI = *MF->getSubtarget().getTargetLowering();
  MachineMemOperand::Flags Flags = TLI.getLoadMemOperandFlags(LI, *DL);

  const MDNode *Ranges =
      Regs.size() == 1 ? LI.getMetadata(LLVMContext::MD_range) : nullptr;
  for (unsigned i = 0; i < Regs.size(); ++i) {
    Register Addr;
    MIRBuilder.materializePtrAdd(Addr, Base, OffsetTy, Offsets[i] / 8);

    MachinePointerInfo Ptr(LI.getPointerOperand(), Offsets[i] / 8);
    Align BaseAlign = getMemOpAlign(LI);
    AAMDNodes AAMetadata;
    LI.getAAMetadata(AAMetadata);
    auto MMO = MF->getMachineMemOperand(
        Ptr, Flags, MRI->getType(Regs[i]).getSizeInBytes(),
        commonAlignment(BaseAlign, Offsets[i] / 8), AAMetadata, Ranges,
        LI.getSyncScopeID(), LI.getOrdering());
    MIRBuilder.buildLoad(Regs[i], Addr, *MMO);
  }

  return true;
}

bool IRTranslator::translateStore(const User &U, MachineIRBuilder &MIRBuilder) {
  const StoreInst &SI = cast<StoreInst>(U);
  if (DL->getTypeStoreSize(SI.getValueOperand()->getType()) == 0)
    return true;

  ArrayRef<Register> Vals = getOrCreateVRegs(*SI.getValueOperand());
  ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*SI.getValueOperand());
  Register Base = getOrCreateVReg(*SI.getPointerOperand());

  Type *OffsetIRTy = DL->getIntPtrType(SI.getPointerOperandType());
  LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL);

  if (CLI->supportSwiftError() && isSwiftError(SI.getPointerOperand())) {
    assert(Vals.size() == 1 && "swifterror should be single pointer");

    Register VReg = SwiftError.getOrCreateVRegDefAt(&SI, &MIRBuilder.getMBB(),
                                                    SI.getPointerOperand());
    MIRBuilder.buildCopy(VReg, Vals[0]);
    return true;
  }

  auto &TLI = *MF->getSubtarget().getTargetLowering();
  MachineMemOperand::Flags Flags = TLI.getStoreMemOperandFlags(SI, *DL);

  for (unsigned i = 0; i < Vals.size(); ++i) {
    Register Addr;
    MIRBuilder.materializePtrAdd(Addr, Base, OffsetTy, Offsets[i] / 8);

    MachinePointerInfo Ptr(SI.getPointerOperand(), Offsets[i] / 8);
    Align BaseAlign = getMemOpAlign(SI);
    AAMDNodes AAMetadata;
    SI.getAAMetadata(AAMetadata);
    auto MMO = MF->getMachineMemOperand(
        Ptr, Flags, MRI->getType(Vals[i]).getSizeInBytes(),
        commonAlignment(BaseAlign, Offsets[i] / 8), AAMetadata, nullptr,
        SI.getSyncScopeID(), SI.getOrdering());
    MIRBuilder.buildStore(Vals[i], Addr, *MMO);
  }
  return true;
}

static uint64_t getOffsetFromIndices(const User &U, const DataLayout &DL) {
  const Value *Src = U.getOperand(0);
  Type *Int32Ty = Type::getInt32Ty(U.getContext());

  // getIndexedOffsetInType is designed for GEPs, so the first index is the
  // usual array element rather than looking into the actual aggregate.
  SmallVector<Value *, 1> Indices;
  Indices.push_back(ConstantInt::get(Int32Ty, 0));

  if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&U)) {
    for (auto Idx : EVI->indices())
      Indices.push_back(ConstantInt::get(Int32Ty, Idx));
  } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&U)) {
    for (auto Idx : IVI->indices())
      Indices.push_back(ConstantInt::get(Int32Ty, Idx));
  } else {
    for (unsigned i = 1; i < U.getNumOperands(); ++i)
      Indices.push_back(U.getOperand(i));
  }

  return 8 * static_cast<uint64_t>(
                 DL.getIndexedOffsetInType(Src->getType(), Indices));
}

bool IRTranslator::translateExtractValue(const User &U,
                                         MachineIRBuilder &MIRBuilder) {
  const Value *Src = U.getOperand(0);
  uint64_t Offset = getOffsetFromIndices(U, *DL);
  ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src);
  ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*Src);
  unsigned Idx = llvm::lower_bound(Offsets, Offset) - Offsets.begin();
  auto &DstRegs = allocateVRegs(U);

  for (unsigned i = 0; i < DstRegs.size(); ++i)
    DstRegs[i] = SrcRegs[Idx++];

  return true;
}

bool IRTranslator::translateInsertValue(const User &U,
                                        MachineIRBuilder &MIRBuilder) {
  const Value *Src = U.getOperand(0);
  uint64_t Offset = getOffsetFromIndices(U, *DL);
  auto &DstRegs = allocateVRegs(U);
  ArrayRef<uint64_t> DstOffsets = *VMap.getOffsets(U);
  ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src);
  ArrayRef<Register> InsertedRegs = getOrCreateVRegs(*U.getOperand(1));
  auto InsertedIt = InsertedRegs.begin();

  for (unsigned i = 0; i < DstRegs.size(); ++i) {
    if (DstOffsets[i] >= Offset && InsertedIt != InsertedRegs.end())
      DstRegs[i] = *InsertedIt++;
    else
      DstRegs[i] = SrcRegs[i];
  }

  return true;
}

bool IRTranslator::translateSelect(const User &U,
                                   MachineIRBuilder &MIRBuilder) {
  Register Tst = getOrCreateVReg(*U.getOperand(0));
  ArrayRef<Register> ResRegs = getOrCreateVRegs(U);
  ArrayRef<Register> Op0Regs = getOrCreateVRegs(*U.getOperand(1));
  ArrayRef<Register> Op1Regs = getOrCreateVRegs(*U.getOperand(2));

  uint16_t Flags = 0;
  if (const SelectInst *SI = dyn_cast<SelectInst>(&U))
    Flags = MachineInstr::copyFlagsFromInstruction(*SI);

  for (unsigned i = 0; i < ResRegs.size(); ++i) {
    MIRBuilder.buildSelect(ResRegs[i], Tst, Op0Regs[i], Op1Regs[i], Flags);
  }

  return true;
}

bool IRTranslator::translateCopy(const User &U, const Value &V,
                                 MachineIRBuilder &MIRBuilder) {
  Register Src = getOrCreateVReg(V);
  auto &Regs = *VMap.getVRegs(U);
  if (Regs.empty()) {
    Regs.push_back(Src);
    VMap.getOffsets(U)->push_back(0);
  } else {
    // If we already assigned a vreg for this instruction, we can't change that.
    // Emit a copy to satisfy the users we already emitted.
    MIRBuilder.buildCopy(Regs[0], Src);
  }
  return true;
}

bool IRTranslator::translateBitCast(const User &U,
                                    MachineIRBuilder &MIRBuilder) {
  // If we're bitcasting to the source type, we can reuse the source vreg.
  if (getLLTForType(*U.getOperand(0)->getType(), *DL) ==
      getLLTForType(*U.getType(), *DL))
    return translateCopy(U, *U.getOperand(0), MIRBuilder);

  return translateCast(TargetOpcode::G_BITCAST, U, MIRBuilder);
}

bool IRTranslator::translateCast(unsigned Opcode, const User &U,
                                 MachineIRBuilder &MIRBuilder) {
  Register Op = getOrCreateVReg(*U.getOperand(0));
  Register Res = getOrCreateVReg(U);
  MIRBuilder.buildInstr(Opcode, {Res}, {Op});
  return true;
}

bool IRTranslator::translateGetElementPtr(const User &U,
                                          MachineIRBuilder &MIRBuilder) {
  Value &Op0 = *U.getOperand(0);
  Register BaseReg = getOrCreateVReg(Op0);
  Type *PtrIRTy = Op0.getType();
  LLT PtrTy = getLLTForType(*PtrIRTy, *DL);
  Type *OffsetIRTy = DL->getIntPtrType(PtrIRTy);
  LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL);

  // Normalize Vector GEP - all scalar operands should be converted to the
  // splat vector.
  unsigned VectorWidth = 0;
  if (auto *VT = dyn_cast<VectorType>(U.getType()))
    VectorWidth = cast<FixedVectorType>(VT)->getNumElements();

  // We might need to splat the base pointer into a vector if the offsets
  // are vectors.
  if (VectorWidth && !PtrTy.isVector()) {
    BaseReg =
        MIRBuilder.buildSplatVector(LLT::vector(VectorWidth, PtrTy), BaseReg)
            .getReg(0);
    PtrIRTy = FixedVectorType::get(PtrIRTy, VectorWidth);
    PtrTy = getLLTForType(*PtrIRTy, *DL);
    OffsetIRTy = DL->getIntPtrType(PtrIRTy);
    OffsetTy = getLLTForType(*OffsetIRTy, *DL);
  }

  int64_t Offset = 0;
  for (gep_type_iterator GTI = gep_type_begin(&U), E = gep_type_end(&U);
       GTI != E; ++GTI) {
    const Value *Idx = GTI.getOperand();
    if (StructType *StTy = GTI.getStructTypeOrNull()) {
      unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
      Offset += DL->getStructLayout(StTy)->getElementOffset(Field);
      continue;
    } else {
      uint64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType());

      // If this is a scalar constant or a splat vector of constants,
      // handle it quickly.
      if (const auto *CI = dyn_cast<ConstantInt>(Idx)) {
        Offset += ElementSize * CI->getSExtValue();
        continue;
      }

      if (Offset != 0) {
        auto OffsetMIB = MIRBuilder.buildConstant({OffsetTy}, Offset);
        BaseReg = MIRBuilder.buildPtrAdd(PtrTy, BaseReg, OffsetMIB.getReg(0))
                      .getReg(0);
        Offset = 0;
      }

      Register IdxReg = getOrCreateVReg(*Idx);
      LLT IdxTy = MRI->getType(IdxReg);
      if (IdxTy != OffsetTy) {
        if (!IdxTy.isVector() && VectorWidth) {
          IdxReg = MIRBuilder.buildSplatVector(
            OffsetTy.changeElementType(IdxTy), IdxReg).getReg(0);
        }

        IdxReg = MIRBuilder.buildSExtOrTrunc(OffsetTy, IdxReg).getReg(0);
      }

      // N = N + Idx * ElementSize;
      // Avoid doing it for ElementSize of 1.
      Register GepOffsetReg;
      if (ElementSize != 1) {
        auto ElementSizeMIB = MIRBuilder.buildConstant(
            getLLTForType(*OffsetIRTy, *DL), ElementSize);
        GepOffsetReg =
            MIRBuilder.buildMul(OffsetTy, IdxReg, ElementSizeMIB).getReg(0);
      } else
        GepOffsetReg = IdxReg;

      BaseReg = MIRBuilder.buildPtrAdd(PtrTy, BaseReg, GepOffsetReg).getReg(0);
    }
  }

  if (Offset != 0) {
    auto OffsetMIB =
        MIRBuilder.buildConstant(OffsetTy, Offset);
    MIRBuilder.buildPtrAdd(getOrCreateVReg(U), BaseReg, OffsetMIB.getReg(0));
    return true;
  }

  MIRBuilder.buildCopy(getOrCreateVReg(U), BaseReg);
  return true;
}

bool IRTranslator::translateMemFunc(const CallInst &CI,
                                    MachineIRBuilder &MIRBuilder,
                                    unsigned Opcode) {

  // If the source is undef, then just emit a nop.
  if (isa<UndefValue>(CI.getArgOperand(1)))
    return true;

  SmallVector<Register, 3> SrcRegs;

  unsigned MinPtrSize = UINT_MAX;
  for (auto AI = CI.arg_begin(), AE = CI.arg_end(); std::next(AI) != AE; ++AI) {
    Register SrcReg = getOrCreateVReg(**AI);
    LLT SrcTy = MRI->getType(SrcReg);
    if (SrcTy.isPointer())
      MinPtrSize = std::min(SrcTy.getSizeInBits(), MinPtrSize);
    SrcRegs.push_back(SrcReg);
  }

  LLT SizeTy = LLT::scalar(MinPtrSize);

  // The size operand should be the minimum of the pointer sizes.
  Register &SizeOpReg = SrcRegs[SrcRegs.size() - 1];
  if (MRI->getType(SizeOpReg) != SizeTy)
    SizeOpReg = MIRBuilder.buildZExtOrTrunc(SizeTy, SizeOpReg).getReg(0);

  auto ICall = MIRBuilder.buildInstr(Opcode);
  for (Register SrcReg : SrcRegs)
    ICall.addUse(SrcReg);

  Align DstAlign;
  Align SrcAlign;
  unsigned IsVol =
      cast<ConstantInt>(CI.getArgOperand(CI.getNumArgOperands() - 1))
          ->getZExtValue();

  if (auto *MCI = dyn_cast<MemCpyInst>(&CI)) {
    DstAlign = MCI->getDestAlign().valueOrOne();
    SrcAlign = MCI->getSourceAlign().valueOrOne();
  } else if (auto *MMI = dyn_cast<MemMoveInst>(&CI)) {
    DstAlign = MMI->getDestAlign().valueOrOne();
    SrcAlign = MMI->getSourceAlign().valueOrOne();
  } else {
    auto *MSI = cast<MemSetInst>(&CI);
    DstAlign = MSI->getDestAlign().valueOrOne();
  }

  // We need to propagate the tail call flag from the IR inst as an argument.
  // Otherwise, we have to pessimize and assume later that we cannot tail call
  // any memory intrinsics.
  ICall.addImm(CI.isTailCall() ? 1 : 0);

  // Create mem operands to store the alignment and volatile info.
  auto VolFlag = IsVol ? MachineMemOperand::MOVolatile : MachineMemOperand::MONone;
  ICall.addMemOperand(MF->getMachineMemOperand(
      MachinePointerInfo(CI.getArgOperand(0)),
      MachineMemOperand::MOStore | VolFlag, 1, DstAlign));
  if (Opcode != TargetOpcode::G_MEMSET)
    ICall.addMemOperand(MF->getMachineMemOperand(
        MachinePointerInfo(CI.getArgOperand(1)),
        MachineMemOperand::MOLoad | VolFlag, 1, SrcAlign));

  return true;
}

void IRTranslator::getStackGuard(Register DstReg,
                                 MachineIRBuilder &MIRBuilder) {
  const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
  MRI->setRegClass(DstReg, TRI->getPointerRegClass(*MF));
  auto MIB =
      MIRBuilder.buildInstr(TargetOpcode::LOAD_STACK_GUARD, {DstReg}, {});

  auto &TLI = *MF->getSubtarget().getTargetLowering();
  Value *Global = TLI.getSDagStackGuard(*MF->getFunction().getParent());
  if (!Global)
    return;

  MachinePointerInfo MPInfo(Global);
  auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
               MachineMemOperand::MODereferenceable;
  MachineMemOperand *MemRef =
      MF->getMachineMemOperand(MPInfo, Flags, DL->getPointerSizeInBits() / 8,
                               DL->getPointerABIAlignment(0));
  MIB.setMemRefs({MemRef});
}

bool IRTranslator::translateOverflowIntrinsic(const CallInst &CI, unsigned Op,
                                              MachineIRBuilder &MIRBuilder) {
  ArrayRef<Register> ResRegs = getOrCreateVRegs(CI);
  MIRBuilder.buildInstr(
      Op, {ResRegs[0], ResRegs[1]},
      {getOrCreateVReg(*CI.getOperand(0)), getOrCreateVReg(*CI.getOperand(1))});

  return true;
}

bool IRTranslator::translateFixedPointIntrinsic(unsigned Op, const CallInst &CI,
                                                MachineIRBuilder &MIRBuilder) {
  Register Dst = getOrCreateVReg(CI);
  Register Src0 = getOrCreateVReg(*CI.getOperand(0));
  Register Src1 = getOrCreateVReg(*CI.getOperand(1));
  uint64_t Scale = cast<ConstantInt>(CI.getOperand(2))->getZExtValue();
  MIRBuilder.buildInstr(Op, {Dst}, { Src0, Src1, Scale });
  return true;
}

unsigned IRTranslator::getSimpleIntrinsicOpcode(Intrinsic::ID ID) {
  switch (ID) {
    default:
      break;
    case Intrinsic::bswap:
      return TargetOpcode::G_BSWAP;
    case Intrinsic::bitreverse:
      return TargetOpcode::G_BITREVERSE;
    case Intrinsic::fshl:
      return TargetOpcode::G_FSHL;
    case Intrinsic::fshr:
      return TargetOpcode::G_FSHR;
    case Intrinsic::ceil:
      return TargetOpcode::G_FCEIL;
    case Intrinsic::cos:
      return TargetOpcode::G_FCOS;
    case Intrinsic::ctpop:
      return TargetOpcode::G_CTPOP;
    case Intrinsic::exp:
      return TargetOpcode::G_FEXP;
    case Intrinsic::exp2:
      return TargetOpcode::G_FEXP2;
    case Intrinsic::fabs:
      return TargetOpcode::G_FABS;
    case Intrinsic::copysign:
      return TargetOpcode::G_FCOPYSIGN;
    case Intrinsic::minnum:
      return TargetOpcode::G_FMINNUM;
    case Intrinsic::maxnum:
      return TargetOpcode::G_FMAXNUM;
    case Intrinsic::minimum:
      return TargetOpcode::G_FMINIMUM;
    case Intrinsic::maximum:
      return TargetOpcode::G_FMAXIMUM;
    case Intrinsic::canonicalize:
      return TargetOpcode::G_FCANONICALIZE;
    case Intrinsic::floor:
      return TargetOpcode::G_FFLOOR;
    case Intrinsic::fma:
      return TargetOpcode::G_FMA;
    case Intrinsic::log:
      return TargetOpcode::G_FLOG;
    case Intrinsic::log2:
      return TargetOpcode::G_FLOG2;
    case Intrinsic::log10:
      return TargetOpcode::G_FLOG10;
    case Intrinsic::nearbyint:
      return TargetOpcode::G_FNEARBYINT;
    case Intrinsic::pow:
      return TargetOpcode::G_FPOW;
    case Intrinsic::powi:
      return TargetOpcode::G_FPOWI;
    case Intrinsic::rint:
      return TargetOpcode::G_FRINT;
    case Intrinsic::round:
      return TargetOpcode::G_INTRINSIC_ROUND;
    case Intrinsic::roundeven:
      return TargetOpcode::G_INTRINSIC_ROUNDEVEN;
    case Intrinsic::sin:
      return TargetOpcode::G_FSIN;
    case Intrinsic::sqrt:
      return TargetOpcode::G_FSQRT;
    case Intrinsic::trunc:
      return TargetOpcode::G_INTRINSIC_TRUNC;
    case Intrinsic::readcyclecounter:
      return TargetOpcode::G_READCYCLECOUNTER;
    case Intrinsic::ptrmask:
      return TargetOpcode::G_PTRMASK;
    case Intrinsic::lrint:
      return TargetOpcode::G_INTRINSIC_LRINT;
  }
  return Intrinsic::not_intrinsic;
}

bool IRTranslator::translateSimpleIntrinsic(const CallInst &CI,
                                            Intrinsic::ID ID,
                                            MachineIRBuilder &MIRBuilder) {

  unsigned Op = getSimpleIntrinsicOpcode(ID);

  // Is this a simple intrinsic?
  if (Op == Intrinsic::not_intrinsic)
    return false;

  // Yes. Let's translate it.
  SmallVector<llvm::SrcOp, 4> VRegs;
  for (auto &Arg : CI.arg_operands())
    VRegs.push_back(getOrCreateVReg(*Arg));

  MIRBuilder.buildInstr(Op, {getOrCreateVReg(CI)}, VRegs,
                        MachineInstr::copyFlagsFromInstruction(CI));
  return true;
}

// TODO: Include ConstainedOps.def when all strict instructions are defined.
static unsigned getConstrainedOpcode(Intrinsic::ID ID) {
  switch (ID) {
  case Intrinsic::experimental_constrained_fadd:
    return TargetOpcode::G_STRICT_FADD;
  case Intrinsic::experimental_constrained_fsub:
    return TargetOpcode::G_STRICT_FSUB;
  case Intrinsic::experimental_constrained_fmul:
    return TargetOpcode::G_STRICT_FMUL;
  case Intrinsic::experimental_constrained_fdiv:
    return TargetOpcode::G_STRICT_FDIV;
  case Intrinsic::experimental_constrained_frem:
    return TargetOpcode::G_STRICT_FREM;
  case Intrinsic::experimental_constrained_fma:
    return TargetOpcode::G_STRICT_FMA;
  case Intrinsic::experimental_constrained_sqrt:
    return TargetOpcode::G_STRICT_FSQRT;
  default:
    return 0;
  }
}

bool IRTranslator::translateConstrainedFPIntrinsic(
  const ConstrainedFPIntrinsic &FPI, MachineIRBuilder &MIRBuilder) {
  fp::ExceptionBehavior EB = FPI.getExceptionBehavior().getValue();

  unsigned Opcode = getConstrainedOpcode(FPI.getIntrinsicID());
  if (!Opcode)
    return false;

  unsigned Flags = MachineInstr::copyFlagsFromInstruction(FPI);
  if (EB == fp::ExceptionBehavior::ebIgnore)
    Flags |= MachineInstr::NoFPExcept;

  SmallVector<llvm::SrcOp, 4> VRegs;
  VRegs.push_back(getOrCreateVReg(*FPI.getArgOperand(0)));
  if (!FPI.isUnaryOp())
    VRegs.push_back(getOrCreateVReg(*FPI.getArgOperand(1)));
  if (FPI.isTernaryOp())
    VRegs.push_back(getOrCreateVReg(*FPI.getArgOperand(2)));

  MIRBuilder.buildInstr(Opcode, {getOrCreateVReg(FPI)}, VRegs, Flags);
  return true;
}

bool IRTranslator::translateKnownIntrinsic(const CallInst &CI, Intrinsic::ID ID,
                                           MachineIRBuilder &MIRBuilder) {

  // If this is a simple intrinsic (that is, we just need to add a def of
  // a vreg, and uses for each arg operand, then translate it.
  if (translateSimpleIntrinsic(CI, ID, MIRBuilder))
    return true;

  switch (ID) {
  default:
    break;
  case Intrinsic::lifetime_start:
  case Intrinsic::lifetime_end: {
    // No stack colouring in O0, discard region information.
    if (MF->getTarget().getOptLevel() == CodeGenOpt::None)
      return true;

    unsigned Op = ID == Intrinsic::lifetime_start ? TargetOpcode::LIFETIME_START
                                                  : TargetOpcode::LIFETIME_END;

    // Get the underlying objects for the location passed on the lifetime
    // marker.
    SmallVector<const Value *, 4> Allocas;
    getUnderlyingObjects(CI.getArgOperand(1), Allocas);

    // Iterate over each underlying object, creating lifetime markers for each
    // static alloca. Quit if we find a non-static alloca.
    for (const Value *V : Allocas) {
      const AllocaInst *AI = dyn_cast<AllocaInst>(V);
      if (!AI)
        continue;

      if (!AI->isStaticAlloca())
        return true;

      MIRBuilder.buildInstr(Op).addFrameIndex(getOrCreateFrameIndex(*AI));
    }
    return true;
  }
  case Intrinsic::dbg_declare: {
    const DbgDeclareInst &DI = cast<DbgDeclareInst>(CI);
    assert(DI.getVariable() && "Missing variable");

    const Value *Address = DI.getAddress();
    if (!Address || isa<UndefValue>(Address)) {
      LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
      return true;
    }

    assert(DI.getVariable()->isValidLocationForIntrinsic(
               MIRBuilder.getDebugLoc()) &&
           "Expected inlined-at fields to agree");
    auto AI = dyn_cast<AllocaInst>(Address);
    if (AI && AI->isStaticAlloca()) {
      // Static allocas are tracked at the MF level, no need for DBG_VALUE
      // instructions (in fact, they get ignored if they *do* exist).
      MF->setVariableDbgInfo(DI.getVariable(), DI.getExpression(),
                             getOrCreateFrameIndex(*AI), DI.getDebugLoc());
    } else {
      // A dbg.declare describes the address of a source variable, so lower it
      // into an indirect DBG_VALUE.
      MIRBuilder.buildIndirectDbgValue(getOrCreateVReg(*Address),
                                       DI.getVariable(), DI.getExpression());
    }
    return true;
  }
  case Intrinsic::dbg_label: {
    const DbgLabelInst &DI = cast<DbgLabelInst>(CI);
    assert(DI.getLabel() && "Missing label");

    assert(DI.getLabel()->isValidLocationForIntrinsic(
               MIRBuilder.getDebugLoc()) &&
           "Expected inlined-at fields to agree");

    MIRBuilder.buildDbgLabel(DI.getLabel());
    return true;
  }
  case Intrinsic::vaend:
    // No target I know of cares about va_end. Certainly no in-tree target
    // does. Simplest intrinsic ever!
    return true;
  case Intrinsic::vastart: {
    auto &TLI = *MF->getSubtarget().getTargetLowering();
    Value *Ptr = CI.getArgOperand(0);
    unsigned ListSize = TLI.getVaListSizeInBits(*DL) / 8;

    // FIXME: Get alignment
    MIRBuilder.buildInstr(TargetOpcode::G_VASTART, {}, {getOrCreateVReg(*Ptr)})
        .addMemOperand(MF->getMachineMemOperand(MachinePointerInfo(Ptr),
                                                MachineMemOperand::MOStore,
                                                ListSize, Align(1)));
    return true;
  }
  case Intrinsic::dbg_value: {
    // This form of DBG_VALUE is target-independent.
    const DbgValueInst &DI = cast<DbgValueInst>(CI);
    const Value *V = DI.getValue();
    assert(DI.getVariable()->isValidLocationForIntrinsic(
               MIRBuilder.getDebugLoc()) &&
           "Expected inlined-at fields to agree");
    if (!V) {
      // Currently the optimizer can produce this; insert an undef to
      // help debugging.  Probably the optimizer should not do this.
      MIRBuilder.buildIndirectDbgValue(0, DI.getVariable(), DI.getExpression());
    } else if (const auto *CI = dyn_cast<Constant>(V)) {
      MIRBuilder.buildConstDbgValue(*CI, DI.getVariable(), DI.getExpression());
    } else {
      for (Register Reg : getOrCreateVRegs(*V)) {
        // FIXME: This does not handle register-indirect values at offset 0. The
        // direct/indirect thing shouldn't really be handled by something as
        // implicit as reg+noreg vs reg+imm in the first place, but it seems
        // pretty baked in right now.
        MIRBuilder.buildDirectDbgValue(Reg, DI.getVariable(), DI.getExpression());
      }
    }
    return true;
  }
  case Intrinsic::uadd_with_overflow:
    return translateOverflowIntrinsic(CI, TargetOpcode::G_UADDO, MIRBuilder);
  case Intrinsic::sadd_with_overflow:
    return translateOverflowIntrinsic(CI, TargetOpcode::G_SADDO, MIRBuilder);
  case Intrinsic::usub_with_overflow:
    return translateOverflowIntrinsic(CI, TargetOpcode::G_USUBO, MIRBuilder);
  case Intrinsic::ssub_with_overflow:
    return translateOverflowIntrinsic(CI, TargetOpcode::G_SSUBO, MIRBuilder);
  case Intrinsic::umul_with_overflow:
    return translateOverflowIntrinsic(CI, TargetOpcode::G_UMULO, MIRBuilder);
  case Intrinsic::smul_with_overflow:
    return translateOverflowIntrinsic(CI, TargetOpcode::G_SMULO, MIRBuilder);
  case Intrinsic::uadd_sat:
    return translateBinaryOp(TargetOpcode::G_UADDSAT, CI, MIRBuilder);
  case Intrinsic::sadd_sat:
    return translateBinaryOp(TargetOpcode::G_SADDSAT, CI, MIRBuilder);
  case Intrinsic::usub_sat:
    return translateBinaryOp(TargetOpcode::G_USUBSAT, CI, MIRBuilder);
  case Intrinsic::ssub_sat:
    return translateBinaryOp(TargetOpcode::G_SSUBSAT, CI, MIRBuilder);
  case Intrinsic::ushl_sat:
    return translateBinaryOp(TargetOpcode::G_USHLSAT, CI, MIRBuilder);
  case Intrinsic::sshl_sat:
    return translateBinaryOp(TargetOpcode::G_SSHLSAT, CI, MIRBuilder);
  case Intrinsic::umin:
    return translateBinaryOp(TargetOpcode::G_UMIN, CI, MIRBuilder);
  case Intrinsic::umax:
    return translateBinaryOp(TargetOpcode::G_UMAX, CI, MIRBuilder);
  case Intrinsic::smin:
    return translateBinaryOp(TargetOpcode::G_SMIN, CI, MIRBuilder);
  case Intrinsic::smax:
    return translateBinaryOp(TargetOpcode::G_SMAX, CI, MIRBuilder);
  case Intrinsic::abs:
    // TODO: Preserve "int min is poison" arg in GMIR?
    return translateUnaryOp(TargetOpcode::G_ABS, CI, MIRBuilder);
  case Intrinsic::smul_fix:
    return translateFixedPointIntrinsic(TargetOpcode::G_SMULFIX, CI, MIRBuilder);
  case Intrinsic::umul_fix:
    return translateFixedPointIntrinsic(TargetOpcode::G_UMULFIX, CI, MIRBuilder);
  case Intrinsic::smul_fix_sat:
    return translateFixedPointIntrinsic(TargetOpcode::G_SMULFIXSAT, CI, MIRBuilder);
  case Intrinsic::umul_fix_sat:
    return translateFixedPointIntrinsic(TargetOpcode::G_UMULFIXSAT, CI, MIRBuilder);
  case Intrinsic::sdiv_fix:
    return translateFixedPointIntrinsic(TargetOpcode::G_SDIVFIX, CI, MIRBuilder);
  case Intrinsic::udiv_fix:
    return translateFixedPointIntrinsic(TargetOpcode::G_UDIVFIX, CI, MIRBuilder);
  case Intrinsic::sdiv_fix_sat:
    return translateFixedPointIntrinsic(TargetOpcode::G_SDIVFIXSAT, CI, MIRBuilder);
  case Intrinsic::udiv_fix_sat:
    return translateFixedPointIntrinsic(TargetOpcode::G_UDIVFIXSAT, CI, MIRBuilder);
  case Intrinsic::fmuladd: {
    const TargetMachine &TM = MF->getTarget();
    const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering();
    Register Dst = getOrCreateVReg(CI);
    Register Op0 = getOrCreateVReg(*CI.getArgOperand(0));
    Register Op1 = getOrCreateVReg(*CI.getArgOperand(1));
    Register Op2 = getOrCreateVReg(*CI.getArgOperand(2));
    if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
        TLI.isFMAFasterThanFMulAndFAdd(*MF,
                                       TLI.getValueType(*DL, CI.getType()))) {
      // TODO: Revisit this to see if we should move this part of the
      // lowering to the combiner.
      MIRBuilder.buildFMA(Dst, Op0, Op1, Op2,
                          MachineInstr::copyFlagsFromInstruction(CI));
    } else {
      LLT Ty = getLLTForType(*CI.getType(), *DL);
      auto FMul = MIRBuilder.buildFMul(
          Ty, Op0, Op1, MachineInstr::copyFlagsFromInstruction(CI));
      MIRBuilder.buildFAdd(Dst, FMul, Op2,
                           MachineInstr::copyFlagsFromInstruction(CI));
    }
    return true;
  }
  case Intrinsic::convert_from_fp16:
    // FIXME: This intrinsic should probably be removed from the IR.
    MIRBuilder.buildFPExt(getOrCreateVReg(CI),
                          getOrCreateVReg(*CI.getArgOperand(0)),
                          MachineInstr::copyFlagsFromInstruction(CI));
    return true;
  case Intrinsic::convert_to_fp16:
    // FIXME: This intrinsic should probably be removed from the IR.
    MIRBuilder.buildFPTrunc(getOrCreateVReg(CI),
                            getOrCreateVReg(*CI.getArgOperand(0)),
                            MachineInstr::copyFlagsFromInstruction(CI));
    return true;
  case Intrinsic::memcpy:
    return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMCPY);
  case Intrinsic::memmove:
    return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMMOVE);
  case Intrinsic::memset:
    return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMSET);
  case Intrinsic::eh_typeid_for: {
    GlobalValue *GV = ExtractTypeInfo(CI.getArgOperand(0));
    Register Reg = getOrCreateVReg(CI);
    unsigned TypeID = MF->getTypeIDFor(GV);
    MIRBuilder.buildConstant(Reg, TypeID);
    return true;
  }
  case Intrinsic::objectsize:
    llvm_unreachable("llvm.objectsize.* should have been lowered already");

  case Intrinsic::is_constant:
    llvm_unreachable("llvm.is.constant.* should have been lowered already");

  case Intrinsic::stackguard:
    getStackGuard(getOrCreateVReg(CI), MIRBuilder);
    return true;
  case Intrinsic::stackprotector: {
    LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL);
    Register GuardVal = MRI->createGenericVirtualRegister(PtrTy);
    getStackGuard(GuardVal, MIRBuilder);

    AllocaInst *Slot = cast<AllocaInst>(CI.getArgOperand(1));
    int FI = getOrCreateFrameIndex(*Slot);
    MF->getFrameInfo().setStackProtectorIndex(FI);

    MIRBuilder.buildStore(
        GuardVal, getOrCreateVReg(*Slot),
        *MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF, FI),
                                  MachineMemOperand::MOStore |
                                      MachineMemOperand::MOVolatile,
                                  PtrTy.getSizeInBits() / 8, Align(8)));
    return true;
  }
  case Intrinsic::stacksave: {
    // Save the stack pointer to the location provided by the intrinsic.
    Register Reg = getOrCreateVReg(CI);
    Register StackPtr = MF->getSubtarget()
                            .getTargetLowering()
                            ->getStackPointerRegisterToSaveRestore();

    // If the target doesn't specify a stack pointer, then fall back.
    if (!StackPtr)
      return false;

    MIRBuilder.buildCopy(Reg, StackPtr);
    return true;
  }
  case Intrinsic::stackrestore: {
    // Restore the stack pointer from the location provided by the intrinsic.
    Register Reg = getOrCreateVReg(*CI.getArgOperand(0));
    Register StackPtr = MF->getSubtarget()
                            .getTargetLowering()
                            ->getStackPointerRegisterToSaveRestore();

    // If the target doesn't specify a stack pointer, then fall back.
    if (!StackPtr)
      return false;

    MIRBuilder.buildCopy(StackPtr, Reg);
    return true;
  }
  case Intrinsic::cttz:
  case Intrinsic::ctlz: {
    ConstantInt *Cst = cast<ConstantInt>(CI.getArgOperand(1));
    bool isTrailing = ID == Intrinsic::cttz;
    unsigned Opcode = isTrailing
                          ? Cst->isZero() ? TargetOpcode::G_CTTZ
                                          : TargetOpcode::G_CTTZ_ZERO_UNDEF
                          : Cst->isZero() ? TargetOpcode::G_CTLZ
                                          : TargetOpcode::G_CTLZ_ZERO_UNDEF;
    MIRBuilder.buildInstr(Opcode, {getOrCreateVReg(CI)},
                          {getOrCreateVReg(*CI.getArgOperand(0))});
    return true;
  }
  case Intrinsic::invariant_start: {
    LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL);
    Register Undef = MRI->createGenericVirtualRegister(PtrTy);
    MIRBuilder.buildUndef(Undef);
    return true;
  }
  case Intrinsic::invariant_end:
    return true;
  case Intrinsic::expect:
  case Intrinsic::annotation:
  case Intrinsic::ptr_annotation:
  case Intrinsic::launder_invariant_group:
  case Intrinsic::strip_invariant_group: {
    // Drop the intrinsic, but forward the value.
    MIRBuilder.buildCopy(getOrCreateVReg(CI),
                         getOrCreateVReg(*CI.getArgOperand(0)));
    return true;
  }
  case Intrinsic::assume:
  case Intrinsic::var_annotation:
  case Intrinsic::sideeffect:
    // Discard annotate attributes, assumptions, and artificial side-effects.
    return true;
  case Intrinsic::read_volatile_register:
  case Intrinsic::read_register: {
    Value *Arg = CI.getArgOperand(0);
    MIRBuilder
        .buildInstr(TargetOpcode::G_READ_REGISTER, {getOrCreateVReg(CI)}, {})
        .addMetadata(cast<MDNode>(cast<MetadataAsValue>(Arg)->getMetadata()));
    return true;
  }
  case Intrinsic::write_register: {
    Value *Arg = CI.getArgOperand(0);
    MIRBuilder.buildInstr(TargetOpcode::G_WRITE_REGISTER)
      .addMetadata(cast<MDNode>(cast<MetadataAsValue>(Arg)->getMetadata()))
      .addUse(getOrCreateVReg(*CI.getArgOperand(1)));
    return true;
  }
  case Intrinsic::localescape: {
    MachineBasicBlock &EntryMBB = MF->front();
    StringRef EscapedName = GlobalValue::dropLLVMManglingEscape(MF->getName());

    // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
    // is the same on all targets.
    for (unsigned Idx = 0, E = CI.getNumArgOperands(); Idx < E; ++Idx) {
      Value *Arg = CI.getArgOperand(Idx)->stripPointerCasts();
      if (isa<ConstantPointerNull>(Arg))
        continue; // Skip null pointers. They represent a hole in index space.

      int FI = getOrCreateFrameIndex(*cast<AllocaInst>(Arg));
      MCSymbol *FrameAllocSym =
          MF->getMMI().getContext().getOrCreateFrameAllocSymbol(EscapedName,
                                                                Idx);

      // This should be inserted at the start of the entry block.
      auto LocalEscape =
          MIRBuilder.buildInstrNoInsert(TargetOpcode::LOCAL_ESCAPE)
              .addSym(FrameAllocSym)
              .addFrameIndex(FI);

      EntryMBB.insert(EntryMBB.begin(), LocalEscape);
    }

    return true;
  }
#define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)  \
  case Intrinsic::INTRINSIC:
#include "llvm/IR/ConstrainedOps.def"
    return translateConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(CI),
                                           MIRBuilder);

  }
  return false;
}

bool IRTranslator::translateInlineAsm(const CallBase &CB,
                                      MachineIRBuilder &MIRBuilder) {

  const InlineAsmLowering *ALI = MF->getSubtarget().getInlineAsmLowering();

  if (!ALI) {
    LLVM_DEBUG(
        dbgs() << "Inline asm lowering is not supported for this target yet\n");
    return false;
  }

  return ALI->lowerInlineAsm(
      MIRBuilder, CB, [&](const Value &Val) { return getOrCreateVRegs(Val); });
}

bool IRTranslator::translateCallBase(const CallBase &CB,
                                     MachineIRBuilder &MIRBuilder) {
  ArrayRef<Register> Res = getOrCreateVRegs(CB);

  SmallVector<ArrayRef<Register>, 8> Args;
  Register SwiftInVReg = 0;
  Register SwiftErrorVReg = 0;
  for (auto &Arg : CB.args()) {
    if (CLI->supportSwiftError() && isSwiftError(Arg)) {
      assert(SwiftInVReg == 0 && "Expected only one swift error argument");
      LLT Ty = getLLTForType(*Arg->getType(), *DL);
      SwiftInVReg = MRI->createGenericVirtualRegister(Ty);
      MIRBuilder.buildCopy(SwiftInVReg, SwiftError.getOrCreateVRegUseAt(
                                            &CB, &MIRBuilder.getMBB(), Arg));
      Args.emplace_back(makeArrayRef(SwiftInVReg));
      SwiftErrorVReg =
          SwiftError.getOrCreateVRegDefAt(&CB, &MIRBuilder.getMBB(), Arg);
      continue;
    }
    Args.push_back(getOrCreateVRegs(*Arg));
  }

  // We don't set HasCalls on MFI here yet because call lowering may decide to
  // optimize into tail calls. Instead, we defer that to selection where a final
  // scan is done to check if any instructions are calls.
  bool Success =
      CLI->lowerCall(MIRBuilder, CB, Res, Args, SwiftErrorVReg,
                     [&]() { return getOrCreateVReg(*CB.getCalledOperand()); });

  // Check if we just inserted a tail call.
  if (Success) {
    assert(!HasTailCall && "Can't tail call return twice from block?");
    const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
    HasTailCall = TII->isTailCall(*std::prev(MIRBuilder.getInsertPt()));
  }

  return Success;
}

bool IRTranslator::translateCall(const User &U, MachineIRBuilder &MIRBuilder) {
  const CallInst &CI = cast<CallInst>(U);
  auto TII = MF->getTarget().getIntrinsicInfo();
  const Function *F = CI.getCalledFunction();

  // FIXME: support Windows dllimport function calls.
  if (F && (F->hasDLLImportStorageClass() ||
            (MF->getTarget().getTargetTriple().isOSWindows() &&
             F->hasExternalWeakLinkage())))
    return false;

  // FIXME: support control flow guard targets.
  if (CI.countOperandBundlesOfType(LLVMContext::OB_cfguardtarget))
    return false;

  if (CI.isInlineAsm())
    return translateInlineAsm(CI, MIRBuilder);

  Intrinsic::ID ID = Intrinsic::not_intrinsic;
  if (F && F->isIntrinsic()) {
    ID = F->getIntrinsicID();
    if (TII && ID == Intrinsic::not_intrinsic)
      ID = static_cast<Intrinsic::ID>(TII->getIntrinsicID(F));
  }

  if (!F || !F->isIntrinsic() || ID == Intrinsic::not_intrinsic)
    return translateCallBase(CI, MIRBuilder);

  assert(ID != Intrinsic::not_intrinsic && "unknown intrinsic");

  if (translateKnownIntrinsic(CI, ID, MIRBuilder))
    return true;

  ArrayRef<Register> ResultRegs;
  if (!CI.getType()->isVoidTy())
    ResultRegs = getOrCreateVRegs(CI);

  // Ignore the callsite attributes. Backend code is most likely not expecting
  // an intrinsic to sometimes have side effects and sometimes not.
  MachineInstrBuilder MIB =
      MIRBuilder.buildIntrinsic(ID, ResultRegs, !F->doesNotAccessMemory());
  if (isa<FPMathOperator>(CI))
    MIB->copyIRFlags(CI);

  for (auto &Arg : enumerate(CI.arg_operands())) {
    // If this is required to be an immediate, don't materialize it in a
    // register.
    if (CI.paramHasAttr(Arg.index(), Attribute::ImmArg)) {
      if (ConstantInt *CI = dyn_cast<ConstantInt>(Arg.value())) {
        // imm arguments are more convenient than cimm (and realistically
        // probably sufficient), so use them.
        assert(CI->getBitWidth() <= 64 &&
               "large intrinsic immediates not handled");
        MIB.addImm(CI->getSExtValue());
      } else {
        MIB.addFPImm(cast<ConstantFP>(Arg.value()));
      }
    } else if (auto MD = dyn_cast<MetadataAsValue>(Arg.value())) {
      auto *MDN = dyn_cast<MDNode>(MD->getMetadata());
      if (!MDN) // This was probably an MDString.
        return false;
      MIB.addMetadata(MDN);
    } else {
      ArrayRef<Register> VRegs = getOrCreateVRegs(*Arg.value());
      if (VRegs.size() > 1)
        return false;
      MIB.addUse(VRegs[0]);
    }
  }

  // Add a MachineMemOperand if it is a target mem intrinsic.
  const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering();
  TargetLowering::IntrinsicInfo Info;
  // TODO: Add a GlobalISel version of getTgtMemIntrinsic.
  if (TLI.getTgtMemIntrinsic(Info, CI, *MF, ID)) {
    Align Alignment = Info.align.getValueOr(
        DL->getABITypeAlign(Info.memVT.getTypeForEVT(F->getContext())));

    uint64_t Size = Info.memVT.getStoreSize();
    MIB.addMemOperand(MF->getMachineMemOperand(MachinePointerInfo(Info.ptrVal),
                                               Info.flags, Size, Alignment));
  }

  return true;
}

bool IRTranslator::translateInvoke(const User &U,
                                   MachineIRBuilder &MIRBuilder) {
  const InvokeInst &I = cast<InvokeInst>(U);
  MCContext &Context = MF->getContext();

  const BasicBlock *ReturnBB = I.getSuccessor(0);
  const BasicBlock *EHPadBB = I.getSuccessor(1);

  const Function *Fn = I.getCalledFunction();
  if (I.isInlineAsm())
    return false;

  // FIXME: support invoking patchpoint and statepoint intrinsics.
  if (Fn && Fn->isIntrinsic())
    return false;

  // FIXME: support whatever these are.
  if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
    return false;

  // FIXME: support control flow guard targets.
  if (I.countOperandBundlesOfType(LLVMContext::OB_cfguardtarget))
    return false;

  // FIXME: support Windows exception handling.
  if (!isa<LandingPadInst>(EHPadBB->getFirstNonPHI()))
    return false;

  // Emit the actual call, bracketed by EH_LABELs so that the MF knows about
  // the region covered by the try.
  MCSymbol *BeginSymbol = Context.createTempSymbol();
  MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(BeginSymbol);

  if (!translateCallBase(I, MIRBuilder))
    return false;

  MCSymbol *EndSymbol = Context.createTempSymbol();
  MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(EndSymbol);

  // FIXME: track probabilities.
  MachineBasicBlock &EHPadMBB = getMBB(*EHPadBB),
                    &ReturnMBB = getMBB(*ReturnBB);
  MF->addInvoke(&EHPadMBB, BeginSymbol, EndSymbol);
  MIRBuilder.getMBB().addSuccessor(&ReturnMBB);
  MIRBuilder.getMBB().addSuccessor(&EHPadMBB);
  MIRBuilder.buildBr(ReturnMBB);

  return true;
}

bool IRTranslator::translateCallBr(const User &U,
                                   MachineIRBuilder &MIRBuilder) {
  // FIXME: Implement this.
  return false;
}

bool IRTranslator::translateLandingPad(const User &U,
                                       MachineIRBuilder &MIRBuilder) {
  const LandingPadInst &LP = cast<LandingPadInst>(U);

  MachineBasicBlock &MBB = MIRBuilder.getMBB();

  MBB.setIsEHPad();

  // If there aren't registers to copy the values into (e.g., during SjLj
  // exceptions), then don't bother.
  auto &TLI = *MF->getSubtarget().getTargetLowering();
  const Constant *PersonalityFn = MF->getFunction().getPersonalityFn();
  if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
      TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
    return true;

  // If landingpad's return type is token type, we don't create DAG nodes
  // for its exception pointer and selector value. The extraction of exception
  // pointer or selector value from token type landingpads is not currently
  // supported.
  if (LP.getType()->isTokenTy())
    return true;

  // Add a label to mark the beginning of the landing pad.  Deletion of the
  // landing pad can thus be detected via the MachineModuleInfo.
  MIRBuilder.buildInstr(TargetOpcode::EH_LABEL)
    .addSym(MF->addLandingPad(&MBB));

  // If the unwinder does not preserve all registers, ensure that the
  // function marks the clobbered registers as used.
  const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo();
  if (auto *RegMask = TRI.getCustomEHPadPreservedMask(*MF))
    MF->getRegInfo().addPhysRegsUsedFromRegMask(RegMask);

  LLT Ty = getLLTForType(*LP.getType(), *DL);
  Register Undef = MRI->createGenericVirtualRegister(Ty);
  MIRBuilder.buildUndef(Undef);

  SmallVector<LLT, 2> Tys;
  for (Type *Ty : cast<StructType>(LP.getType())->elements())
    Tys.push_back(getLLTForType(*Ty, *DL));
  assert(Tys.size() == 2 && "Only two-valued landingpads are supported");

  // Mark exception register as live in.
  Register ExceptionReg = TLI.getExceptionPointerRegister(PersonalityFn);
  if (!ExceptionReg)
    return false;

  MBB.addLiveIn(ExceptionReg);
  ArrayRef<Register> ResRegs = getOrCreateVRegs(LP);
  MIRBuilder.buildCopy(ResRegs[0], ExceptionReg);

  Register SelectorReg = TLI.getExceptionSelectorRegister(PersonalityFn);
  if (!SelectorReg)
    return false;

  MBB.addLiveIn(SelectorReg);
  Register PtrVReg = MRI->createGenericVirtualRegister(Tys[0]);
  MIRBuilder.buildCopy(PtrVReg, SelectorReg);
  MIRBuilder.buildCast(ResRegs[1], PtrVReg);

  return true;
}

bool IRTranslator::translateAlloca(const User &U,
                                   MachineIRBuilder &MIRBuilder) {
  auto &AI = cast<AllocaInst>(U);

  if (AI.isSwiftError())
    return true;

  if (AI.isStaticAlloca()) {
    Register Res = getOrCreateVReg(AI);
    int FI = getOrCreateFrameIndex(AI);
    MIRBuilder.buildFrameIndex(Res, FI);
    return true;
  }

  // FIXME: support stack probing for Windows.
  if (MF->getTarget().getTargetTriple().isOSWindows())
    return false;

  // Now we're in the harder dynamic case.
  Register NumElts = getOrCreateVReg(*AI.getArraySize());
  Type *IntPtrIRTy = DL->getIntPtrType(AI.getType());
  LLT IntPtrTy = getLLTForType(*IntPtrIRTy, *DL);
  if (MRI->getType(NumElts) != IntPtrTy) {
    Register ExtElts = MRI->createGenericVirtualRegister(IntPtrTy);
    MIRBuilder.buildZExtOrTrunc(ExtElts, NumElts);
    NumElts = ExtElts;
  }

  Type *Ty = AI.getAllocatedType();

  Register AllocSize = MRI->createGenericVirtualRegister(IntPtrTy);
  Register TySize =
      getOrCreateVReg(*ConstantInt::get(IntPtrIRTy, DL->getTypeAllocSize(Ty)));
  MIRBuilder.buildMul(AllocSize, NumElts, TySize);

  // Round the size of the allocation up to the stack alignment size
  // by add SA-1 to the size. This doesn't overflow because we're computing
  // an address inside an alloca.
  Align StackAlign = MF->getSubtarget().getFrameLowering()->getStackAlign();
  auto SAMinusOne = MIRBuilder.buildConstant(IntPtrTy, StackAlign.value() - 1);
  auto AllocAdd = MIRBuilder.buildAdd(IntPtrTy, AllocSize, SAMinusOne,
                                      MachineInstr::NoUWrap);
  auto AlignCst =
      MIRBuilder.buildConstant(IntPtrTy, ~(uint64_t)(StackAlign.value() - 1));
  auto AlignedAlloc = MIRBuilder.buildAnd(IntPtrTy, AllocAdd, AlignCst);

  Align Alignment = std::max(AI.getAlign(), DL->getPrefTypeAlign(Ty));
  if (Alignment <= StackAlign)
    Alignment = Align(1);
  MIRBuilder.buildDynStackAlloc(getOrCreateVReg(AI), AlignedAlloc, Alignment);

  MF->getFrameInfo().CreateVariableSizedObject(Alignment, &AI);
  assert(MF->getFrameInfo().hasVarSizedObjects());
  return true;
}

bool IRTranslator::translateVAArg(const User &U, MachineIRBuilder &MIRBuilder) {
  // FIXME: We may need more info about the type. Because of how LLT works,
  // we're completely discarding the i64/double distinction here (amongst
  // others). Fortunately the ABIs I know of where that matters don't use va_arg
  // anyway but that's not guaranteed.
  MIRBuilder.buildInstr(TargetOpcode::G_VAARG, {getOrCreateVReg(U)},
                        {getOrCreateVReg(*U.getOperand(0)),
                         DL->getABITypeAlign(U.getType()).value()});
  return true;
}

bool IRTranslator::translateInsertElement(const User &U,
                                          MachineIRBuilder &MIRBuilder) {
  // If it is a <1 x Ty> vector, use the scalar as it is
  // not a legal vector type in LLT.
  if (cast<FixedVectorType>(U.getType())->getNumElements() == 1)
    return translateCopy(U, *U.getOperand(1), MIRBuilder);

  Register Res = getOrCreateVReg(U);
  Register Val = getOrCreateVReg(*U.getOperand(0));
  Register Elt = getOrCreateVReg(*U.getOperand(1));
  Register Idx = getOrCreateVReg(*U.getOperand(2));
  MIRBuilder.buildInsertVectorElement(Res, Val, Elt, Idx);
  return true;
}

bool IRTranslator::translateExtractElement(const User &U,
                                           MachineIRBuilder &MIRBuilder) {
  // If it is a <1 x Ty> vector, use the scalar as it is
  // not a legal vector type in LLT.
  if (cast<FixedVectorType>(U.getOperand(0)->getType())->getNumElements() == 1)
    return translateCopy(U, *U.getOperand(0), MIRBuilder);

  Register Res = getOrCreateVReg(U);
  Register Val = getOrCreateVReg(*U.getOperand(0));
  const auto &TLI = *MF->getSubtarget().getTargetLowering();
  unsigned PreferredVecIdxWidth = TLI.getVectorIdxTy(*DL).getSizeInBits();
  Register Idx;
  if (auto *CI = dyn_cast<ConstantInt>(U.getOperand(1))) {
    if (CI->getBitWidth() != PreferredVecIdxWidth) {
      APInt NewIdx = CI->getValue().sextOrTrunc(PreferredVecIdxWidth);
      auto *NewIdxCI = ConstantInt::get(CI->getContext(), NewIdx);
      Idx = getOrCreateVReg(*NewIdxCI);
    }
  }
  if (!Idx)
    Idx = getOrCreateVReg(*U.getOperand(1));
  if (MRI->getType(Idx).getSizeInBits() != PreferredVecIdxWidth) {
    const LLT VecIdxTy = LLT::scalar(PreferredVecIdxWidth);
    Idx = MIRBuilder.buildSExtOrTrunc(VecIdxTy, Idx).getReg(0);
  }
  MIRBuilder.buildExtractVectorElement(Res, Val, Idx);
  return true;
}

bool IRTranslator::translateShuffleVector(const User &U,
                                          MachineIRBuilder &MIRBuilder) {
  ArrayRef<int> Mask;
  if (auto *SVI = dyn_cast<ShuffleVectorInst>(&U))
    Mask = SVI->getShuffleMask();
  else
    Mask = cast<ConstantExpr>(U).getShuffleMask();
  ArrayRef<int> MaskAlloc = MF->allocateShuffleMask(Mask);
  MIRBuilder
      .buildInstr(TargetOpcode::G_SHUFFLE_VECTOR, {getOrCreateVReg(U)},
                  {getOrCreateVReg(*U.getOperand(0)),
                   getOrCreateVReg(*U.getOperand(1))})
      .addShuffleMask(MaskAlloc);
  return true;
}

bool IRTranslator::translatePHI(const User &U, MachineIRBuilder &MIRBuilder) {
  const PHINode &PI = cast<PHINode>(U);

  SmallVector<MachineInstr *, 4> Insts;
  for (auto Reg : getOrCreateVRegs(PI)) {
    auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_PHI, {Reg}, {});
    Insts.push_back(MIB.getInstr());
  }

  PendingPHIs.emplace_back(&PI, std::move(Insts));
  return true;
}

bool IRTranslator::translateAtomicCmpXchg(const User &U,
                                          MachineIRBuilder &MIRBuilder) {
  const AtomicCmpXchgInst &I = cast<AtomicCmpXchgInst>(U);

  auto &TLI = *MF->getSubtarget().getTargetLowering();
  auto Flags = TLI.getAtomicMemOperandFlags(I, *DL);

  Type *ResType = I.getType();
  Type *ValType = ResType->Type::getStructElementType(0);

  auto Res = getOrCreateVRegs(I);
  Register OldValRes = Res[0];
  Register SuccessRes = Res[1];
  Register Addr = getOrCreateVReg(*I.getPointerOperand());
  Register Cmp = getOrCreateVReg(*I.getCompareOperand());
  Register NewVal = getOrCreateVReg(*I.getNewValOperand());

  AAMDNodes AAMetadata;
  I.getAAMetadata(AAMetadata);

  MIRBuilder.buildAtomicCmpXchgWithSuccess(
      OldValRes, SuccessRes, Addr, Cmp, NewVal,
      *MF->getMachineMemOperand(
          MachinePointerInfo(I.getPointerOperand()), Flags,
          DL->getTypeStoreSize(ValType), getMemOpAlign(I), AAMetadata, nullptr,
          I.getSyncScopeID(), I.getSuccessOrdering(), I.getFailureOrdering()));
  return true;
}

bool IRTranslator::translateAtomicRMW(const User &U,
                                      MachineIRBuilder &MIRBuilder) {
  const AtomicRMWInst &I = cast<AtomicRMWInst>(U);
  auto &TLI = *MF->getSubtarget().getTargetLowering();
  auto Flags = TLI.getAtomicMemOperandFlags(I, *DL);

  Type *ResType = I.getType();

  Register Res = getOrCreateVReg(I);
  Register Addr = getOrCreateVReg(*I.getPointerOperand());
  Register Val = getOrCreateVReg(*I.getValOperand());

  unsigned Opcode = 0;
  switch (I.getOperation()) {
  default:
    return false;
  case AtomicRMWInst::Xchg:
    Opcode = TargetOpcode::G_ATOMICRMW_XCHG;
    break;
  case AtomicRMWInst::Add:
    Opcode = TargetOpcode::G_ATOMICRMW_ADD;
    break;
  case AtomicRMWInst::Sub:
    Opcode = TargetOpcode::G_ATOMICRMW_SUB;
    break;
  case AtomicRMWInst::And:
    Opcode = TargetOpcode::G_ATOMICRMW_AND;
    break;
  case AtomicRMWInst::Nand:
    Opcode = TargetOpcode::G_ATOMICRMW_NAND;
    break;
  case AtomicRMWInst::Or:
    Opcode = TargetOpcode::G_ATOMICRMW_OR;
    break;
  case AtomicRMWInst::Xor:
    Opcode = TargetOpcode::G_ATOMICRMW_XOR;
    break;
  case AtomicRMWInst::Max:
    Opcode = TargetOpcode::G_ATOMICRMW_MAX;
    break;
  case AtomicRMWInst::Min:
    Opcode = TargetOpcode::G_ATOMICRMW_MIN;
    break;
  case AtomicRMWInst::UMax:
    Opcode = TargetOpcode::G_ATOMICRMW_UMAX;
    break;
  case AtomicRMWInst::UMin:
    Opcode = TargetOpcode::G_ATOMICRMW_UMIN;
    break;
  case AtomicRMWInst::FAdd:
    Opcode = TargetOpcode::G_ATOMICRMW_FADD;
    break;
  case AtomicRMWInst::FSub:
    Opcode = TargetOpcode::G_ATOMICRMW_FSUB;
    break;
  }

  AAMDNodes AAMetadata;
  I.getAAMetadata(AAMetadata);

  MIRBuilder.buildAtomicRMW(
      Opcode, Res, Addr, Val,
      *MF->getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
                                Flags, DL->getTypeStoreSize(ResType),
                                getMemOpAlign(I), AAMetadata, nullptr,
                                I.getSyncScopeID(), I.getOrdering()));
  return true;
}

bool IRTranslator::translateFence(const User &U,
                                  MachineIRBuilder &MIRBuilder) {
  const FenceInst &Fence = cast<FenceInst>(U);
  MIRBuilder.buildFence(static_cast<unsigned>(Fence.getOrdering()),
                        Fence.getSyncScopeID());
  return true;
}

bool IRTranslator::translateFreeze(const User &U,
                                   MachineIRBuilder &MIRBuilder) {
  const ArrayRef<Register> DstRegs = getOrCreateVRegs(U);
  const ArrayRef<Register> SrcRegs = getOrCreateVRegs(*U.getOperand(0));

  assert(DstRegs.size() == SrcRegs.size() &&
         "Freeze with different source and destination type?");

  for (unsigned I = 0; I < DstRegs.size(); ++I) {
    MIRBuilder.buildFreeze(DstRegs[I], SrcRegs[I]);
  }

  return true;
}

void IRTranslator::finishPendingPhis() {
#ifndef NDEBUG
  DILocationVerifier Verifier;
  GISelObserverWrapper WrapperObserver(&Verifier);
  RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver);
#endif // ifndef NDEBUG
  for (auto &Phi : PendingPHIs) {
    const PHINode *PI = Phi.first;
    ArrayRef<MachineInstr *> ComponentPHIs = Phi.second;
    MachineBasicBlock *PhiMBB = ComponentPHIs[0]->getParent();
    EntryBuilder->setDebugLoc(PI->getDebugLoc());
#ifndef NDEBUG
    Verifier.setCurrentInst(PI);
#endif // ifndef NDEBUG

    SmallSet<const MachineBasicBlock *, 16> SeenPreds;
    for (unsigned i = 0; i < PI->getNumIncomingValues(); ++i) {
      auto IRPred = PI->getIncomingBlock(i);
      ArrayRef<Register> ValRegs = getOrCreateVRegs(*PI->getIncomingValue(i));
      for (auto Pred : getMachinePredBBs({IRPred, PI->getParent()})) {
        if (SeenPreds.count(Pred) || !PhiMBB->isPredecessor(Pred))
          continue;
        SeenPreds.insert(Pred);
        for (unsigned j = 0; j < ValRegs.size(); ++j) {
          MachineInstrBuilder MIB(*MF, ComponentPHIs[j]);
          MIB.addUse(ValRegs[j]);
          MIB.addMBB(Pred);
        }
      }
    }
  }
}

bool IRTranslator::valueIsSplit(const Value &V,
                                SmallVectorImpl<uint64_t> *Offsets) {
  SmallVector<LLT, 4> SplitTys;
  if (Offsets && !Offsets->empty())
    Offsets->clear();
  computeValueLLTs(*DL, *V.getType(), SplitTys, Offsets);
  return SplitTys.size() > 1;
}

bool IRTranslator::translate(const Instruction &Inst) {
  CurBuilder->setDebugLoc(Inst.getDebugLoc());
  // We only emit constants into the entry block from here. To prevent jumpy
  // debug behaviour set the line to 0.
  if (const DebugLoc &DL = Inst.getDebugLoc())
    EntryBuilder->setDebugLoc(
        DebugLoc::get(0, 0, DL.getScope(), DL.getInlinedAt()));
  else
    EntryBuilder->setDebugLoc(DebugLoc());

  auto &TLI = *MF->getSubtarget().getTargetLowering();
  if (TLI.fallBackToDAGISel(Inst))
    return false;

  switch (Inst.getOpcode()) {
#define HANDLE_INST(NUM, OPCODE, CLASS)                                        \
  case Instruction::OPCODE:                                                    \
    return translate##OPCODE(Inst, *CurBuilder.get());
#include "llvm/IR/Instruction.def"
  default:
    return false;
  }
}

bool IRTranslator::translate(const Constant &C, Register Reg) {
  if (auto CI = dyn_cast<ConstantInt>(&C))
    EntryBuilder->buildConstant(Reg, *CI);
  else if (auto CF = dyn_cast<ConstantFP>(&C))
    EntryBuilder->buildFConstant(Reg, *CF);
  else if (isa<UndefValue>(C))
    EntryBuilder->buildUndef(Reg);
  else if (isa<ConstantPointerNull>(C))
    EntryBuilder->buildConstant(Reg, 0);
  else if (auto GV = dyn_cast<GlobalValue>(&C))
    EntryBuilder->buildGlobalValue(Reg, GV);
  else if (auto CAZ = dyn_cast<ConstantAggregateZero>(&C)) {
    if (!CAZ->getType()->isVectorTy())
      return false;
    // Return the scalar if it is a <1 x Ty> vector.
    if (CAZ->getNumElements() == 1)
      return translateCopy(C, *CAZ->getElementValue(0u), *EntryBuilder.get());
    SmallVector<Register, 4> Ops;
    for (unsigned i = 0; i < CAZ->getNumElements(); ++i) {
      Constant &Elt = *CAZ->getElementValue(i);
      Ops.push_back(getOrCreateVReg(Elt));
    }
    EntryBuilder->buildBuildVector(Reg, Ops);
  } else if (auto CV = dyn_cast<ConstantDataVector>(&C)) {
    // Return the scalar if it is a <1 x Ty> vector.
    if (CV->getNumElements() == 1)
      return translateCopy(C, *CV->getElementAsConstant(0),
                           *EntryBuilder.get());
    SmallVector<Register, 4> Ops;
    for (unsigned i = 0; i < CV->getNumElements(); ++i) {
      Constant &Elt = *CV->getElementAsConstant(i);
      Ops.push_back(getOrCreateVReg(Elt));
    }
    EntryBuilder->buildBuildVector(Reg, Ops);
  } else if (auto CE = dyn_cast<ConstantExpr>(&C)) {
    switch(CE->getOpcode()) {
#define HANDLE_INST(NUM, OPCODE, CLASS)                                        \
  case Instruction::OPCODE:                                                    \
    return translate##OPCODE(*CE, *EntryBuilder.get());
#include "llvm/IR/Instruction.def"
    default:
      return false;
    }
  } else if (auto CV = dyn_cast<ConstantVector>(&C)) {
    if (CV->getNumOperands() == 1)
      return translateCopy(C, *CV->getOperand(0), *EntryBuilder.get());
    SmallVector<Register, 4> Ops;
    for (unsigned i = 0; i < CV->getNumOperands(); ++i) {
      Ops.push_back(getOrCreateVReg(*CV->getOperand(i)));
    }
    EntryBuilder->buildBuildVector(Reg, Ops);
  } else if (auto *BA = dyn_cast<BlockAddress>(&C)) {
    EntryBuilder->buildBlockAddress(Reg, BA);
  } else
    return false;

  return true;
}

void IRTranslator::finalizeBasicBlock() {
  for (auto &BTB : SL->BitTestCases) {
    // Emit header first, if it wasn't already emitted.
    if (!BTB.Emitted)
      emitBitTestHeader(BTB, BTB.Parent);

    BranchProbability UnhandledProb = BTB.Prob;
    for (unsigned j = 0, ej = BTB.Cases.size(); j != ej; ++j) {
      UnhandledProb -= BTB.Cases[j].ExtraProb;
      // Set the current basic block to the mbb we wish to insert the code into
      MachineBasicBlock *MBB = BTB.Cases[j].ThisBB;
      // If all cases cover a contiguous range, it is not necessary to jump to
      // the default block after the last bit test fails. This is because the
      // range check during bit test header creation has guaranteed that every
      // case here doesn't go outside the range. In this case, there is no need
      // to perform the last bit test, as it will always be true. Instead, make
      // the second-to-last bit-test fall through to the target of the last bit
      // test, and delete the last bit test.

      MachineBasicBlock *NextMBB;
      if (BTB.ContiguousRange && j + 2 == ej) {
        // Second-to-last bit-test with contiguous range: fall through to the
        // target of the final bit test.
        NextMBB = BTB.Cases[j + 1].TargetBB;
      } else if (j + 1 == ej) {
        // For the last bit test, fall through to Default.
        NextMBB = BTB.Default;
      } else {
        // Otherwise, fall through to the next bit test.
        NextMBB = BTB.Cases[j + 1].ThisBB;
      }

      emitBitTestCase(BTB, NextMBB, UnhandledProb, BTB.Reg, BTB.Cases[j], MBB);

      // FIXME delete this block below?
      if (BTB.ContiguousRange && j + 2 == ej) {
        // Since we're not going to use the final bit test, remove it.
        BTB.Cases.pop_back();
        break;
      }
    }
    // This is "default" BB. We have two jumps to it. From "header" BB and from
    // last "case" BB, unless the latter was skipped.
    CFGEdge HeaderToDefaultEdge = {BTB.Parent->getBasicBlock(),
                                   BTB.Default->getBasicBlock()};
    addMachineCFGPred(HeaderToDefaultEdge, BTB.Parent);
    if (!BTB.ContiguousRange) {
      addMachineCFGPred(HeaderToDefaultEdge, BTB.Cases.back().ThisBB);
    }
  }
  SL->BitTestCases.clear();

  for (auto &JTCase : SL->JTCases) {
    // Emit header first, if it wasn't already emitted.
    if (!JTCase.first.Emitted)
      emitJumpTableHeader(JTCase.second, JTCase.first, JTCase.first.HeaderBB);

    emitJumpTable(JTCase.second, JTCase.second.MBB);
  }
  SL->JTCases.clear();

  for (auto &SwCase : SL->SwitchCases)
    emitSwitchCase(SwCase, &CurBuilder->getMBB(), *CurBuilder);
  SL->SwitchCases.clear();
}

void IRTranslator::finalizeFunction() {
  // Release the memory used by the different maps we
  // needed during the translation.
  PendingPHIs.clear();
  VMap.reset();
  FrameIndices.clear();
  MachinePreds.clear();
  // MachineIRBuilder::DebugLoc can outlive the DILocation it holds. Clear it
  // to avoid accessing free’d memory (in runOnMachineFunction) and to avoid
  // destroying it twice (in ~IRTranslator() and ~LLVMContext())
  EntryBuilder.reset();
  CurBuilder.reset();
  FuncInfo.clear();
}

/// Returns true if a BasicBlock \p BB within a variadic function contains a
/// variadic musttail call.
static bool checkForMustTailInVarArgFn(bool IsVarArg, const BasicBlock &BB) {
  if (!IsVarArg)
    return false;

  // Walk the block backwards, because tail calls usually only appear at the end
  // of a block.
  return std::any_of(BB.rbegin(), BB.rend(), [](const Instruction &I) {
    const auto *CI = dyn_cast<CallInst>(&I);
    return CI && CI->isMustTailCall();
  });
}

bool IRTranslator::runOnMachineFunction(MachineFunction &CurMF) {
  MF = &CurMF;
  const Function &F = MF->getFunction();
  if (F.empty())
    return false;
  GISelCSEAnalysisWrapper &Wrapper =
      getAnalysis<GISelCSEAnalysisWrapperPass>().getCSEWrapper();
  // Set the CSEConfig and run the analysis.
  GISelCSEInfo *CSEInfo = nullptr;
  TPC = &getAnalysis<TargetPassConfig>();
  bool EnableCSE = EnableCSEInIRTranslator.getNumOccurrences()
                       ? EnableCSEInIRTranslator
                       : TPC->isGISelCSEEnabled();

  if (EnableCSE) {
    EntryBuilder = std::make_unique<CSEMIRBuilder>(CurMF);
    CSEInfo = &Wrapper.get(TPC->getCSEConfig());
    EntryBuilder->setCSEInfo(CSEInfo);
    CurBuilder = std::make_unique<CSEMIRBuilder>(CurMF);
    CurBuilder->setCSEInfo(CSEInfo);
  } else {
    EntryBuilder = std::make_unique<MachineIRBuilder>();
    CurBuilder = std::make_unique<MachineIRBuilder>();
  }
  CLI = MF->getSubtarget().getCallLowering();
  CurBuilder->setMF(*MF);
  EntryBuilder->setMF(*MF);
  MRI = &MF->getRegInfo();
  DL = &F.getParent()->getDataLayout();
  ORE = std::make_unique<OptimizationRemarkEmitter>(&F);
  const TargetMachine &TM = MF->getTarget();
  TM.resetTargetOptions(F);
  EnableOpts = OptLevel != CodeGenOpt::None && !skipFunction(F);
  FuncInfo.MF = MF;
  if (EnableOpts)
    FuncInfo.BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
  else
    FuncInfo.BPI = nullptr;

  const auto &TLI = *MF->getSubtarget().getTargetLowering();

  SL = std::make_unique<GISelSwitchLowering>(this, FuncInfo);
  SL->init(TLI, TM, *DL);



  assert(PendingPHIs.empty() && "stale PHIs");

  if (!DL->isLittleEndian()) {
    // Currently we don't properly handle big endian code.
    OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
                               F.getSubprogram(), &F.getEntryBlock());
    R << "unable to translate in big endian mode";
    reportTranslationError(*MF, *TPC, *ORE, R);
  }

  // Release the per-function state when we return, whether we succeeded or not.
  auto FinalizeOnReturn = make_scope_exit([this]() { finalizeFunction(); });

  // Setup a separate basic-block for the arguments and constants
  MachineBasicBlock *EntryBB = MF->CreateMachineBasicBlock();
  MF->push_back(EntryBB);
  EntryBuilder->setMBB(*EntryBB);

  DebugLoc DbgLoc = F.getEntryBlock().getFirstNonPHI()->getDebugLoc();
  SwiftError.setFunction(CurMF);
  SwiftError.createEntriesInEntryBlock(DbgLoc);

  bool IsVarArg = F.isVarArg();
  bool HasMustTailInVarArgFn = false;

  // Create all blocks, in IR order, to preserve the layout.
  for (const BasicBlock &BB: F) {
    auto *&MBB = BBToMBB[&BB];

    MBB = MF->CreateMachineBasicBlock(&BB);
    MF->push_back(MBB);

    if (BB.hasAddressTaken())
      MBB->setHasAddressTaken();

    if (!HasMustTailInVarArgFn)
      HasMustTailInVarArgFn = checkForMustTailInVarArgFn(IsVarArg, BB);
  }

  MF->getFrameInfo().setHasMustTailInVarArgFunc(HasMustTailInVarArgFn);

  // Make our arguments/constants entry block fallthrough to the IR entry block.
  EntryBB->addSuccessor(&getMBB(F.front()));

  if (CLI->fallBackToDAGISel(F)) {
    OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
                               F.getSubprogram(), &F.getEntryBlock());
    R << "unable to lower function: " << ore::NV("Prototype", F.getType());
    reportTranslationError(*MF, *TPC, *ORE, R);
    return false;
  }

  // Lower the actual args into this basic block.
  SmallVector<ArrayRef<Register>, 8> VRegArgs;
  for (const Argument &Arg: F.args()) {
    if (DL->getTypeStoreSize(Arg.getType()).isZero())
      continue; // Don't handle zero sized types.
    ArrayRef<Register> VRegs = getOrCreateVRegs(Arg);
    VRegArgs.push_back(VRegs);

    if (Arg.hasSwiftErrorAttr()) {
      assert(VRegs.size() == 1 && "Too many vregs for Swift error");
      SwiftError.setCurrentVReg(EntryBB, SwiftError.getFunctionArg(), VRegs[0]);
    }
  }

  if (!CLI->lowerFormalArguments(*EntryBuilder.get(), F, VRegArgs)) {
    OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
                               F.getSubprogram(), &F.getEntryBlock());
    R << "unable to lower arguments: " << ore::NV("Prototype", F.getType());
    reportTranslationError(*MF, *TPC, *ORE, R);
    return false;
  }

  // Need to visit defs before uses when translating instructions.
  GISelObserverWrapper WrapperObserver;
  if (EnableCSE && CSEInfo)
    WrapperObserver.addObserver(CSEInfo);
  {
    ReversePostOrderTraversal<const Function *> RPOT(&F);
#ifndef NDEBUG
    DILocationVerifier Verifier;
    WrapperObserver.addObserver(&Verifier);
#endif // ifndef NDEBUG
    RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver);
    RAIIMFObserverInstaller ObsInstall(*MF, WrapperObserver);
    for (const BasicBlock *BB : RPOT) {
      MachineBasicBlock &MBB = getMBB(*BB);
      // Set the insertion point of all the following translations to
      // the end of this basic block.
      CurBuilder->setMBB(MBB);
      HasTailCall = false;
      for (const Instruction &Inst : *BB) {
        // If we translated a tail call in the last step, then we know
        // everything after the call is either a return, or something that is
        // handled by the call itself. (E.g. a lifetime marker or assume
        // intrinsic.) In this case, we should stop translating the block and
        // move on.
        if (HasTailCall)
          break;
#ifndef NDEBUG
        Verifier.setCurrentInst(&Inst);
#endif // ifndef NDEBUG
        if (translate(Inst))
          continue;

        OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
                                   Inst.getDebugLoc(), BB);
        R << "unable to translate instruction: " << ore::NV("Opcode", &Inst);

        if (ORE->allowExtraAnalysis("gisel-irtranslator")) {
          std::string InstStrStorage;
          raw_string_ostream InstStr(InstStrStorage);
          InstStr << Inst;

          R << ": '" << InstStr.str() << "'";
        }

        reportTranslationError(*MF, *TPC, *ORE, R);
        return false;
      }

      finalizeBasicBlock();
    }
#ifndef NDEBUG
    WrapperObserver.removeObserver(&Verifier);
#endif
  }

  finishPendingPhis();

  SwiftError.propagateVRegs();

  // Merge the argument lowering and constants block with its single
  // successor, the LLVM-IR entry block.  We want the basic block to
  // be maximal.
  assert(EntryBB->succ_size() == 1 &&
         "Custom BB used for lowering should have only one successor");
  // Get the successor of the current entry block.
  MachineBasicBlock &NewEntryBB = **EntryBB->succ_begin();
  assert(NewEntryBB.pred_size() == 1 &&
         "LLVM-IR entry block has a predecessor!?");
  // Move all the instruction from the current entry block to the
  // new entry block.
  NewEntryBB.splice(NewEntryBB.begin(), EntryBB, EntryBB->begin(),
                    EntryBB->end());

  // Update the live-in information for the new entry block.
  for (const MachineBasicBlock::RegisterMaskPair &LiveIn : EntryBB->liveins())
    NewEntryBB.addLiveIn(LiveIn);
  NewEntryBB.sortUniqueLiveIns();

  // Get rid of the now empty basic block.
  EntryBB->removeSuccessor(&NewEntryBB);
  MF->remove(EntryBB);
  MF->DeleteMachineBasicBlock(EntryBB);

  assert(&MF->front() == &NewEntryBB &&
         "New entry wasn't next in the list of basic block!");

  // Initialize stack protector information.
  StackProtector &SP = getAnalysis<StackProtector>();
  SP.copyToMachineFrameInfo(MF->getFrameInfo());

  return false;
}