ExecutionDomainFix.cpp 14.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
//===- ExecutionDomainFix.cpp - Fix execution domain issues ----*- C++ -*--===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "llvm/CodeGen/ExecutionDomainFix.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/Support/Debug.h"

using namespace llvm;

#define DEBUG_TYPE "execution-deps-fix"

iterator_range<SmallVectorImpl<int>::const_iterator>
ExecutionDomainFix::regIndices(unsigned Reg) const {
  assert(Reg < AliasMap.size() && "Invalid register");
  const auto &Entry = AliasMap[Reg];
  return make_range(Entry.begin(), Entry.end());
}

DomainValue *ExecutionDomainFix::alloc(int domain) {
  DomainValue *dv = Avail.empty() ? new (Allocator.Allocate()) DomainValue
                                  : Avail.pop_back_val();
  if (domain >= 0)
    dv->addDomain(domain);
  assert(dv->Refs == 0 && "Reference count wasn't cleared");
  assert(!dv->Next && "Chained DomainValue shouldn't have been recycled");
  return dv;
}

void ExecutionDomainFix::release(DomainValue *DV) {
  while (DV) {
    assert(DV->Refs && "Bad DomainValue");
    if (--DV->Refs)
      return;

    // There are no more DV references. Collapse any contained instructions.
    if (DV->AvailableDomains && !DV->isCollapsed())
      collapse(DV, DV->getFirstDomain());

    DomainValue *Next = DV->Next;
    DV->clear();
    Avail.push_back(DV);
    // Also release the next DomainValue in the chain.
    DV = Next;
  }
}

DomainValue *ExecutionDomainFix::resolve(DomainValue *&DVRef) {
  DomainValue *DV = DVRef;
  if (!DV || !DV->Next)
    return DV;

  // DV has a chain. Find the end.
  do
    DV = DV->Next;
  while (DV->Next);

  // Update DVRef to point to DV.
  retain(DV);
  release(DVRef);
  DVRef = DV;
  return DV;
}

void ExecutionDomainFix::setLiveReg(int rx, DomainValue *dv) {
  assert(unsigned(rx) < NumRegs && "Invalid index");
  assert(!LiveRegs.empty() && "Must enter basic block first.");

  if (LiveRegs[rx] == dv)
    return;
  if (LiveRegs[rx])
    release(LiveRegs[rx]);
  LiveRegs[rx] = retain(dv);
}

void ExecutionDomainFix::kill(int rx) {
  assert(unsigned(rx) < NumRegs && "Invalid index");
  assert(!LiveRegs.empty() && "Must enter basic block first.");
  if (!LiveRegs[rx])
    return;

  release(LiveRegs[rx]);
  LiveRegs[rx] = nullptr;
}

void ExecutionDomainFix::force(int rx, unsigned domain) {
  assert(unsigned(rx) < NumRegs && "Invalid index");
  assert(!LiveRegs.empty() && "Must enter basic block first.");
  if (DomainValue *dv = LiveRegs[rx]) {
    if (dv->isCollapsed())
      dv->addDomain(domain);
    else if (dv->hasDomain(domain))
      collapse(dv, domain);
    else {
      // This is an incompatible open DomainValue. Collapse it to whatever and
      // force the new value into domain. This costs a domain crossing.
      collapse(dv, dv->getFirstDomain());
      assert(LiveRegs[rx] && "Not live after collapse?");
      LiveRegs[rx]->addDomain(domain);
    }
  } else {
    // Set up basic collapsed DomainValue.
    setLiveReg(rx, alloc(domain));
  }
}

void ExecutionDomainFix::collapse(DomainValue *dv, unsigned domain) {
  assert(dv->hasDomain(domain) && "Cannot collapse");

  // Collapse all the instructions.
  while (!dv->Instrs.empty())
    TII->setExecutionDomain(*dv->Instrs.pop_back_val(), domain);
  dv->setSingleDomain(domain);

  // If there are multiple users, give them new, unique DomainValues.
  if (!LiveRegs.empty() && dv->Refs > 1)
    for (unsigned rx = 0; rx != NumRegs; ++rx)
      if (LiveRegs[rx] == dv)
        setLiveReg(rx, alloc(domain));
}

bool ExecutionDomainFix::merge(DomainValue *A, DomainValue *B) {
  assert(!A->isCollapsed() && "Cannot merge into collapsed");
  assert(!B->isCollapsed() && "Cannot merge from collapsed");
  if (A == B)
    return true;
  // Restrict to the domains that A and B have in common.
  unsigned common = A->getCommonDomains(B->AvailableDomains);
  if (!common)
    return false;
  A->AvailableDomains = common;
  A->Instrs.append(B->Instrs.begin(), B->Instrs.end());

  // Clear the old DomainValue so we won't try to swizzle instructions twice.
  B->clear();
  // All uses of B are referred to A.
  B->Next = retain(A);

  for (unsigned rx = 0; rx != NumRegs; ++rx) {
    assert(!LiveRegs.empty() && "no space allocated for live registers");
    if (LiveRegs[rx] == B)
      setLiveReg(rx, A);
  }
  return true;
}

void ExecutionDomainFix::enterBasicBlock(
    const LoopTraversal::TraversedMBBInfo &TraversedMBB) {

  MachineBasicBlock *MBB = TraversedMBB.MBB;

  // Set up LiveRegs to represent registers entering MBB.
  // Set default domain values to 'no domain' (nullptr)
  if (LiveRegs.empty())
    LiveRegs.assign(NumRegs, nullptr);

  // This is the entry block.
  if (MBB->pred_empty()) {
    LLVM_DEBUG(dbgs() << printMBBReference(*MBB) << ": entry\n");
    return;
  }

  // Try to coalesce live-out registers from predecessors.
  for (MachineBasicBlock *pred : MBB->predecessors()) {
    assert(unsigned(pred->getNumber()) < MBBOutRegsInfos.size() &&
           "Should have pre-allocated MBBInfos for all MBBs");
    LiveRegsDVInfo &Incoming = MBBOutRegsInfos[pred->getNumber()];
    // Incoming is null if this is a backedge from a BB
    // we haven't processed yet
    if (Incoming.empty())
      continue;

    for (unsigned rx = 0; rx != NumRegs; ++rx) {
      DomainValue *pdv = resolve(Incoming[rx]);
      if (!pdv)
        continue;
      if (!LiveRegs[rx]) {
        setLiveReg(rx, pdv);
        continue;
      }

      // We have a live DomainValue from more than one predecessor.
      if (LiveRegs[rx]->isCollapsed()) {
        // We are already collapsed, but predecessor is not. Force it.
        unsigned Domain = LiveRegs[rx]->getFirstDomain();
        if (!pdv->isCollapsed() && pdv->hasDomain(Domain))
          collapse(pdv, Domain);
        continue;
      }

      // Currently open, merge in predecessor.
      if (!pdv->isCollapsed())
        merge(LiveRegs[rx], pdv);
      else
        force(rx, pdv->getFirstDomain());
    }
  }
  LLVM_DEBUG(dbgs() << printMBBReference(*MBB)
                    << (!TraversedMBB.IsDone ? ": incomplete\n"
                                             : ": all preds known\n"));
}

void ExecutionDomainFix::leaveBasicBlock(
    const LoopTraversal::TraversedMBBInfo &TraversedMBB) {
  assert(!LiveRegs.empty() && "Must enter basic block first.");
  unsigned MBBNumber = TraversedMBB.MBB->getNumber();
  assert(MBBNumber < MBBOutRegsInfos.size() &&
         "Unexpected basic block number.");
  // Save register clearances at end of MBB - used by enterBasicBlock().
  for (DomainValue *OldLiveReg : MBBOutRegsInfos[MBBNumber]) {
    release(OldLiveReg);
  }
  MBBOutRegsInfos[MBBNumber] = LiveRegs;
  LiveRegs.clear();
}

bool ExecutionDomainFix::visitInstr(MachineInstr *MI) {
  // Update instructions with explicit execution domains.
  std::pair<uint16_t, uint16_t> DomP = TII->getExecutionDomain(*MI);
  if (DomP.first) {
    if (DomP.second)
      visitSoftInstr(MI, DomP.second);
    else
      visitHardInstr(MI, DomP.first);
  }

  return !DomP.first;
}

void ExecutionDomainFix::processDefs(MachineInstr *MI, bool Kill) {
  assert(!MI->isDebugInstr() && "Won't process debug values");
  const MCInstrDesc &MCID = MI->getDesc();
  for (unsigned i = 0,
                e = MI->isVariadic() ? MI->getNumOperands() : MCID.getNumDefs();
       i != e; ++i) {
    MachineOperand &MO = MI->getOperand(i);
    if (!MO.isReg())
      continue;
    if (MO.isUse())
      continue;
    for (int rx : regIndices(MO.getReg())) {
      // This instruction explicitly defines rx.
      LLVM_DEBUG(dbgs() << printReg(RC->getRegister(rx), TRI) << ":\t" << *MI);

      // Kill off domains redefined by generic instructions.
      if (Kill)
        kill(rx);
    }
  }
}

void ExecutionDomainFix::visitHardInstr(MachineInstr *mi, unsigned domain) {
  // Collapse all uses.
  for (unsigned i = mi->getDesc().getNumDefs(),
                e = mi->getDesc().getNumOperands();
       i != e; ++i) {
    MachineOperand &mo = mi->getOperand(i);
    if (!mo.isReg())
      continue;
    for (int rx : regIndices(mo.getReg())) {
      force(rx, domain);
    }
  }

  // Kill all defs and force them.
  for (unsigned i = 0, e = mi->getDesc().getNumDefs(); i != e; ++i) {
    MachineOperand &mo = mi->getOperand(i);
    if (!mo.isReg())
      continue;
    for (int rx : regIndices(mo.getReg())) {
      kill(rx);
      force(rx, domain);
    }
  }
}

void ExecutionDomainFix::visitSoftInstr(MachineInstr *mi, unsigned mask) {
  // Bitmask of available domains for this instruction after taking collapsed
  // operands into account.
  unsigned available = mask;

  // Scan the explicit use operands for incoming domains.
  SmallVector<int, 4> used;
  if (!LiveRegs.empty())
    for (unsigned i = mi->getDesc().getNumDefs(),
                  e = mi->getDesc().getNumOperands();
         i != e; ++i) {
      MachineOperand &mo = mi->getOperand(i);
      if (!mo.isReg())
        continue;
      for (int rx : regIndices(mo.getReg())) {
        DomainValue *dv = LiveRegs[rx];
        if (dv == nullptr)
          continue;
        // Bitmask of domains that dv and available have in common.
        unsigned common = dv->getCommonDomains(available);
        // Is it possible to use this collapsed register for free?
        if (dv->isCollapsed()) {
          // Restrict available domains to the ones in common with the operand.
          // If there are no common domains, we must pay the cross-domain
          // penalty for this operand.
          if (common)
            available = common;
        } else if (common)
          // Open DomainValue is compatible, save it for merging.
          used.push_back(rx);
        else
          // Open DomainValue is not compatible with instruction. It is useless
          // now.
          kill(rx);
      }
    }

  // If the collapsed operands force a single domain, propagate the collapse.
  if (isPowerOf2_32(available)) {
    unsigned domain = countTrailingZeros(available);
    TII->setExecutionDomain(*mi, domain);
    visitHardInstr(mi, domain);
    return;
  }

  // Kill off any remaining uses that don't match available, and build a list of
  // incoming DomainValues that we want to merge.
  SmallVector<int, 4> Regs;
  for (int rx : used) {
    assert(!LiveRegs.empty() && "no space allocated for live registers");
    DomainValue *&LR = LiveRegs[rx];
    // This useless DomainValue could have been missed above.
    if (!LR->getCommonDomains(available)) {
      kill(rx);
      continue;
    }
    // Sorted insertion.
    // Enables giving priority to the latest domains during merging.
    const int Def = RDA->getReachingDef(mi, RC->getRegister(rx));
    auto I = partition_point(Regs, [&](int I) {
      return RDA->getReachingDef(mi, RC->getRegister(I)) <= Def;
    });
    Regs.insert(I, rx);
  }

  // doms are now sorted in order of appearance. Try to merge them all, giving
  // priority to the latest ones.
  DomainValue *dv = nullptr;
  while (!Regs.empty()) {
    if (!dv) {
      dv = LiveRegs[Regs.pop_back_val()];
      // Force the first dv to match the current instruction.
      dv->AvailableDomains = dv->getCommonDomains(available);
      assert(dv->AvailableDomains && "Domain should have been filtered");
      continue;
    }

    DomainValue *Latest = LiveRegs[Regs.pop_back_val()];
    // Skip already merged values.
    if (Latest == dv || Latest->Next)
      continue;
    if (merge(dv, Latest))
      continue;

    // If latest didn't merge, it is useless now. Kill all registers using it.
    for (int i : used) {
      assert(!LiveRegs.empty() && "no space allocated for live registers");
      if (LiveRegs[i] == Latest)
        kill(i);
    }
  }

  // dv is the DomainValue we are going to use for this instruction.
  if (!dv) {
    dv = alloc();
    dv->AvailableDomains = available;
  }
  dv->Instrs.push_back(mi);

  // Finally set all defs and non-collapsed uses to dv. We must iterate through
  // all the operators, including imp-def ones.
  for (MachineOperand &mo : mi->operands()) {
    if (!mo.isReg())
      continue;
    for (int rx : regIndices(mo.getReg())) {
      if (!LiveRegs[rx] || (mo.isDef() && LiveRegs[rx] != dv)) {
        kill(rx);
        setLiveReg(rx, dv);
      }
    }
  }
}

void ExecutionDomainFix::processBasicBlock(
    const LoopTraversal::TraversedMBBInfo &TraversedMBB) {
  enterBasicBlock(TraversedMBB);
  // If this block is not done, it makes little sense to make any decisions
  // based on clearance information. We need to make a second pass anyway,
  // and by then we'll have better information, so we can avoid doing the work
  // to try and break dependencies now.
  for (MachineInstr &MI : *TraversedMBB.MBB) {
    if (!MI.isDebugInstr()) {
      bool Kill = false;
      if (TraversedMBB.PrimaryPass)
        Kill = visitInstr(&MI);
      processDefs(&MI, Kill);
    }
  }
  leaveBasicBlock(TraversedMBB);
}

bool ExecutionDomainFix::runOnMachineFunction(MachineFunction &mf) {
  if (skipFunction(mf.getFunction()))
    return false;
  MF = &mf;
  TII = MF->getSubtarget().getInstrInfo();
  TRI = MF->getSubtarget().getRegisterInfo();
  LiveRegs.clear();
  assert(NumRegs == RC->getNumRegs() && "Bad regclass");

  LLVM_DEBUG(dbgs() << "********** FIX EXECUTION DOMAIN: "
                    << TRI->getRegClassName(RC) << " **********\n");

  // If no relevant registers are used in the function, we can skip it
  // completely.
  bool anyregs = false;
  const MachineRegisterInfo &MRI = mf.getRegInfo();
  for (unsigned Reg : *RC) {
    if (MRI.isPhysRegUsed(Reg)) {
      anyregs = true;
      break;
    }
  }
  if (!anyregs)
    return false;

  RDA = &getAnalysis<ReachingDefAnalysis>();

  // Initialize the AliasMap on the first use.
  if (AliasMap.empty()) {
    // Given a PhysReg, AliasMap[PhysReg] returns a list of indices into RC and
    // therefore the LiveRegs array.
    AliasMap.resize(TRI->getNumRegs());
    for (unsigned i = 0, e = RC->getNumRegs(); i != e; ++i)
      for (MCRegAliasIterator AI(RC->getRegister(i), TRI, true); AI.isValid();
           ++AI)
        AliasMap[*AI].push_back(i);
  }

  // Initialize the MBBOutRegsInfos
  MBBOutRegsInfos.resize(mf.getNumBlockIDs());

  // Traverse the basic blocks.
  LoopTraversal Traversal;
  LoopTraversal::TraversalOrder TraversedMBBOrder = Traversal.traverse(mf);
  for (LoopTraversal::TraversedMBBInfo TraversedMBB : TraversedMBBOrder) {
    processBasicBlock(TraversedMBB);
  }

  for (LiveRegsDVInfo OutLiveRegs : MBBOutRegsInfos) {
    for (DomainValue *OutLiveReg : OutLiveRegs) {
      if (OutLiveReg)
        release(OutLiveReg);
    }
  }
  MBBOutRegsInfos.clear();
  Avail.clear();
  Allocator.DestroyAll();

  return false;
}