Known Bits Analysis
The Known Bits Analysis pass makes information about the known values of bits available to other passes to enable transformations like those in the examples below. The information is lazily computed so you should only pay for what you use.
Examples
A simple example is that transforming:
a + 1
into:
a | 1
is only valid when the addition doesn't carry. In other words it's only valid
if a & 1
is zero.
Another example is:
%1:(s32) = G_CONSTANT i32 0xFF0
%2:(s32) = G_AND %0, %1
%3:(s32) = G_CONSTANT i32 0x0FF
%4:(s32) = G_AND %2, %3
We can use the constants and the definition of G_AND
to determine the known
bits:
; %0 = 0x????????
%1:(s32) = G_CONSTANT i32 0xFF0 ; %1 = 0x00000FF0
%2:(s32) = G_AND %0, %1 ; %2 = 0x00000??0
%3:(s32) = G_CONSTANT i32 0x0FF ; %3 = 0x000000FF
%4:(s32) = G_AND %2, %3 ; %4 = 0x000000?0
and then use this to simplify the expression:
; %0 = 0x????????
%5:(s32) = G_CONSTANT i32 0x0F0 ; %5 = 0x00000FF0
%4:(s32) = G_AND %0, %5 ; %4 = 0x000000?0
Note that %4
still has the same known bits as before the transformation.
Many transformations share this property. The main exception being when the
transform causes undefined bits to become defined to either zero, one, or
defined but unknown.
Usage
To use Known Bits Analysis in a pass, first include the header and register the
dependency with INITIALIZE_PASS_DEPENDENCY
.
#include "llvm/CodeGen/GlobalISel/GISelKnownBits.h"
...
INITIALIZE_PASS_BEGIN(...)
INITIALIZE_PASS_DEPENDENCY(GISelKnownBitsAnalysis)
INITIALIZE_PASS_END(...)
and require the pass in getAnalysisUsage
.
void MyPass::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<GISelKnownBitsAnalysis>();
// Optional: If your pass preserves known bits analysis (many do) then
// indicate that it's preserved for re-use by another pass here.
AU.addPreserved<GISelKnownBitsAnalysis>();
}
Then it's just a matter of fetching the analysis and using it:
bool MyPass::runOnMachineFunction(MachineFunction &MF) {
...
GISelKnownBits &KB = getAnalysis<GISelKnownBitsAnalysis>().get(MF);
...
MachineInstr *MI = ...;
KnownBits Known = KB->getKnownBits(MI->getOperand(0).getReg());
if (Known.Zeros & 1) {
// Bit 0 is known to be zero
}
...
}
There are many more API's beyond getKnownBits()
. See the API reference for more information