DivergenceAnalysis.cpp
13.5 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
//===---- DivergenceAnalysis.cpp --- Divergence Analysis Implementation ----==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements a general divergence analysis for loop vectorization
// and GPU programs. It determines which branches and values in a loop or GPU
// program are divergent. It can help branch optimizations such as jump
// threading and loop unswitching to make better decisions.
//
// GPU programs typically use the SIMD execution model, where multiple threads
// in the same execution group have to execute in lock-step. Therefore, if the
// code contains divergent branches (i.e., threads in a group do not agree on
// which path of the branch to take), the group of threads has to execute all
// the paths from that branch with different subsets of threads enabled until
// they re-converge.
//
// Due to this execution model, some optimizations such as jump
// threading and loop unswitching can interfere with thread re-convergence.
// Therefore, an analysis that computes which branches in a GPU program are
// divergent can help the compiler to selectively run these optimizations.
//
// This implementation is derived from the Vectorization Analysis of the
// Region Vectorizer (RV). That implementation in turn is based on the approach
// described in
//
// Improving Performance of OpenCL on CPUs
// Ralf Karrenberg and Sebastian Hack
// CC '12
//
// This DivergenceAnalysis implementation is generic in the sense that it does
// not itself identify original sources of divergence.
// Instead specialized adapter classes, (LoopDivergenceAnalysis) for loops and
// (GPUDivergenceAnalysis) for GPU programs, identify the sources of divergence
// (e.g., special variables that hold the thread ID or the iteration variable).
//
// The generic implementation propagates divergence to variables that are data
// or sync dependent on a source of divergence.
//
// While data dependency is a well-known concept, the notion of sync dependency
// is worth more explanation. Sync dependence characterizes the control flow
// aspect of the propagation of branch divergence. For example,
//
// %cond = icmp slt i32 %tid, 10
// br i1 %cond, label %then, label %else
// then:
// br label %merge
// else:
// br label %merge
// merge:
// %a = phi i32 [ 0, %then ], [ 1, %else ]
//
// Suppose %tid holds the thread ID. Although %a is not data dependent on %tid
// because %tid is not on its use-def chains, %a is sync dependent on %tid
// because the branch "br i1 %cond" depends on %tid and affects which value %a
// is assigned to.
//
// The sync dependence detection (which branch induces divergence in which join
// points) is implemented in the SyncDependenceAnalysis.
//
// The current DivergenceAnalysis implementation has the following limitations:
// 1. intra-procedural. It conservatively considers the arguments of a
// non-kernel-entry function and the return value of a function call as
// divergent.
// 2. memory as black box. It conservatively considers values loaded from
// generic or local address as divergent. This can be improved by leveraging
// pointer analysis and/or by modelling non-escaping memory objects in SSA
// as done in RV.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/DivergenceAnalysis.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/Passes.h"
#include "llvm/Analysis/PostDominators.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <vector>
using namespace llvm;
#define DEBUG_TYPE "divergence-analysis"
// class DivergenceAnalysis
DivergenceAnalysis::DivergenceAnalysis(
const Function &F, const Loop *RegionLoop, const DominatorTree &DT,
const LoopInfo &LI, SyncDependenceAnalysis &SDA, bool IsLCSSAForm)
: F(F), RegionLoop(RegionLoop), DT(DT), LI(LI), SDA(SDA),
IsLCSSAForm(IsLCSSAForm) {}
bool DivergenceAnalysis::markDivergent(const Value &DivVal) {
if (isAlwaysUniform(DivVal))
return false;
assert(isa<Instruction>(DivVal) || isa<Argument>(DivVal));
assert(!isAlwaysUniform(DivVal) && "cannot be a divergent");
return DivergentValues.insert(&DivVal).second;
}
void DivergenceAnalysis::addUniformOverride(const Value &UniVal) {
UniformOverrides.insert(&UniVal);
}
bool DivergenceAnalysis::isTemporalDivergent(const BasicBlock &ObservingBlock,
const Value &Val) const {
const auto *Inst = dyn_cast<const Instruction>(&Val);
if (!Inst)
return false;
// check whether any divergent loop carrying Val terminates before control
// proceeds to ObservingBlock
for (const auto *Loop = LI.getLoopFor(Inst->getParent());
Loop != RegionLoop && !Loop->contains(&ObservingBlock);
Loop = Loop->getParentLoop()) {
if (DivergentLoops.find(Loop) != DivergentLoops.end())
return true;
}
return false;
}
bool DivergenceAnalysis::inRegion(const Instruction &I) const {
return I.getParent() && inRegion(*I.getParent());
}
bool DivergenceAnalysis::inRegion(const BasicBlock &BB) const {
return (!RegionLoop && BB.getParent() == &F) || RegionLoop->contains(&BB);
}
void DivergenceAnalysis::pushUsers(const Value &V) {
const auto *I = dyn_cast<const Instruction>(&V);
if (I && I->isTerminator()) {
analyzeControlDivergence(*I);
return;
}
for (const auto *User : V.users()) {
const auto *UserInst = dyn_cast<const Instruction>(User);
if (!UserInst)
continue;
// only compute divergent inside loop
if (!inRegion(*UserInst))
continue;
// All users of divergent values are immediate divergent
if (markDivergent(*UserInst))
Worklist.push_back(UserInst);
}
}
static const Instruction *getIfCarriedInstruction(const Use &U,
const Loop &DivLoop) {
const auto *I = dyn_cast<const Instruction>(&U);
if (!I)
return nullptr;
if (!DivLoop.contains(I))
return nullptr;
return I;
}
void DivergenceAnalysis::analyzeTemporalDivergence(const Instruction &I,
const Loop &OuterDivLoop) {
if (isAlwaysUniform(I))
return;
if (isDivergent(I))
return;
LLVM_DEBUG(dbgs() << "Analyze temporal divergence: " << I.getName() << "\n");
assert((isa<PHINode>(I) || !IsLCSSAForm) &&
"In LCSSA form all users of loop-exiting defs are Phi nodes.");
for (const Use &Op : I.operands()) {
const auto *OpInst = getIfCarriedInstruction(Op, OuterDivLoop);
if (!OpInst)
continue;
if (markDivergent(I))
pushUsers(I);
return;
}
}
// marks all users of loop-carried values of the loop headed by LoopHeader as
// divergent
void DivergenceAnalysis::analyzeLoopExitDivergence(const BasicBlock &DivExit,
const Loop &OuterDivLoop) {
// All users are in immediate exit blocks
if (IsLCSSAForm) {
for (const auto &Phi : DivExit.phis()) {
analyzeTemporalDivergence(Phi, OuterDivLoop);
}
return;
}
// For non-LCSSA we have to follow all live out edges wherever they may lead.
const BasicBlock &LoopHeader = *OuterDivLoop.getHeader();
SmallVector<const BasicBlock *, 8> TaintStack;
TaintStack.push_back(&DivExit);
// Otherwise potential users of loop-carried values could be anywhere in the
// dominance region of DivLoop (including its fringes for phi nodes)
DenseSet<const BasicBlock *> Visited;
Visited.insert(&DivExit);
do {
auto *UserBlock = TaintStack.back();
TaintStack.pop_back();
// don't spread divergence beyond the region
if (!inRegion(*UserBlock))
continue;
assert(!OuterDivLoop.contains(UserBlock) &&
"irreducible control flow detected");
// phi nodes at the fringes of the dominance region
if (!DT.dominates(&LoopHeader, UserBlock)) {
// all PHI nodes of UserBlock become divergent
for (auto &Phi : UserBlock->phis()) {
analyzeTemporalDivergence(Phi, OuterDivLoop);
}
continue;
}
// Taint outside users of values carried by OuterDivLoop.
for (auto &I : *UserBlock) {
analyzeTemporalDivergence(I, OuterDivLoop);
}
// visit all blocks in the dominance region
for (auto *SuccBlock : successors(UserBlock)) {
if (!Visited.insert(SuccBlock).second) {
continue;
}
TaintStack.push_back(SuccBlock);
}
} while (!TaintStack.empty());
}
void DivergenceAnalysis::propagateLoopExitDivergence(const BasicBlock &DivExit,
const Loop &InnerDivLoop) {
LLVM_DEBUG(dbgs() << "\tpropLoopExitDiv " << DivExit.getName() << "\n");
// Find outer-most loop that does not contain \p DivExit
const Loop *DivLoop = &InnerDivLoop;
const Loop *OuterDivLoop = DivLoop;
const Loop *ExitLevelLoop = LI.getLoopFor(&DivExit);
const unsigned LoopExitDepth =
ExitLevelLoop ? ExitLevelLoop->getLoopDepth() : 0;
while (DivLoop && DivLoop->getLoopDepth() > LoopExitDepth) {
DivergentLoops.insert(DivLoop); // all crossed loops are divergent
OuterDivLoop = DivLoop;
DivLoop = DivLoop->getParentLoop();
}
LLVM_DEBUG(dbgs() << "\tOuter-most left loop: " << OuterDivLoop->getName()
<< "\n");
analyzeLoopExitDivergence(DivExit, *OuterDivLoop);
}
// this is a divergent join point - mark all phi nodes as divergent and push
// them onto the stack.
void DivergenceAnalysis::taintAndPushPhiNodes(const BasicBlock &JoinBlock) {
LLVM_DEBUG(dbgs() << "taintAndPushPhiNodes in " << JoinBlock.getName()
<< "\n");
// ignore divergence outside the region
if (!inRegion(JoinBlock)) {
return;
}
// push non-divergent phi nodes in JoinBlock to the worklist
for (const auto &Phi : JoinBlock.phis()) {
if (isDivergent(Phi))
continue;
// FIXME Theoretically ,the 'undef' value could be replaced by any other
// value causing spurious divergence.
if (Phi.hasConstantOrUndefValue())
continue;
if (markDivergent(Phi))
Worklist.push_back(&Phi);
}
}
void DivergenceAnalysis::analyzeControlDivergence(const Instruction &Term) {
LLVM_DEBUG(dbgs() << "analyzeControlDiv " << Term.getParent()->getName()
<< "\n");
// Don't propagate divergence from unreachable blocks.
if (!DT.isReachableFromEntry(Term.getParent()))
return;
const auto *BranchLoop = LI.getLoopFor(Term.getParent());
const auto &DivDesc = SDA.getJoinBlocks(Term);
// Iterate over all blocks now reachable by a disjoint path join
for (const auto *JoinBlock : DivDesc.JoinDivBlocks) {
taintAndPushPhiNodes(*JoinBlock);
}
assert(DivDesc.LoopDivBlocks.empty() || BranchLoop);
for (const auto *DivExitBlock : DivDesc.LoopDivBlocks) {
propagateLoopExitDivergence(*DivExitBlock, *BranchLoop);
}
}
void DivergenceAnalysis::compute() {
// Initialize worklist.
auto DivValuesCopy = DivergentValues;
for (const auto *DivVal : DivValuesCopy) {
assert(isDivergent(*DivVal) && "Worklist invariant violated!");
pushUsers(*DivVal);
}
// All values on the Worklist are divergent.
// Their users may not have been updated yed.
while (!Worklist.empty()) {
const Instruction &I = *Worklist.back();
Worklist.pop_back();
// propagate value divergence to users
assert(isDivergent(I) && "Worklist invariant violated!");
pushUsers(I);
}
}
bool DivergenceAnalysis::isAlwaysUniform(const Value &V) const {
return UniformOverrides.find(&V) != UniformOverrides.end();
}
bool DivergenceAnalysis::isDivergent(const Value &V) const {
return DivergentValues.find(&V) != DivergentValues.end();
}
bool DivergenceAnalysis::isDivergentUse(const Use &U) const {
Value &V = *U.get();
Instruction &I = *cast<Instruction>(U.getUser());
return isDivergent(V) || isTemporalDivergent(*I.getParent(), V);
}
void DivergenceAnalysis::print(raw_ostream &OS, const Module *) const {
if (DivergentValues.empty())
return;
// iterate instructions using instructions() to ensure a deterministic order.
for (auto &I : instructions(F)) {
if (isDivergent(I))
OS << "DIVERGENT:" << I << '\n';
}
}
// class GPUDivergenceAnalysis
GPUDivergenceAnalysis::GPUDivergenceAnalysis(Function &F,
const DominatorTree &DT,
const PostDominatorTree &PDT,
const LoopInfo &LI,
const TargetTransformInfo &TTI)
: SDA(DT, PDT, LI), DA(F, nullptr, DT, LI, SDA, /* LCSSA */ false) {
for (auto &I : instructions(F)) {
if (TTI.isSourceOfDivergence(&I)) {
DA.markDivergent(I);
} else if (TTI.isAlwaysUniform(&I)) {
DA.addUniformOverride(I);
}
}
for (auto &Arg : F.args()) {
if (TTI.isSourceOfDivergence(&Arg)) {
DA.markDivergent(Arg);
}
}
DA.compute();
}
bool GPUDivergenceAnalysis::isDivergent(const Value &val) const {
return DA.isDivergent(val);
}
bool GPUDivergenceAnalysis::isDivergentUse(const Use &use) const {
return DA.isDivergentUse(use);
}
void GPUDivergenceAnalysis::print(raw_ostream &OS, const Module *mod) const {
OS << "Divergence of kernel " << DA.getFunction().getName() << " {\n";
DA.print(OS, mod);
OS << "}\n";
}