VFABIDemangling.cpp 16.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
//===- VFABIDemangling.cpp - Vector Function ABI demangling utilities. ---===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/Analysis/VectorUtils.h"

using namespace llvm;

namespace {
/// Utilities for the Vector Function ABI name parser.

/// Return types for the parser functions.
enum class ParseRet {
  OK,   // Found.
  None, // Not found.
  Error // Syntax error.
};

/// Extracts the `<isa>` information from the mangled string, and
/// sets the `ISA` accordingly.
ParseRet tryParseISA(StringRef &MangledName, VFISAKind &ISA) {
  if (MangledName.empty())
    return ParseRet::Error;

  if (MangledName.startswith(VFABI::_LLVM_)) {
    MangledName = MangledName.drop_front(strlen(VFABI::_LLVM_));
    ISA = VFISAKind::LLVM;
  } else {
    ISA = StringSwitch<VFISAKind>(MangledName.take_front(1))
              .Case("n", VFISAKind::AdvancedSIMD)
              .Case("s", VFISAKind::SVE)
              .Case("b", VFISAKind::SSE)
              .Case("c", VFISAKind::AVX)
              .Case("d", VFISAKind::AVX2)
              .Case("e", VFISAKind::AVX512)
              .Default(VFISAKind::Unknown);
    MangledName = MangledName.drop_front(1);
  }

  return ParseRet::OK;
}

/// Extracts the `<mask>` information from the mangled string, and
/// sets `IsMasked` accordingly. The input string `MangledName` is
/// left unmodified.
ParseRet tryParseMask(StringRef &MangledName, bool &IsMasked) {
  if (MangledName.consume_front("M")) {
    IsMasked = true;
    return ParseRet::OK;
  }

  if (MangledName.consume_front("N")) {
    IsMasked = false;
    return ParseRet::OK;
  }

  return ParseRet::Error;
}

/// Extract the `<vlen>` information from the mangled string, and
/// sets `VF` accordingly. A `<vlen> == "x"` token is interpreted as a scalable
/// vector length. On success, the `<vlen>` token is removed from
/// the input string `ParseString`.
///
ParseRet tryParseVLEN(StringRef &ParseString, unsigned &VF, bool &IsScalable) {
  if (ParseString.consume_front("x")) {
    // Set VF to 0, to be later adjusted to a value grater than zero
    // by looking at the signature of the vector function with
    // `getECFromSignature`.
    VF = 0;
    IsScalable = true;
    return ParseRet::OK;
  }

  if (ParseString.consumeInteger(10, VF))
    return ParseRet::Error;

  // The token `0` is invalid for VLEN.
  if (VF == 0)
    return ParseRet::Error;

  IsScalable = false;
  return ParseRet::OK;
}

/// The function looks for the following strings at the beginning of
/// the input string `ParseString`:
///
///  <token> <number>
///
/// On success, it removes the parsed parameter from `ParseString`,
/// sets `PKind` to the correspondent enum value, sets `Pos` to
/// <number>, and return success.  On a syntax error, it return a
/// parsing error. If nothing is parsed, it returns None.
///
/// The function expects <token> to be one of "ls", "Rs", "Us" or
/// "Ls".
ParseRet tryParseLinearTokenWithRuntimeStep(StringRef &ParseString,
                                            VFParamKind &PKind, int &Pos,
                                            const StringRef Token) {
  if (ParseString.consume_front(Token)) {
    PKind = VFABI::getVFParamKindFromString(Token);
    if (ParseString.consumeInteger(10, Pos))
      return ParseRet::Error;
    return ParseRet::OK;
  }

  return ParseRet::None;
}

/// The function looks for the following stringt at the beginning of
/// the input string `ParseString`:
///
///  <token> <number>
///
/// <token> is one of "ls", "Rs", "Us" or "Ls".
///
/// On success, it removes the parsed parameter from `ParseString`,
/// sets `PKind` to the correspondent enum value, sets `StepOrPos` to
/// <number>, and return success.  On a syntax error, it return a
/// parsing error. If nothing is parsed, it returns None.
ParseRet tryParseLinearWithRuntimeStep(StringRef &ParseString,
                                       VFParamKind &PKind, int &StepOrPos) {
  ParseRet Ret;

  // "ls" <RuntimeStepPos>
  Ret = tryParseLinearTokenWithRuntimeStep(ParseString, PKind, StepOrPos, "ls");
  if (Ret != ParseRet::None)
    return Ret;

  // "Rs" <RuntimeStepPos>
  Ret = tryParseLinearTokenWithRuntimeStep(ParseString, PKind, StepOrPos, "Rs");
  if (Ret != ParseRet::None)
    return Ret;

  // "Ls" <RuntimeStepPos>
  Ret = tryParseLinearTokenWithRuntimeStep(ParseString, PKind, StepOrPos, "Ls");
  if (Ret != ParseRet::None)
    return Ret;

  // "Us" <RuntimeStepPos>
  Ret = tryParseLinearTokenWithRuntimeStep(ParseString, PKind, StepOrPos, "Us");
  if (Ret != ParseRet::None)
    return Ret;

  return ParseRet::None;
}

/// The function looks for the following strings at the beginning of
/// the input string `ParseString`:
///
///  <token> {"n"} <number>
///
/// On success, it removes the parsed parameter from `ParseString`,
/// sets `PKind` to the correspondent enum value, sets `LinearStep` to
/// <number>, and return success.  On a syntax error, it return a
/// parsing error. If nothing is parsed, it returns None.
///
/// The function expects <token> to be one of "l", "R", "U" or
/// "L".
ParseRet tryParseCompileTimeLinearToken(StringRef &ParseString,
                                        VFParamKind &PKind, int &LinearStep,
                                        const StringRef Token) {
  if (ParseString.consume_front(Token)) {
    PKind = VFABI::getVFParamKindFromString(Token);
    const bool Negate = ParseString.consume_front("n");
    if (ParseString.consumeInteger(10, LinearStep))
      LinearStep = 1;
    if (Negate)
      LinearStep *= -1;
    return ParseRet::OK;
  }

  return ParseRet::None;
}

/// The function looks for the following strings at the beginning of
/// the input string `ParseString`:
///
/// ["l" | "R" | "U" | "L"] {"n"} <number>
///
/// On success, it removes the parsed parameter from `ParseString`,
/// sets `PKind` to the correspondent enum value, sets `LinearStep` to
/// <number>, and return success.  On a syntax error, it return a
/// parsing error. If nothing is parsed, it returns None.
ParseRet tryParseLinearWithCompileTimeStep(StringRef &ParseString,
                                           VFParamKind &PKind, int &StepOrPos) {
  // "l" {"n"} <CompileTimeStep>
  if (tryParseCompileTimeLinearToken(ParseString, PKind, StepOrPos, "l") ==
      ParseRet::OK)
    return ParseRet::OK;

  // "R" {"n"} <CompileTimeStep>
  if (tryParseCompileTimeLinearToken(ParseString, PKind, StepOrPos, "R") ==
      ParseRet::OK)
    return ParseRet::OK;

  // "L" {"n"} <CompileTimeStep>
  if (tryParseCompileTimeLinearToken(ParseString, PKind, StepOrPos, "L") ==
      ParseRet::OK)
    return ParseRet::OK;

  // "U" {"n"} <CompileTimeStep>
  if (tryParseCompileTimeLinearToken(ParseString, PKind, StepOrPos, "U") ==
      ParseRet::OK)
    return ParseRet::OK;

  return ParseRet::None;
}

/// Looks into the <parameters> part of the mangled name in search
/// for valid paramaters at the beginning of the string
/// `ParseString`.
///
/// On success, it removes the parsed parameter from `ParseString`,
/// sets `PKind` to the correspondent enum value, sets `StepOrPos`
/// accordingly, and return success.  On a syntax error, it return a
/// parsing error. If nothing is parsed, it returns None.
ParseRet tryParseParameter(StringRef &ParseString, VFParamKind &PKind,
                           int &StepOrPos) {
  if (ParseString.consume_front("v")) {
    PKind = VFParamKind::Vector;
    StepOrPos = 0;
    return ParseRet::OK;
  }

  if (ParseString.consume_front("u")) {
    PKind = VFParamKind::OMP_Uniform;
    StepOrPos = 0;
    return ParseRet::OK;
  }

  const ParseRet HasLinearRuntime =
      tryParseLinearWithRuntimeStep(ParseString, PKind, StepOrPos);
  if (HasLinearRuntime != ParseRet::None)
    return HasLinearRuntime;

  const ParseRet HasLinearCompileTime =
      tryParseLinearWithCompileTimeStep(ParseString, PKind, StepOrPos);
  if (HasLinearCompileTime != ParseRet::None)
    return HasLinearCompileTime;

  return ParseRet::None;
}

/// Looks into the <parameters> part of the mangled name in search
/// of a valid 'aligned' clause. The function should be invoked
/// after parsing a parameter via `tryParseParameter`.
///
/// On success, it removes the parsed parameter from `ParseString`,
/// sets `PKind` to the correspondent enum value, sets `StepOrPos`
/// accordingly, and return success.  On a syntax error, it return a
/// parsing error. If nothing is parsed, it returns None.
ParseRet tryParseAlign(StringRef &ParseString, Align &Alignment) {
  uint64_t Val;
  //    "a" <number>
  if (ParseString.consume_front("a")) {
    if (ParseString.consumeInteger(10, Val))
      return ParseRet::Error;

    if (!isPowerOf2_64(Val))
      return ParseRet::Error;

    Alignment = Align(Val);

    return ParseRet::OK;
  }

  return ParseRet::None;
}
#ifndef NDEBUG
// Verify the assumtion that all vectors in the signature of a vector
// function have the same number of elements.
bool verifyAllVectorsHaveSameWidth(FunctionType *Signature) {
  SmallVector<VectorType *, 2> VecTys;
  if (auto *RetTy = dyn_cast<VectorType>(Signature->getReturnType()))
    VecTys.push_back(RetTy);
  for (auto *Ty : Signature->params())
    if (auto *VTy = dyn_cast<VectorType>(Ty))
      VecTys.push_back(VTy);

  if (VecTys.size() <= 1)
    return true;

  assert(VecTys.size() > 1 && "Invalid number of elements.");
  const ElementCount EC = VecTys[0]->getElementCount();
  return llvm::all_of(
      llvm::make_range(VecTys.begin() + 1, VecTys.end()),
      [&EC](VectorType *VTy) { return (EC == VTy->getElementCount()); });
}

#endif // NDEBUG

// Extract the VectorizationFactor from a given function signature,
// under the assumtion that all vectors have the same number of
// elements, i.e. same ElementCount.Min.
ElementCount getECFromSignature(FunctionType *Signature) {
  assert(verifyAllVectorsHaveSameWidth(Signature) &&
         "Invalid vector signature.");

  if (auto *RetTy = dyn_cast<VectorType>(Signature->getReturnType()))
    return RetTy->getElementCount();
  for (auto *Ty : Signature->params())
    if (auto *VTy = dyn_cast<VectorType>(Ty))
      return VTy->getElementCount();

  return ElementCount::getFixed(/*Min=*/1);
}
} // namespace

// Format of the ABI name:
// _ZGV<isa><mask><vlen><parameters>_<scalarname>[(<redirection>)]
Optional<VFInfo> VFABI::tryDemangleForVFABI(StringRef MangledName,
                                            const Module &M) {
  const StringRef OriginalName = MangledName;
  // Assume there is no custom name <redirection>, and therefore the
  // vector name consists of
  // _ZGV<isa><mask><vlen><parameters>_<scalarname>.
  StringRef VectorName = MangledName;

  // Parse the fixed size part of the manled name
  if (!MangledName.consume_front("_ZGV"))
    return None;

  // Extract ISA. An unknow ISA is also supported, so we accept all
  // values.
  VFISAKind ISA;
  if (tryParseISA(MangledName, ISA) != ParseRet::OK)
    return None;

  // Extract <mask>.
  bool IsMasked;
  if (tryParseMask(MangledName, IsMasked) != ParseRet::OK)
    return None;

  // Parse the variable size, starting from <vlen>.
  unsigned VF;
  bool IsScalable;
  if (tryParseVLEN(MangledName, VF, IsScalable) != ParseRet::OK)
    return None;

  // Parse the <parameters>.
  ParseRet ParamFound;
  SmallVector<VFParameter, 8> Parameters;
  do {
    const unsigned ParameterPos = Parameters.size();
    VFParamKind PKind;
    int StepOrPos;
    ParamFound = tryParseParameter(MangledName, PKind, StepOrPos);

    // Bail off if there is a parsing error in the parsing of the parameter.
    if (ParamFound == ParseRet::Error)
      return None;

    if (ParamFound == ParseRet::OK) {
      Align Alignment;
      // Look for the alignment token "a <number>".
      const ParseRet AlignFound = tryParseAlign(MangledName, Alignment);
      // Bail off if there is a syntax error in the align token.
      if (AlignFound == ParseRet::Error)
        return None;

      // Add the parameter.
      Parameters.push_back({ParameterPos, PKind, StepOrPos, Alignment});
    }
  } while (ParamFound == ParseRet::OK);

  // A valid MangledName must have at least one valid entry in the
  // <parameters>.
  if (Parameters.empty())
    return None;

  // Check for the <scalarname> and the optional <redirection>, which
  // are separated from the prefix with "_"
  if (!MangledName.consume_front("_"))
    return None;

  // The rest of the string must be in the format:
  // <scalarname>[(<redirection>)]
  const StringRef ScalarName =
      MangledName.take_while([](char In) { return In != '('; });

  if (ScalarName.empty())
    return None;

  // Reduce MangledName to [(<redirection>)].
  MangledName = MangledName.ltrim(ScalarName);
  // Find the optional custom name redirection.
  if (MangledName.consume_front("(")) {
    if (!MangledName.consume_back(")"))
      return None;
    // Update the vector variant with the one specified by the user.
    VectorName = MangledName;
    // If the vector name is missing, bail out.
    if (VectorName.empty())
      return None;
  }

  // LLVM internal mapping via the TargetLibraryInfo (TLI) must be
  // redirected to an existing name.
  if (ISA == VFISAKind::LLVM && VectorName == OriginalName)
    return None;

  // When <mask> is "M", we need to add a parameter that is used as
  // global predicate for the function.
  if (IsMasked) {
    const unsigned Pos = Parameters.size();
    Parameters.push_back({Pos, VFParamKind::GlobalPredicate});
  }

  // Asserts for parameters of type `VFParamKind::GlobalPredicate`, as
  // prescribed by the Vector Function ABI specifications supported by
  // this parser:
  // 1. Uniqueness.
  // 2. Must be the last in the parameter list.
  const auto NGlobalPreds = std::count_if(
      Parameters.begin(), Parameters.end(), [](const VFParameter PK) {
        return PK.ParamKind == VFParamKind::GlobalPredicate;
      });
  assert(NGlobalPreds < 2 && "Cannot have more than one global predicate.");
  if (NGlobalPreds)
    assert(Parameters.back().ParamKind == VFParamKind::GlobalPredicate &&
           "The global predicate must be the last parameter");

  // Adjust the VF for scalable signatures. The EC.Min is not encoded
  // in the name of the function, but it is encoded in the IR
  // signature of the function. We need to extract this information
  // because it is needed by the loop vectorizer, which reasons in
  // terms of VectorizationFactor or ElementCount. In particular, we
  // need to make sure that the VF field of the VFShape class is never
  // set to 0.
  if (IsScalable) {
    const Function *F = M.getFunction(VectorName);
    // The declaration of the function must be present in the module
    // to be able to retrieve its signature.
    if (!F)
      return None;
    const ElementCount EC = getECFromSignature(F->getFunctionType());
    VF = EC.getKnownMinValue();
  }

  // Sanity checks.
  // 1. We don't accept a zero lanes vectorization factor.
  // 2. We don't accept the demangling if the vector function is not
  // present in the module.
  if (VF == 0)
    return None;
  if (!M.getFunction(VectorName))
    return None;

  const VFShape Shape({VF, IsScalable, Parameters});
  return VFInfo({Shape, std::string(ScalarName), std::string(VectorName), ISA});
}

VFParamKind VFABI::getVFParamKindFromString(const StringRef Token) {
  const VFParamKind ParamKind = StringSwitch<VFParamKind>(Token)
                                    .Case("v", VFParamKind::Vector)
                                    .Case("l", VFParamKind::OMP_Linear)
                                    .Case("R", VFParamKind::OMP_LinearRef)
                                    .Case("L", VFParamKind::OMP_LinearVal)
                                    .Case("U", VFParamKind::OMP_LinearUVal)
                                    .Case("ls", VFParamKind::OMP_LinearPos)
                                    .Case("Ls", VFParamKind::OMP_LinearValPos)
                                    .Case("Rs", VFParamKind::OMP_LinearRefPos)
                                    .Case("Us", VFParamKind::OMP_LinearUValPos)
                                    .Case("u", VFParamKind::OMP_Uniform)
                                    .Default(VFParamKind::Unknown);

  if (ParamKind != VFParamKind::Unknown)
    return ParamKind;

  // This function should never be invoked with an invalid input.
  llvm_unreachable("This fuction should be invoken only on parameters"
                   " that have a textual representation in the mangled name"
                   " of the Vector Function ABI");
}