RegisterContextPOSIXProcessMonitor_x86.cpp 20 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
//===-- RegisterContextPOSIXProcessMonitor_x86.cpp ------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "lldb/Target/Thread.h"
#include "lldb/Utility/DataBufferHeap.h"
#include "lldb/Utility/RegisterValue.h"

#include "Plugins/Process/FreeBSD/ProcessFreeBSD.h"
#include "Plugins/Process/FreeBSD/ProcessMonitor.h"
#include "RegisterContextPOSIXProcessMonitor_x86.h"

using namespace lldb_private;
using namespace lldb;

// Support ptrace extensions even when compiled without required kernel support
#ifndef NT_X86_XSTATE
#define NT_X86_XSTATE 0x202
#endif

#define REG_CONTEXT_SIZE (GetGPRSize() + sizeof(FPR))

static uint32_t size_and_rw_bits(size_t size, bool read, bool write) {
  uint32_t rw;

  if (read)
    rw = 0x3; // READ or READ/WRITE
  else if (write)
    rw = 0x1; // WRITE
  else
    assert(0 && "read and write cannot both be false");

  switch (size) {
  case 1:
    return rw;
  case 2:
    return (0x1 << 2) | rw;
  case 4:
    return (0x3 << 2) | rw;
  case 8:
    return (0x2 << 2) | rw;
  default:
    assert(0 && "invalid size, must be one of 1, 2, 4, or 8");
    return 0; // Unreachable. Just to silence compiler.
  }
}

RegisterContextPOSIXProcessMonitor_x86_64::
    RegisterContextPOSIXProcessMonitor_x86_64(
        Thread &thread, uint32_t concrete_frame_idx,
        lldb_private::RegisterInfoInterface *register_info)
    : RegisterContextPOSIX_x86(thread, concrete_frame_idx, register_info) {
  // Store byte offset of fctrl (i.e. first register of FPR) wrt 'UserArea'
  const RegisterInfo *reg_info_fctrl = GetRegisterInfoByName("fctrl");
  m_fctrl_offset_in_userarea = reg_info_fctrl->byte_offset;

  m_iovec.iov_base = &m_fpr.xsave;
  m_iovec.iov_len = sizeof(m_fpr.xsave);
}

ProcessMonitor &RegisterContextPOSIXProcessMonitor_x86_64::GetMonitor() {
  ProcessSP base = CalculateProcess();
  ProcessFreeBSD *process = static_cast<ProcessFreeBSD *>(base.get());
  return process->GetMonitor();
}

bool RegisterContextPOSIXProcessMonitor_x86_64::ReadGPR() {
  ProcessMonitor &monitor = GetMonitor();
  return monitor.ReadGPR(m_thread.GetID(), &m_gpr_x86_64, GetGPRSize());
}

bool RegisterContextPOSIXProcessMonitor_x86_64::ReadFPR() {
  ProcessMonitor &monitor = GetMonitor();
  if (GetFPRType() == eFXSAVE)
    return monitor.ReadFPR(m_thread.GetID(), &m_fpr.fxsave,
                           sizeof(m_fpr.fxsave));

  if (GetFPRType() == eXSAVE)
    return monitor.ReadRegisterSet(m_thread.GetID(), &m_iovec,
                                   sizeof(m_fpr.xsave), NT_X86_XSTATE);
  return false;
}

bool RegisterContextPOSIXProcessMonitor_x86_64::WriteGPR() {
  ProcessMonitor &monitor = GetMonitor();
  return monitor.WriteGPR(m_thread.GetID(), &m_gpr_x86_64, GetGPRSize());
}

bool RegisterContextPOSIXProcessMonitor_x86_64::WriteFPR() {
  ProcessMonitor &monitor = GetMonitor();
  if (GetFPRType() == eFXSAVE)
    return monitor.WriteFPR(m_thread.GetID(), &m_fpr.fxsave,
                            sizeof(m_fpr.fxsave));

  if (GetFPRType() == eXSAVE)
    return monitor.WriteRegisterSet(m_thread.GetID(), &m_iovec,
                                    sizeof(m_fpr.xsave), NT_X86_XSTATE);
  return false;
}

bool RegisterContextPOSIXProcessMonitor_x86_64::ReadRegister(
    const unsigned reg, RegisterValue &value) {
  ProcessMonitor &monitor = GetMonitor();

#if defined(__FreeBSD__)
  if (reg >= m_reg_info.first_dr)
    return monitor.ReadDebugRegisterValue(
        m_thread.GetID(), GetRegisterOffset(reg), GetRegisterName(reg),
        GetRegisterSize(reg), value);
#endif
  return monitor.ReadRegisterValue(m_thread.GetID(), GetRegisterOffset(reg),
                                   GetRegisterName(reg), GetRegisterSize(reg),
                                   value);
}

bool RegisterContextPOSIXProcessMonitor_x86_64::WriteRegister(
    const unsigned reg, const RegisterValue &value) {
  unsigned reg_to_write = reg;
  RegisterValue value_to_write = value;

  // Check if this is a subregister of a full register.
  const RegisterInfo *reg_info = GetRegisterInfoAtIndex(reg);
  if (reg_info->invalidate_regs &&
      (reg_info->invalidate_regs[0] != LLDB_INVALID_REGNUM)) {
    RegisterValue full_value;
    uint32_t full_reg = reg_info->invalidate_regs[0];
    const RegisterInfo *full_reg_info = GetRegisterInfoAtIndex(full_reg);

    // Read the full register.
    if (ReadRegister(full_reg_info, full_value)) {
      Status error;
      ByteOrder byte_order = GetByteOrder();
      uint8_t dst[RegisterValue::kMaxRegisterByteSize];

      // Get the bytes for the full register.
      const uint32_t dest_size = full_value.GetAsMemoryData(
          full_reg_info, dst, sizeof(dst), byte_order, error);
      if (error.Success() && dest_size) {
        uint8_t src[RegisterValue::kMaxRegisterByteSize];

        // Get the bytes for the source data.
        const uint32_t src_size = value.GetAsMemoryData(
            reg_info, src, sizeof(src), byte_order, error);
        if (error.Success() && src_size && (src_size < dest_size)) {
          // Copy the src bytes to the destination.
          memcpy(dst + (reg_info->byte_offset & 0x1), src, src_size);
          // Set this full register as the value to write.
          value_to_write.SetBytes(dst, full_value.GetByteSize(), byte_order);
          value_to_write.SetType(full_reg_info);
          reg_to_write = full_reg;
        }
      }
    }
  }

  ProcessMonitor &monitor = GetMonitor();
#if defined(__FreeBSD__)
  if (reg >= m_reg_info.first_dr)
    return monitor.WriteDebugRegisterValue(
        m_thread.GetID(), GetRegisterOffset(reg_to_write),
        GetRegisterName(reg_to_write), value_to_write);
#endif
  return monitor.WriteRegisterValue(
      m_thread.GetID(), GetRegisterOffset(reg_to_write),
      GetRegisterName(reg_to_write), value_to_write);
}

bool RegisterContextPOSIXProcessMonitor_x86_64::ReadRegister(
    const RegisterInfo *reg_info, RegisterValue &value) {
  if (!reg_info)
    return false;

  const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];

  if (IsFPR(reg, GetFPRType())) {
    if (!ReadFPR())
      return false;
  } else {
    uint32_t full_reg = reg;
    bool is_subreg = reg_info->invalidate_regs &&
                     (reg_info->invalidate_regs[0] != LLDB_INVALID_REGNUM);

    if (is_subreg) {
      // Read the full aligned 64-bit register.
      full_reg = reg_info->invalidate_regs[0];
    }

    bool success = ReadRegister(full_reg, value);

    if (success) {
      // If our read was not aligned (for ah,bh,ch,dh), shift our returned
      // value one byte to the right.
      if (is_subreg && (reg_info->byte_offset & 0x1))
        value.SetUInt64(value.GetAsUInt64() >> 8);

      // If our return byte size was greater than the return value reg size,
      // then use the type specified by reg_info rather than the uint64_t
      // default
      if (value.GetByteSize() > reg_info->byte_size)
        value.SetType(reg_info);
    }
    return success;
  }

  if (reg_info->encoding == eEncodingVector) {
    ByteOrder byte_order = GetByteOrder();

    if (byte_order != ByteOrder::eByteOrderInvalid) {
      if (reg >= m_reg_info.first_st && reg <= m_reg_info.last_st)
        value.SetBytes(m_fpr.fxsave.stmm[reg - m_reg_info.first_st].bytes,
                       reg_info->byte_size, byte_order);
      if (reg >= m_reg_info.first_mm && reg <= m_reg_info.last_mm)
        value.SetBytes(m_fpr.fxsave.stmm[reg - m_reg_info.first_mm].bytes,
                       reg_info->byte_size, byte_order);
      if (reg >= m_reg_info.first_xmm && reg <= m_reg_info.last_xmm)
        value.SetBytes(m_fpr.fxsave.xmm[reg - m_reg_info.first_xmm].bytes,
                       reg_info->byte_size, byte_order);
      if (reg >= m_reg_info.first_ymm && reg <= m_reg_info.last_ymm) {
        // Concatenate ymm using the register halves in xmm.bytes and
        // ymmh.bytes
        if (GetFPRType() == eXSAVE && CopyXSTATEtoYMM(reg, byte_order))
          value.SetBytes(m_ymm_set.ymm[reg - m_reg_info.first_ymm].bytes,
                         reg_info->byte_size, byte_order);
        else
          return false;
      }
      return value.GetType() == RegisterValue::eTypeBytes;
    }
    return false;
  }

  // Get pointer to m_fpr.fxsave variable and set the data from it. Byte
  // offsets of all registers are calculated wrt 'UserArea' structure. However,
  // ReadFPR() reads fpu registers {using ptrace(PT_GETFPREGS,..)} and stores
  // them in 'm_fpr' (of type FPR structure). To extract values of fpu
  // registers, m_fpr should be read at byte offsets calculated wrt to FPR
  // structure.

  // Since, FPR structure is also one of the member of UserArea structure.
  // byte_offset(fpu wrt FPR) = byte_offset(fpu wrt UserArea) -
  // byte_offset(fctrl wrt UserArea)
  assert((reg_info->byte_offset - m_fctrl_offset_in_userarea) < sizeof(m_fpr));
  uint8_t *src =
      (uint8_t *)&m_fpr + reg_info->byte_offset - m_fctrl_offset_in_userarea;
  switch (reg_info->byte_size) {
  case 1:
    value.SetUInt8(*(uint8_t *)src);
    return true;
  case 2:
    value.SetUInt16(*(uint16_t *)src);
    return true;
  case 4:
    value.SetUInt32(*(uint32_t *)src);
    return true;
  case 8:
    value.SetUInt64(*(uint64_t *)src);
    return true;
  default:
    assert(false && "Unhandled data size.");
    return false;
  }
}

bool RegisterContextPOSIXProcessMonitor_x86_64::WriteRegister(
    const RegisterInfo *reg_info, const RegisterValue &value) {
  const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];

  if (IsGPR(reg))
    return WriteRegister(reg, value);

  if (IsFPR(reg, GetFPRType())) {
    if (reg_info->encoding == eEncodingVector) {
      if (reg >= m_reg_info.first_st && reg <= m_reg_info.last_st)
        ::memcpy(m_fpr.fxsave.stmm[reg - m_reg_info.first_st].bytes,
                 value.GetBytes(), value.GetByteSize());

      if (reg >= m_reg_info.first_mm && reg <= m_reg_info.last_mm)
        ::memcpy(m_fpr.fxsave.stmm[reg - m_reg_info.first_mm].bytes,
                 value.GetBytes(), value.GetByteSize());

      if (reg >= m_reg_info.first_xmm && reg <= m_reg_info.last_xmm)
        ::memcpy(m_fpr.fxsave.xmm[reg - m_reg_info.first_xmm].bytes,
                 value.GetBytes(), value.GetByteSize());

      if (reg >= m_reg_info.first_ymm && reg <= m_reg_info.last_ymm) {
        if (GetFPRType() != eXSAVE)
          return false; // the target processor does not support AVX

        // Store ymm register content, and split into the register halves in
        // xmm.bytes and ymmh.bytes
        ::memcpy(m_ymm_set.ymm[reg - m_reg_info.first_ymm].bytes,
                 value.GetBytes(), value.GetByteSize());
        if (false == CopyYMMtoXSTATE(reg, GetByteOrder()))
          return false;
      }
    } else {
      // Get pointer to m_fpr.fxsave variable and set the data to it. Byte
      // offsets of all registers are calculated wrt 'UserArea' structure.
      // However, WriteFPR() takes m_fpr (of type FPR structure) and writes
      // only fpu registers using ptrace(PT_SETFPREGS,..) API. Hence fpu
      // registers should be written in m_fpr at byte offsets calculated wrt
      // FPR structure.

      // Since, FPR structure is also one of the member of UserArea structure.
      // byte_offset(fpu wrt FPR) = byte_offset(fpu wrt UserArea) -
      // byte_offset(fctrl wrt UserArea)
      assert((reg_info->byte_offset - m_fctrl_offset_in_userarea) <
             sizeof(m_fpr));
      uint8_t *dst = (uint8_t *)&m_fpr + reg_info->byte_offset -
                     m_fctrl_offset_in_userarea;
      switch (reg_info->byte_size) {
      case 1:
        *(uint8_t *)dst = value.GetAsUInt8();
        break;
      case 2:
        *(uint16_t *)dst = value.GetAsUInt16();
        break;
      case 4:
        *(uint32_t *)dst = value.GetAsUInt32();
        break;
      case 8:
        *(uint64_t *)dst = value.GetAsUInt64();
        break;
      default:
        assert(false && "Unhandled data size.");
        return false;
      }
    }

    if (WriteFPR()) {
      if (IsAVX(reg))
        return CopyYMMtoXSTATE(reg, GetByteOrder());
      return true;
    }
  }
  return false;
}

bool RegisterContextPOSIXProcessMonitor_x86_64::ReadAllRegisterValues(
    DataBufferSP &data_sp) {
  bool success = false;
  data_sp.reset(new DataBufferHeap(REG_CONTEXT_SIZE, 0));
  if (ReadGPR() && ReadFPR()) {
    uint8_t *dst = data_sp->GetBytes();
    success = dst != 0;

    if (success) {
      ::memcpy(dst, &m_gpr_x86_64, GetGPRSize());
      dst += GetGPRSize();
      if (GetFPRType() == eFXSAVE)
        ::memcpy(dst, &m_fpr.fxsave, sizeof(m_fpr.fxsave));
    }

    if (GetFPRType() == eXSAVE) {
      ByteOrder byte_order = GetByteOrder();

      // Assemble the YMM register content from the register halves.
      for (uint32_t reg = m_reg_info.first_ymm;
           success && reg <= m_reg_info.last_ymm; ++reg)
        success = CopyXSTATEtoYMM(reg, byte_order);

      if (success) {
        // Copy the extended register state including the assembled ymm
        // registers.
        ::memcpy(dst, &m_fpr, sizeof(m_fpr));
      }
    }
  }
  return success;
}

bool RegisterContextPOSIXProcessMonitor_x86_64::WriteAllRegisterValues(
    const DataBufferSP &data_sp) {
  bool success = false;
  if (data_sp && data_sp->GetByteSize() == REG_CONTEXT_SIZE) {
    uint8_t *src = data_sp->GetBytes();
    if (src) {
      ::memcpy(&m_gpr_x86_64, src, GetGPRSize());

      if (WriteGPR()) {
        src += GetGPRSize();
        if (GetFPRType() == eFXSAVE)
          ::memcpy(&m_fpr.fxsave, src, sizeof(m_fpr.fxsave));
        if (GetFPRType() == eXSAVE)
          ::memcpy(&m_fpr.xsave, src, sizeof(m_fpr.xsave));

        success = WriteFPR();
        if (success) {
          if (GetFPRType() == eXSAVE) {
            ByteOrder byte_order = GetByteOrder();

            // Parse the YMM register content from the register halves.
            for (uint32_t reg = m_reg_info.first_ymm;
                 success && reg <= m_reg_info.last_ymm; ++reg)
              success = CopyYMMtoXSTATE(reg, byte_order);
          }
        }
      }
    }
  }
  return success;
}

uint32_t RegisterContextPOSIXProcessMonitor_x86_64::SetHardwareWatchpoint(
    addr_t addr, size_t size, bool read, bool write) {
  const uint32_t num_hw_watchpoints = NumSupportedHardwareWatchpoints();
  uint32_t hw_index;

  for (hw_index = 0; hw_index < num_hw_watchpoints; ++hw_index) {
    if (IsWatchpointVacant(hw_index))
      return SetHardwareWatchpointWithIndex(addr, size, read, write, hw_index);
  }

  return LLDB_INVALID_INDEX32;
}

bool RegisterContextPOSIXProcessMonitor_x86_64::ClearHardwareWatchpoint(
    uint32_t hw_index) {
  if (hw_index < NumSupportedHardwareWatchpoints()) {
    RegisterValue current_dr7_bits;

    if (ReadRegister(m_reg_info.first_dr + 7, current_dr7_bits)) {
      uint64_t new_dr7_bits =
          current_dr7_bits.GetAsUInt64() & ~(3 << (2 * hw_index));

      if (WriteRegister(m_reg_info.first_dr + 7, RegisterValue(new_dr7_bits)))
        return true;
    }
  }

  return false;
}

bool RegisterContextPOSIXProcessMonitor_x86_64::HardwareSingleStep(
    bool enable) {
  enum { TRACE_BIT = 0x100 };
  uint64_t rflags;

  if ((rflags = ReadRegisterAsUnsigned(m_reg_info.gpr_flags, -1UL)) == -1UL)
    return false;

  if (enable) {
    if (rflags & TRACE_BIT)
      return true;

    rflags |= TRACE_BIT;
  } else {
    if (!(rflags & TRACE_BIT))
      return false;

    rflags &= ~TRACE_BIT;
  }

  return WriteRegisterFromUnsigned(m_reg_info.gpr_flags, rflags);
}

bool RegisterContextPOSIXProcessMonitor_x86_64::UpdateAfterBreakpoint() {
  // PC points one byte past the int3 responsible for the breakpoint.
  lldb::addr_t pc;

  if ((pc = GetPC()) == LLDB_INVALID_ADDRESS)
    return false;

  SetPC(pc - 1);
  return true;
}

unsigned RegisterContextPOSIXProcessMonitor_x86_64::GetRegisterIndexFromOffset(
    unsigned offset) {
  unsigned reg;
  for (reg = 0; reg < m_reg_info.num_registers; reg++) {
    if (GetRegisterInfo()[reg].byte_offset == offset)
      break;
  }
  assert(reg < m_reg_info.num_registers && "Invalid register offset.");
  return reg;
}

bool RegisterContextPOSIXProcessMonitor_x86_64::IsWatchpointHit(
    uint32_t hw_index) {
  bool is_hit = false;

  if (m_watchpoints_initialized == false) {
    // Reset the debug status and debug control registers
    RegisterValue zero_bits = RegisterValue(uint64_t(0));
    if (!WriteRegister(m_reg_info.first_dr + 6, zero_bits) ||
        !WriteRegister(m_reg_info.first_dr + 7, zero_bits))
      assert(false && "Could not initialize watchpoint registers");
    m_watchpoints_initialized = true;
  }

  if (hw_index < NumSupportedHardwareWatchpoints()) {
    RegisterValue value;

    if (ReadRegister(m_reg_info.first_dr + 6, value)) {
      uint64_t val = value.GetAsUInt64();
      is_hit = val & (1 << hw_index);
    }
  }

  return is_hit;
}

bool RegisterContextPOSIXProcessMonitor_x86_64::ClearWatchpointHits() {
  return WriteRegister(m_reg_info.first_dr + 6, RegisterValue((uint64_t)0));
}

addr_t RegisterContextPOSIXProcessMonitor_x86_64::GetWatchpointAddress(
    uint32_t hw_index) {
  addr_t wp_monitor_addr = LLDB_INVALID_ADDRESS;

  if (hw_index < NumSupportedHardwareWatchpoints()) {
    if (!IsWatchpointVacant(hw_index)) {
      RegisterValue value;

      if (ReadRegister(m_reg_info.first_dr + hw_index, value))
        wp_monitor_addr = value.GetAsUInt64();
    }
  }

  return wp_monitor_addr;
}

bool RegisterContextPOSIXProcessMonitor_x86_64::IsWatchpointVacant(
    uint32_t hw_index) {
  bool is_vacant = false;
  RegisterValue value;

  assert(hw_index < NumSupportedHardwareWatchpoints());

  if (m_watchpoints_initialized == false) {
    // Reset the debug status and debug control registers
    RegisterValue zero_bits = RegisterValue(uint64_t(0));
    if (!WriteRegister(m_reg_info.first_dr + 6, zero_bits) ||
        !WriteRegister(m_reg_info.first_dr + 7, zero_bits))
      assert(false && "Could not initialize watchpoint registers");
    m_watchpoints_initialized = true;
  }

  if (ReadRegister(m_reg_info.first_dr + 7, value)) {
    uint64_t val = value.GetAsUInt64();
    is_vacant = (val & (3 << 2 * hw_index)) == 0;
  }

  return is_vacant;
}

bool RegisterContextPOSIXProcessMonitor_x86_64::SetHardwareWatchpointWithIndex(
    addr_t addr, size_t size, bool read, bool write, uint32_t hw_index) {
  const uint32_t num_hw_watchpoints = NumSupportedHardwareWatchpoints();

  if (num_hw_watchpoints == 0 || hw_index >= num_hw_watchpoints)
    return false;

  if (!(size == 1 || size == 2 || size == 4 || size == 8))
    return false;

  if (read == false && write == false)
    return false;

  if (!IsWatchpointVacant(hw_index))
    return false;

  // Set both dr7 (debug control register) and dri (debug address register).

  // dr7{7-0} encodes the local/global enable bits:
  //  global enable --. .-- local enable
  //                  | |
  //                  v v
  //      dr0 -> bits{1-0}
  //      dr1 -> bits{3-2}
  //      dr2 -> bits{5-4}
  //      dr3 -> bits{7-6}
  //
  // dr7{31-16} encodes the rw/len bits:
  //  b_x+3, b_x+2, b_x+1, b_x
  //      where bits{x+1, x} => rw
  //            0b00: execute, 0b01: write, 0b11: read-or-write,
  //            0b10: io read-or-write (unused)
  //      and bits{x+3, x+2} => len
  //            0b00: 1-byte, 0b01: 2-byte, 0b11: 4-byte, 0b10: 8-byte
  //
  //      dr0 -> bits{19-16}
  //      dr1 -> bits{23-20}
  //      dr2 -> bits{27-24}
  //      dr3 -> bits{31-28}
  if (hw_index < num_hw_watchpoints) {
    RegisterValue current_dr7_bits;

    if (ReadRegister(m_reg_info.first_dr + 7, current_dr7_bits)) {
      uint64_t new_dr7_bits =
          current_dr7_bits.GetAsUInt64() |
          (1 << (2 * hw_index) |
           size_and_rw_bits(size, read, write) << (16 + 4 * hw_index));

      if (WriteRegister(m_reg_info.first_dr + hw_index, RegisterValue(addr)) &&
          WriteRegister(m_reg_info.first_dr + 7, RegisterValue(new_dr7_bits)))
        return true;
    }
  }

  return false;
}

uint32_t
RegisterContextPOSIXProcessMonitor_x86_64::NumSupportedHardwareWatchpoints() {
  // Available debug address registers: dr0, dr1, dr2, dr3
  return 4;
}