Writer.cpp 111 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001
//===- Writer.cpp ---------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "Writer.h"
#include "AArch64ErrataFix.h"
#include "ARMErrataFix.h"
#include "CallGraphSort.h"
#include "Config.h"
#include "LinkerScript.h"
#include "MapFile.h"
#include "OutputSections.h"
#include "Relocations.h"
#include "SymbolTable.h"
#include "Symbols.h"
#include "SyntheticSections.h"
#include "Target.h"
#include "lld/Common/Filesystem.h"
#include "lld/Common/Memory.h"
#include "lld/Common/Strings.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/Support/Parallel.h"
#include "llvm/Support/RandomNumberGenerator.h"
#include "llvm/Support/SHA1.h"
#include "llvm/Support/TimeProfiler.h"
#include "llvm/Support/xxhash.h"
#include <climits>

#define DEBUG_TYPE "lld"

using namespace llvm;
using namespace llvm::ELF;
using namespace llvm::object;
using namespace llvm::support;
using namespace llvm::support::endian;
using namespace lld;
using namespace lld::elf;

namespace {
// The writer writes a SymbolTable result to a file.
template <class ELFT> class Writer {
public:
  Writer() : buffer(errorHandler().outputBuffer) {}
  using Elf_Shdr = typename ELFT::Shdr;
  using Elf_Ehdr = typename ELFT::Ehdr;
  using Elf_Phdr = typename ELFT::Phdr;

  void run();

private:
  void copyLocalSymbols();
  void addSectionSymbols();
  void forEachRelSec(llvm::function_ref<void(InputSectionBase &)> fn);
  void sortSections();
  void resolveShfLinkOrder();
  void finalizeAddressDependentContent();
  void optimizeBasicBlockJumps();
  void sortInputSections();
  void finalizeSections();
  void checkExecuteOnly();
  void setReservedSymbolSections();

  std::vector<PhdrEntry *> createPhdrs(Partition &part);
  void addPhdrForSection(Partition &part, unsigned shType, unsigned pType,
                         unsigned pFlags);
  void assignFileOffsets();
  void assignFileOffsetsBinary();
  void setPhdrs(Partition &part);
  void checkSections();
  void fixSectionAlignments();
  void openFile();
  void writeTrapInstr();
  void writeHeader();
  void writeSections();
  void writeSectionsBinary();
  void writeBuildId();

  std::unique_ptr<FileOutputBuffer> &buffer;

  void addRelIpltSymbols();
  void addStartEndSymbols();
  void addStartStopSymbols(OutputSection *sec);

  uint64_t fileSize;
  uint64_t sectionHeaderOff;
};
} // anonymous namespace

static bool isSectionPrefix(StringRef prefix, StringRef name) {
  return name.startswith(prefix) || name == prefix.drop_back();
}

StringRef elf::getOutputSectionName(const InputSectionBase *s) {
  if (config->relocatable)
    return s->name;

  // This is for --emit-relocs. If .text.foo is emitted as .text.bar, we want
  // to emit .rela.text.foo as .rela.text.bar for consistency (this is not
  // technically required, but not doing it is odd). This code guarantees that.
  if (auto *isec = dyn_cast<InputSection>(s)) {
    if (InputSectionBase *rel = isec->getRelocatedSection()) {
      OutputSection *out = rel->getOutputSection();
      if (s->type == SHT_RELA)
        return saver.save(".rela" + out->name);
      return saver.save(".rel" + out->name);
    }
  }

  // A BssSection created for a common symbol is identified as "COMMON" in
  // linker scripts. It should go to .bss section.
  if (s->name == "COMMON")
    return ".bss";

  if (script->hasSectionsCommand)
    return s->name;

  // When no SECTIONS is specified, emulate GNU ld's internal linker scripts
  // by grouping sections with certain prefixes.

  // GNU ld places text sections with prefix ".text.hot.", ".text.unknown.",
  // ".text.unlikely.", ".text.startup." or ".text.exit." before others.
  // We provide an option -z keep-text-section-prefix to group such sections
  // into separate output sections. This is more flexible. See also
  // sortISDBySectionOrder().
  // ".text.unknown" means the hotness of the section is unknown. When
  // SampleFDO is used, if a function doesn't have sample, it could be very
  // cold or it could be a new function never being sampled. Those functions
  // will be kept in the ".text.unknown" section.
  // ".text.split." holds symbols which are split out from functions in other
  // input sections. For example, with -fsplit-machine-functions, placing the
  // cold parts in .text.split instead of .text.unlikely mitigates against poor
  // profile inaccuracy. Techniques such as hugepage remapping can make
  // conservative decisions at the section granularity.
  if (config->zKeepTextSectionPrefix)
    for (StringRef v : {".text.hot.", ".text.unknown.", ".text.unlikely.",
                        ".text.startup.", ".text.exit.", ".text.split."})
      if (isSectionPrefix(v, s->name))
        return v.drop_back();

  for (StringRef v :
       {".text.", ".rodata.", ".data.rel.ro.", ".data.", ".bss.rel.ro.",
        ".bss.", ".init_array.", ".fini_array.", ".ctors.", ".dtors.", ".tbss.",
        ".gcc_except_table.", ".tdata.", ".ARM.exidx.", ".ARM.extab."})
    if (isSectionPrefix(v, s->name))
      return v.drop_back();

  return s->name;
}

static bool needsInterpSection() {
  return !config->relocatable && !config->shared &&
         !config->dynamicLinker.empty() && script->needsInterpSection();
}

template <class ELFT> void elf::writeResult() {
  llvm::TimeTraceScope timeScope("Write output file");
  Writer<ELFT>().run();
}

static void removeEmptyPTLoad(std::vector<PhdrEntry *> &phdrs) {
  auto it = std::stable_partition(
      phdrs.begin(), phdrs.end(), [&](const PhdrEntry *p) {
        if (p->p_type != PT_LOAD)
          return true;
        if (!p->firstSec)
          return false;
        uint64_t size = p->lastSec->addr + p->lastSec->size - p->firstSec->addr;
        return size != 0;
      });

  // Clear OutputSection::ptLoad for sections contained in removed
  // segments.
  DenseSet<PhdrEntry *> removed(it, phdrs.end());
  for (OutputSection *sec : outputSections)
    if (removed.count(sec->ptLoad))
      sec->ptLoad = nullptr;
  phdrs.erase(it, phdrs.end());
}

void elf::copySectionsIntoPartitions() {
  std::vector<InputSectionBase *> newSections;
  for (unsigned part = 2; part != partitions.size() + 1; ++part) {
    for (InputSectionBase *s : inputSections) {
      if (!(s->flags & SHF_ALLOC) || !s->isLive())
        continue;
      InputSectionBase *copy;
      if (s->type == SHT_NOTE)
        copy = make<InputSection>(cast<InputSection>(*s));
      else if (auto *es = dyn_cast<EhInputSection>(s))
        copy = make<EhInputSection>(*es);
      else
        continue;
      copy->partition = part;
      newSections.push_back(copy);
    }
  }

  inputSections.insert(inputSections.end(), newSections.begin(),
                       newSections.end());
}

void elf::combineEhSections() {
  for (InputSectionBase *&s : inputSections) {
    // Ignore dead sections and the partition end marker (.part.end),
    // whose partition number is out of bounds.
    if (!s->isLive() || s->partition == 255)
      continue;

    Partition &part = s->getPartition();
    if (auto *es = dyn_cast<EhInputSection>(s)) {
      part.ehFrame->addSection(es);
      s = nullptr;
    } else if (s->kind() == SectionBase::Regular && part.armExidx &&
               part.armExidx->addSection(cast<InputSection>(s))) {
      s = nullptr;
    }
  }

  std::vector<InputSectionBase *> &v = inputSections;
  v.erase(std::remove(v.begin(), v.end(), nullptr), v.end());
}

static Defined *addOptionalRegular(StringRef name, SectionBase *sec,
                                   uint64_t val, uint8_t stOther = STV_HIDDEN,
                                   uint8_t binding = STB_GLOBAL) {
  Symbol *s = symtab->find(name);
  if (!s || s->isDefined())
    return nullptr;

  s->resolve(Defined{/*file=*/nullptr, name, binding, stOther, STT_NOTYPE, val,
                     /*size=*/0, sec});
  return cast<Defined>(s);
}

static Defined *addAbsolute(StringRef name) {
  Symbol *sym = symtab->addSymbol(Defined{nullptr, name, STB_GLOBAL, STV_HIDDEN,
                                          STT_NOTYPE, 0, 0, nullptr});
  return cast<Defined>(sym);
}

// The linker is expected to define some symbols depending on
// the linking result. This function defines such symbols.
void elf::addReservedSymbols() {
  if (config->emachine == EM_MIPS) {
    // Define _gp for MIPS. st_value of _gp symbol will be updated by Writer
    // so that it points to an absolute address which by default is relative
    // to GOT. Default offset is 0x7ff0.
    // See "Global Data Symbols" in Chapter 6 in the following document:
    // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
    ElfSym::mipsGp = addAbsolute("_gp");

    // On MIPS O32 ABI, _gp_disp is a magic symbol designates offset between
    // start of function and 'gp' pointer into GOT.
    if (symtab->find("_gp_disp"))
      ElfSym::mipsGpDisp = addAbsolute("_gp_disp");

    // The __gnu_local_gp is a magic symbol equal to the current value of 'gp'
    // pointer. This symbol is used in the code generated by .cpload pseudo-op
    // in case of using -mno-shared option.
    // https://sourceware.org/ml/binutils/2004-12/msg00094.html
    if (symtab->find("__gnu_local_gp"))
      ElfSym::mipsLocalGp = addAbsolute("__gnu_local_gp");
  } else if (config->emachine == EM_PPC) {
    // glibc *crt1.o has a undefined reference to _SDA_BASE_. Since we don't
    // support Small Data Area, define it arbitrarily as 0.
    addOptionalRegular("_SDA_BASE_", nullptr, 0, STV_HIDDEN);
  } else if (config->emachine == EM_PPC64) {
    addPPC64SaveRestore();
  }

  // The Power Architecture 64-bit v2 ABI defines a TableOfContents (TOC) which
  // combines the typical ELF GOT with the small data sections. It commonly
  // includes .got .toc .sdata .sbss. The .TOC. symbol replaces both
  // _GLOBAL_OFFSET_TABLE_ and _SDA_BASE_ from the 32-bit ABI. It is used to
  // represent the TOC base which is offset by 0x8000 bytes from the start of
  // the .got section.
  // We do not allow _GLOBAL_OFFSET_TABLE_ to be defined by input objects as the
  // correctness of some relocations depends on its value.
  StringRef gotSymName =
      (config->emachine == EM_PPC64) ? ".TOC." : "_GLOBAL_OFFSET_TABLE_";

  if (Symbol *s = symtab->find(gotSymName)) {
    if (s->isDefined()) {
      error(toString(s->file) + " cannot redefine linker defined symbol '" +
            gotSymName + "'");
      return;
    }

    uint64_t gotOff = 0;
    if (config->emachine == EM_PPC64)
      gotOff = 0x8000;

    s->resolve(Defined{/*file=*/nullptr, gotSymName, STB_GLOBAL, STV_HIDDEN,
                       STT_NOTYPE, gotOff, /*size=*/0, Out::elfHeader});
    ElfSym::globalOffsetTable = cast<Defined>(s);
  }

  // __ehdr_start is the location of ELF file headers. Note that we define
  // this symbol unconditionally even when using a linker script, which
  // differs from the behavior implemented by GNU linker which only define
  // this symbol if ELF headers are in the memory mapped segment.
  addOptionalRegular("__ehdr_start", Out::elfHeader, 0, STV_HIDDEN);

  // __executable_start is not documented, but the expectation of at
  // least the Android libc is that it points to the ELF header.
  addOptionalRegular("__executable_start", Out::elfHeader, 0, STV_HIDDEN);

  // __dso_handle symbol is passed to cxa_finalize as a marker to identify
  // each DSO. The address of the symbol doesn't matter as long as they are
  // different in different DSOs, so we chose the start address of the DSO.
  addOptionalRegular("__dso_handle", Out::elfHeader, 0, STV_HIDDEN);

  // If linker script do layout we do not need to create any standard symbols.
  if (script->hasSectionsCommand)
    return;

  auto add = [](StringRef s, int64_t pos) {
    return addOptionalRegular(s, Out::elfHeader, pos, STV_DEFAULT);
  };

  ElfSym::bss = add("__bss_start", 0);
  ElfSym::end1 = add("end", -1);
  ElfSym::end2 = add("_end", -1);
  ElfSym::etext1 = add("etext", -1);
  ElfSym::etext2 = add("_etext", -1);
  ElfSym::edata1 = add("edata", -1);
  ElfSym::edata2 = add("_edata", -1);
}

static OutputSection *findSection(StringRef name, unsigned partition = 1) {
  for (BaseCommand *base : script->sectionCommands)
    if (auto *sec = dyn_cast<OutputSection>(base))
      if (sec->name == name && sec->partition == partition)
        return sec;
  return nullptr;
}

template <class ELFT> void elf::createSyntheticSections() {
  // Initialize all pointers with NULL. This is needed because
  // you can call lld::elf::main more than once as a library.
  memset(&Out::first, 0, sizeof(Out));

  // Add the .interp section first because it is not a SyntheticSection.
  // The removeUnusedSyntheticSections() function relies on the
  // SyntheticSections coming last.
  if (needsInterpSection()) {
    for (size_t i = 1; i <= partitions.size(); ++i) {
      InputSection *sec = createInterpSection();
      sec->partition = i;
      inputSections.push_back(sec);
    }
  }

  auto add = [](SyntheticSection *sec) { inputSections.push_back(sec); };

  in.shStrTab = make<StringTableSection>(".shstrtab", false);

  Out::programHeaders = make<OutputSection>("", 0, SHF_ALLOC);
  Out::programHeaders->alignment = config->wordsize;

  if (config->strip != StripPolicy::All) {
    in.strTab = make<StringTableSection>(".strtab", false);
    in.symTab = make<SymbolTableSection<ELFT>>(*in.strTab);
    in.symTabShndx = make<SymtabShndxSection>();
  }

  in.bss = make<BssSection>(".bss", 0, 1);
  add(in.bss);

  // If there is a SECTIONS command and a .data.rel.ro section name use name
  // .data.rel.ro.bss so that we match in the .data.rel.ro output section.
  // This makes sure our relro is contiguous.
  bool hasDataRelRo =
      script->hasSectionsCommand && findSection(".data.rel.ro", 0);
  in.bssRelRo =
      make<BssSection>(hasDataRelRo ? ".data.rel.ro.bss" : ".bss.rel.ro", 0, 1);
  add(in.bssRelRo);

  // Add MIPS-specific sections.
  if (config->emachine == EM_MIPS) {
    if (!config->shared && config->hasDynSymTab) {
      in.mipsRldMap = make<MipsRldMapSection>();
      add(in.mipsRldMap);
    }
    if (auto *sec = MipsAbiFlagsSection<ELFT>::create())
      add(sec);
    if (auto *sec = MipsOptionsSection<ELFT>::create())
      add(sec);
    if (auto *sec = MipsReginfoSection<ELFT>::create())
      add(sec);
  }

  StringRef relaDynName = config->isRela ? ".rela.dyn" : ".rel.dyn";

  for (Partition &part : partitions) {
    auto add = [&](SyntheticSection *sec) {
      sec->partition = part.getNumber();
      inputSections.push_back(sec);
    };

    if (!part.name.empty()) {
      part.elfHeader = make<PartitionElfHeaderSection<ELFT>>();
      part.elfHeader->name = part.name;
      add(part.elfHeader);

      part.programHeaders = make<PartitionProgramHeadersSection<ELFT>>();
      add(part.programHeaders);
    }

    if (config->buildId != BuildIdKind::None) {
      part.buildId = make<BuildIdSection>();
      add(part.buildId);
    }

    part.dynStrTab = make<StringTableSection>(".dynstr", true);
    part.dynSymTab = make<SymbolTableSection<ELFT>>(*part.dynStrTab);
    part.dynamic = make<DynamicSection<ELFT>>();
    if (config->androidPackDynRelocs)
      part.relaDyn = make<AndroidPackedRelocationSection<ELFT>>(relaDynName);
    else
      part.relaDyn =
          make<RelocationSection<ELFT>>(relaDynName, config->zCombreloc);

    if (config->hasDynSymTab) {
      part.dynSymTab = make<SymbolTableSection<ELFT>>(*part.dynStrTab);
      add(part.dynSymTab);

      part.verSym = make<VersionTableSection>();
      add(part.verSym);

      if (!namedVersionDefs().empty()) {
        part.verDef = make<VersionDefinitionSection>();
        add(part.verDef);
      }

      part.verNeed = make<VersionNeedSection<ELFT>>();
      add(part.verNeed);

      if (config->gnuHash) {
        part.gnuHashTab = make<GnuHashTableSection>();
        add(part.gnuHashTab);
      }

      if (config->sysvHash) {
        part.hashTab = make<HashTableSection>();
        add(part.hashTab);
      }

      add(part.dynamic);
      add(part.dynStrTab);
      add(part.relaDyn);
    }

    if (config->relrPackDynRelocs) {
      part.relrDyn = make<RelrSection<ELFT>>();
      add(part.relrDyn);
    }

    if (!config->relocatable) {
      if (config->ehFrameHdr) {
        part.ehFrameHdr = make<EhFrameHeader>();
        add(part.ehFrameHdr);
      }
      part.ehFrame = make<EhFrameSection>();
      add(part.ehFrame);
    }

    if (config->emachine == EM_ARM && !config->relocatable) {
      // The ARMExidxsyntheticsection replaces all the individual .ARM.exidx
      // InputSections.
      part.armExidx = make<ARMExidxSyntheticSection>();
      add(part.armExidx);
    }
  }

  if (partitions.size() != 1) {
    // Create the partition end marker. This needs to be in partition number 255
    // so that it is sorted after all other partitions. It also has other
    // special handling (see createPhdrs() and combineEhSections()).
    in.partEnd = make<BssSection>(".part.end", config->maxPageSize, 1);
    in.partEnd->partition = 255;
    add(in.partEnd);

    in.partIndex = make<PartitionIndexSection>();
    addOptionalRegular("__part_index_begin", in.partIndex, 0);
    addOptionalRegular("__part_index_end", in.partIndex,
                       in.partIndex->getSize());
    add(in.partIndex);
  }

  // Add .got. MIPS' .got is so different from the other archs,
  // it has its own class.
  if (config->emachine == EM_MIPS) {
    in.mipsGot = make<MipsGotSection>();
    add(in.mipsGot);
  } else {
    in.got = make<GotSection>();
    add(in.got);
  }

  if (config->emachine == EM_PPC) {
    in.ppc32Got2 = make<PPC32Got2Section>();
    add(in.ppc32Got2);
  }

  if (config->emachine == EM_PPC64) {
    in.ppc64LongBranchTarget = make<PPC64LongBranchTargetSection>();
    add(in.ppc64LongBranchTarget);
  }

  in.gotPlt = make<GotPltSection>();
  add(in.gotPlt);
  in.igotPlt = make<IgotPltSection>();
  add(in.igotPlt);

  // _GLOBAL_OFFSET_TABLE_ is defined relative to either .got.plt or .got. Treat
  // it as a relocation and ensure the referenced section is created.
  if (ElfSym::globalOffsetTable && config->emachine != EM_MIPS) {
    if (target->gotBaseSymInGotPlt)
      in.gotPlt->hasGotPltOffRel = true;
    else
      in.got->hasGotOffRel = true;
  }

  if (config->gdbIndex)
    add(GdbIndexSection::create<ELFT>());

  // We always need to add rel[a].plt to output if it has entries.
  // Even for static linking it can contain R_[*]_IRELATIVE relocations.
  in.relaPlt = make<RelocationSection<ELFT>>(
      config->isRela ? ".rela.plt" : ".rel.plt", /*sort=*/false);
  add(in.relaPlt);

  // The relaIplt immediately follows .rel[a].dyn to ensure that the IRelative
  // relocations are processed last by the dynamic loader. We cannot place the
  // iplt section in .rel.dyn when Android relocation packing is enabled because
  // that would cause a section type mismatch. However, because the Android
  // dynamic loader reads .rel.plt after .rel.dyn, we can get the desired
  // behaviour by placing the iplt section in .rel.plt.
  in.relaIplt = make<RelocationSection<ELFT>>(
      config->androidPackDynRelocs ? in.relaPlt->name : relaDynName,
      /*sort=*/false);
  add(in.relaIplt);

  if ((config->emachine == EM_386 || config->emachine == EM_X86_64) &&
      (config->andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT)) {
    in.ibtPlt = make<IBTPltSection>();
    add(in.ibtPlt);
  }

  in.plt = config->emachine == EM_PPC ? make<PPC32GlinkSection>()
                                      : make<PltSection>();
  add(in.plt);
  in.iplt = make<IpltSection>();
  add(in.iplt);

  if (config->andFeatures)
    add(make<GnuPropertySection>());

  // .note.GNU-stack is always added when we are creating a re-linkable
  // object file. Other linkers are using the presence of this marker
  // section to control the executable-ness of the stack area, but that
  // is irrelevant these days. Stack area should always be non-executable
  // by default. So we emit this section unconditionally.
  if (config->relocatable)
    add(make<GnuStackSection>());

  if (in.symTab)
    add(in.symTab);
  if (in.symTabShndx)
    add(in.symTabShndx);
  add(in.shStrTab);
  if (in.strTab)
    add(in.strTab);
}

// The main function of the writer.
template <class ELFT> void Writer<ELFT>::run() {
  copyLocalSymbols();

  if (config->copyRelocs)
    addSectionSymbols();

  // Now that we have a complete set of output sections. This function
  // completes section contents. For example, we need to add strings
  // to the string table, and add entries to .got and .plt.
  // finalizeSections does that.
  finalizeSections();
  checkExecuteOnly();
  if (errorCount())
    return;

  // If -compressed-debug-sections is specified, we need to compress
  // .debug_* sections. Do it right now because it changes the size of
  // output sections.
  for (OutputSection *sec : outputSections)
    sec->maybeCompress<ELFT>();

  if (script->hasSectionsCommand)
    script->allocateHeaders(mainPart->phdrs);

  // Remove empty PT_LOAD to avoid causing the dynamic linker to try to mmap a
  // 0 sized region. This has to be done late since only after assignAddresses
  // we know the size of the sections.
  for (Partition &part : partitions)
    removeEmptyPTLoad(part.phdrs);

  if (!config->oFormatBinary)
    assignFileOffsets();
  else
    assignFileOffsetsBinary();

  for (Partition &part : partitions)
    setPhdrs(part);

  if (config->relocatable)
    for (OutputSection *sec : outputSections)
      sec->addr = 0;

  // Handle --print-map(-M)/--Map, --cref and --print-archive-stats=. Dump them
  // before checkSections() because the files may be useful in case
  // checkSections() or openFile() fails, for example, due to an erroneous file
  // size.
  writeMapFile();
  writeCrossReferenceTable();
  writeArchiveStats();

  if (config->checkSections)
    checkSections();

  // It does not make sense try to open the file if we have error already.
  if (errorCount())
    return;
  // Write the result down to a file.
  openFile();
  if (errorCount())
    return;

  if (!config->oFormatBinary) {
    if (config->zSeparate != SeparateSegmentKind::None)
      writeTrapInstr();
    writeHeader();
    writeSections();
  } else {
    writeSectionsBinary();
  }

  // Backfill .note.gnu.build-id section content. This is done at last
  // because the content is usually a hash value of the entire output file.
  writeBuildId();
  if (errorCount())
    return;

  if (auto e = buffer->commit())
    error("failed to write to the output file: " + toString(std::move(e)));
}

template <class ELFT, class RelTy>
static void markUsedLocalSymbolsImpl(ObjFile<ELFT> *file,
                                     llvm::ArrayRef<RelTy> rels) {
  for (const RelTy &rel : rels) {
    Symbol &sym = file->getRelocTargetSym(rel);
    if (sym.isLocal())
      sym.used = true;
  }
}

// The function ensures that the "used" field of local symbols reflects the fact
// that the symbol is used in a relocation from a live section.
template <class ELFT> static void markUsedLocalSymbols() {
  // With --gc-sections, the field is already filled.
  // See MarkLive<ELFT>::resolveReloc().
  if (config->gcSections)
    return;
  // Without --gc-sections, the field is initialized with "true".
  // Drop the flag first and then rise for symbols referenced in relocations.
  for (InputFile *file : objectFiles) {
    ObjFile<ELFT> *f = cast<ObjFile<ELFT>>(file);
    for (Symbol *b : f->getLocalSymbols())
      b->used = false;
    for (InputSectionBase *s : f->getSections()) {
      InputSection *isec = dyn_cast_or_null<InputSection>(s);
      if (!isec)
        continue;
      if (isec->type == SHT_REL)
        markUsedLocalSymbolsImpl(f, isec->getDataAs<typename ELFT::Rel>());
      else if (isec->type == SHT_RELA)
        markUsedLocalSymbolsImpl(f, isec->getDataAs<typename ELFT::Rela>());
    }
  }
}

static bool shouldKeepInSymtab(const Defined &sym) {
  if (sym.isSection())
    return false;

  // If --emit-reloc or -r is given, preserve symbols referenced by relocations
  // from live sections.
  if (config->copyRelocs && sym.used)
    return true;

  // Exclude local symbols pointing to .ARM.exidx sections.
  // They are probably mapping symbols "$d", which are optional for these
  // sections. After merging the .ARM.exidx sections, some of these symbols
  // may become dangling. The easiest way to avoid the issue is not to add
  // them to the symbol table from the beginning.
  if (config->emachine == EM_ARM && sym.section &&
      sym.section->type == SHT_ARM_EXIDX)
    return false;

  if (config->discard == DiscardPolicy::None)
    return true;
  if (config->discard == DiscardPolicy::All)
    return false;

  // In ELF assembly .L symbols are normally discarded by the assembler.
  // If the assembler fails to do so, the linker discards them if
  // * --discard-locals is used.
  // * The symbol is in a SHF_MERGE section, which is normally the reason for
  //   the assembler keeping the .L symbol.
  StringRef name = sym.getName();
  bool isLocal = name.startswith(".L") || name.empty();
  if (!isLocal)
    return true;

  if (config->discard == DiscardPolicy::Locals)
    return false;

  SectionBase *sec = sym.section;
  return !sec || !(sec->flags & SHF_MERGE);
}

static bool includeInSymtab(const Symbol &b) {
  if (!b.isLocal() && !b.isUsedInRegularObj)
    return false;

  if (auto *d = dyn_cast<Defined>(&b)) {
    // Always include absolute symbols.
    SectionBase *sec = d->section;
    if (!sec)
      return true;
    sec = sec->repl;

    // Exclude symbols pointing to garbage-collected sections.
    if (isa<InputSectionBase>(sec) && !sec->isLive())
      return false;

    if (auto *s = dyn_cast<MergeInputSection>(sec))
      if (!s->getSectionPiece(d->value)->live)
        return false;
    return true;
  }
  return b.used;
}

// Local symbols are not in the linker's symbol table. This function scans
// each object file's symbol table to copy local symbols to the output.
template <class ELFT> void Writer<ELFT>::copyLocalSymbols() {
  if (!in.symTab)
    return;
  if (config->copyRelocs && config->discard != DiscardPolicy::None)
    markUsedLocalSymbols<ELFT>();
  for (InputFile *file : objectFiles) {
    ObjFile<ELFT> *f = cast<ObjFile<ELFT>>(file);
    for (Symbol *b : f->getLocalSymbols()) {
      assert(b->isLocal() && "should have been caught in initializeSymbols()");
      auto *dr = dyn_cast<Defined>(b);

      // No reason to keep local undefined symbol in symtab.
      if (!dr)
        continue;
      if (!includeInSymtab(*b))
        continue;
      if (!shouldKeepInSymtab(*dr))
        continue;
      in.symTab->addSymbol(b);
    }
  }
}

// Create a section symbol for each output section so that we can represent
// relocations that point to the section. If we know that no relocation is
// referring to a section (that happens if the section is a synthetic one), we
// don't create a section symbol for that section.
template <class ELFT> void Writer<ELFT>::addSectionSymbols() {
  for (BaseCommand *base : script->sectionCommands) {
    auto *sec = dyn_cast<OutputSection>(base);
    if (!sec)
      continue;
    auto i = llvm::find_if(sec->sectionCommands, [](BaseCommand *base) {
      if (auto *isd = dyn_cast<InputSectionDescription>(base))
        return !isd->sections.empty();
      return false;
    });
    if (i == sec->sectionCommands.end())
      continue;
    InputSectionBase *isec = cast<InputSectionDescription>(*i)->sections[0];

    // Relocations are not using REL[A] section symbols.
    if (isec->type == SHT_REL || isec->type == SHT_RELA)
      continue;

    // Unlike other synthetic sections, mergeable output sections contain data
    // copied from input sections, and there may be a relocation pointing to its
    // contents if -r or -emit-reloc are given.
    if (isa<SyntheticSection>(isec) && !(isec->flags & SHF_MERGE))
      continue;

    auto *sym =
        make<Defined>(isec->file, "", STB_LOCAL, /*stOther=*/0, STT_SECTION,
                      /*value=*/0, /*size=*/0, isec);
    in.symTab->addSymbol(sym);
  }
}

// Today's loaders have a feature to make segments read-only after
// processing dynamic relocations to enhance security. PT_GNU_RELRO
// is defined for that.
//
// This function returns true if a section needs to be put into a
// PT_GNU_RELRO segment.
static bool isRelroSection(const OutputSection *sec) {
  if (!config->zRelro)
    return false;

  uint64_t flags = sec->flags;

  // Non-allocatable or non-writable sections don't need RELRO because
  // they are not writable or not even mapped to memory in the first place.
  // RELRO is for sections that are essentially read-only but need to
  // be writable only at process startup to allow dynamic linker to
  // apply relocations.
  if (!(flags & SHF_ALLOC) || !(flags & SHF_WRITE))
    return false;

  // Once initialized, TLS data segments are used as data templates
  // for a thread-local storage. For each new thread, runtime
  // allocates memory for a TLS and copy templates there. No thread
  // are supposed to use templates directly. Thus, it can be in RELRO.
  if (flags & SHF_TLS)
    return true;

  // .init_array, .preinit_array and .fini_array contain pointers to
  // functions that are executed on process startup or exit. These
  // pointers are set by the static linker, and they are not expected
  // to change at runtime. But if you are an attacker, you could do
  // interesting things by manipulating pointers in .fini_array, for
  // example. So they are put into RELRO.
  uint32_t type = sec->type;
  if (type == SHT_INIT_ARRAY || type == SHT_FINI_ARRAY ||
      type == SHT_PREINIT_ARRAY)
    return true;

  // .got contains pointers to external symbols. They are resolved by
  // the dynamic linker when a module is loaded into memory, and after
  // that they are not expected to change. So, it can be in RELRO.
  if (in.got && sec == in.got->getParent())
    return true;

  // .toc is a GOT-ish section for PowerPC64. Their contents are accessed
  // through r2 register, which is reserved for that purpose. Since r2 is used
  // for accessing .got as well, .got and .toc need to be close enough in the
  // virtual address space. Usually, .toc comes just after .got. Since we place
  // .got into RELRO, .toc needs to be placed into RELRO too.
  if (sec->name.equals(".toc"))
    return true;

  // .got.plt contains pointers to external function symbols. They are
  // by default resolved lazily, so we usually cannot put it into RELRO.
  // However, if "-z now" is given, the lazy symbol resolution is
  // disabled, which enables us to put it into RELRO.
  if (sec == in.gotPlt->getParent())
    return config->zNow;

  // .dynamic section contains data for the dynamic linker, and
  // there's no need to write to it at runtime, so it's better to put
  // it into RELRO.
  if (sec->name == ".dynamic")
    return true;

  // Sections with some special names are put into RELRO. This is a
  // bit unfortunate because section names shouldn't be significant in
  // ELF in spirit. But in reality many linker features depend on
  // magic section names.
  StringRef s = sec->name;
  return s == ".data.rel.ro" || s == ".bss.rel.ro" || s == ".ctors" ||
         s == ".dtors" || s == ".jcr" || s == ".eh_frame" ||
         s == ".fini_array" || s == ".init_array" ||
         s == ".openbsd.randomdata" || s == ".preinit_array";
}

// We compute a rank for each section. The rank indicates where the
// section should be placed in the file.  Instead of using simple
// numbers (0,1,2...), we use a series of flags. One for each decision
// point when placing the section.
// Using flags has two key properties:
// * It is easy to check if a give branch was taken.
// * It is easy two see how similar two ranks are (see getRankProximity).
enum RankFlags {
  RF_NOT_ADDR_SET = 1 << 27,
  RF_NOT_ALLOC = 1 << 26,
  RF_PARTITION = 1 << 18, // Partition number (8 bits)
  RF_NOT_PART_EHDR = 1 << 17,
  RF_NOT_PART_PHDR = 1 << 16,
  RF_NOT_INTERP = 1 << 15,
  RF_NOT_NOTE = 1 << 14,
  RF_WRITE = 1 << 13,
  RF_EXEC_WRITE = 1 << 12,
  RF_EXEC = 1 << 11,
  RF_RODATA = 1 << 10,
  RF_NOT_RELRO = 1 << 9,
  RF_NOT_TLS = 1 << 8,
  RF_BSS = 1 << 7,
  RF_PPC_NOT_TOCBSS = 1 << 6,
  RF_PPC_TOCL = 1 << 5,
  RF_PPC_TOC = 1 << 4,
  RF_PPC_GOT = 1 << 3,
  RF_PPC_BRANCH_LT = 1 << 2,
  RF_MIPS_GPREL = 1 << 1,
  RF_MIPS_NOT_GOT = 1 << 0
};

static unsigned getSectionRank(const OutputSection *sec) {
  unsigned rank = sec->partition * RF_PARTITION;

  // We want to put section specified by -T option first, so we
  // can start assigning VA starting from them later.
  if (config->sectionStartMap.count(sec->name))
    return rank;
  rank |= RF_NOT_ADDR_SET;

  // Allocatable sections go first to reduce the total PT_LOAD size and
  // so debug info doesn't change addresses in actual code.
  if (!(sec->flags & SHF_ALLOC))
    return rank | RF_NOT_ALLOC;

  if (sec->type == SHT_LLVM_PART_EHDR)
    return rank;
  rank |= RF_NOT_PART_EHDR;

  if (sec->type == SHT_LLVM_PART_PHDR)
    return rank;
  rank |= RF_NOT_PART_PHDR;

  // Put .interp first because some loaders want to see that section
  // on the first page of the executable file when loaded into memory.
  if (sec->name == ".interp")
    return rank;
  rank |= RF_NOT_INTERP;

  // Put .note sections (which make up one PT_NOTE) at the beginning so that
  // they are likely to be included in a core file even if core file size is
  // limited. In particular, we want a .note.gnu.build-id and a .note.tag to be
  // included in a core to match core files with executables.
  if (sec->type == SHT_NOTE)
    return rank;
  rank |= RF_NOT_NOTE;

  // Sort sections based on their access permission in the following
  // order: R, RX, RWX, RW.  This order is based on the following
  // considerations:
  // * Read-only sections come first such that they go in the
  //   PT_LOAD covering the program headers at the start of the file.
  // * Read-only, executable sections come next.
  // * Writable, executable sections follow such that .plt on
  //   architectures where it needs to be writable will be placed
  //   between .text and .data.
  // * Writable sections come last, such that .bss lands at the very
  //   end of the last PT_LOAD.
  bool isExec = sec->flags & SHF_EXECINSTR;
  bool isWrite = sec->flags & SHF_WRITE;

  if (isExec) {
    if (isWrite)
      rank |= RF_EXEC_WRITE;
    else
      rank |= RF_EXEC;
  } else if (isWrite) {
    rank |= RF_WRITE;
  } else if (sec->type == SHT_PROGBITS) {
    // Make non-executable and non-writable PROGBITS sections (e.g .rodata
    // .eh_frame) closer to .text. They likely contain PC or GOT relative
    // relocations and there could be relocation overflow if other huge sections
    // (.dynstr .dynsym) were placed in between.
    rank |= RF_RODATA;
  }

  // Place RelRo sections first. After considering SHT_NOBITS below, the
  // ordering is PT_LOAD(PT_GNU_RELRO(.data.rel.ro .bss.rel.ro) | .data .bss),
  // where | marks where page alignment happens. An alternative ordering is
  // PT_LOAD(.data | PT_GNU_RELRO( .data.rel.ro .bss.rel.ro) | .bss), but it may
  // waste more bytes due to 2 alignment places.
  if (!isRelroSection(sec))
    rank |= RF_NOT_RELRO;

  // If we got here we know that both A and B are in the same PT_LOAD.

  // The TLS initialization block needs to be a single contiguous block in a R/W
  // PT_LOAD, so stick TLS sections directly before the other RelRo R/W
  // sections. Since p_filesz can be less than p_memsz, place NOBITS sections
  // after PROGBITS.
  if (!(sec->flags & SHF_TLS))
    rank |= RF_NOT_TLS;

  // Within TLS sections, or within other RelRo sections, or within non-RelRo
  // sections, place non-NOBITS sections first.
  if (sec->type == SHT_NOBITS)
    rank |= RF_BSS;

  // Some architectures have additional ordering restrictions for sections
  // within the same PT_LOAD.
  if (config->emachine == EM_PPC64) {
    // PPC64 has a number of special SHT_PROGBITS+SHF_ALLOC+SHF_WRITE sections
    // that we would like to make sure appear is a specific order to maximize
    // their coverage by a single signed 16-bit offset from the TOC base
    // pointer. Conversely, the special .tocbss section should be first among
    // all SHT_NOBITS sections. This will put it next to the loaded special
    // PPC64 sections (and, thus, within reach of the TOC base pointer).
    StringRef name = sec->name;
    if (name != ".tocbss")
      rank |= RF_PPC_NOT_TOCBSS;

    if (name == ".toc1")
      rank |= RF_PPC_TOCL;

    if (name == ".toc")
      rank |= RF_PPC_TOC;

    if (name == ".got")
      rank |= RF_PPC_GOT;

    if (name == ".branch_lt")
      rank |= RF_PPC_BRANCH_LT;
  }

  if (config->emachine == EM_MIPS) {
    // All sections with SHF_MIPS_GPREL flag should be grouped together
    // because data in these sections is addressable with a gp relative address.
    if (sec->flags & SHF_MIPS_GPREL)
      rank |= RF_MIPS_GPREL;

    if (sec->name != ".got")
      rank |= RF_MIPS_NOT_GOT;
  }

  return rank;
}

static bool compareSections(const BaseCommand *aCmd, const BaseCommand *bCmd) {
  const OutputSection *a = cast<OutputSection>(aCmd);
  const OutputSection *b = cast<OutputSection>(bCmd);

  if (a->sortRank != b->sortRank)
    return a->sortRank < b->sortRank;

  if (!(a->sortRank & RF_NOT_ADDR_SET))
    return config->sectionStartMap.lookup(a->name) <
           config->sectionStartMap.lookup(b->name);
  return false;
}

void PhdrEntry::add(OutputSection *sec) {
  lastSec = sec;
  if (!firstSec)
    firstSec = sec;
  p_align = std::max(p_align, sec->alignment);
  if (p_type == PT_LOAD)
    sec->ptLoad = this;
}

// The beginning and the ending of .rel[a].plt section are marked
// with __rel[a]_iplt_{start,end} symbols if it is a statically linked
// executable. The runtime needs these symbols in order to resolve
// all IRELATIVE relocs on startup. For dynamic executables, we don't
// need these symbols, since IRELATIVE relocs are resolved through GOT
// and PLT. For details, see http://www.airs.com/blog/archives/403.
template <class ELFT> void Writer<ELFT>::addRelIpltSymbols() {
  if (config->relocatable || needsInterpSection())
    return;

  // By default, __rela_iplt_{start,end} belong to a dummy section 0
  // because .rela.plt might be empty and thus removed from output.
  // We'll override Out::elfHeader with In.relaIplt later when we are
  // sure that .rela.plt exists in output.
  ElfSym::relaIpltStart = addOptionalRegular(
      config->isRela ? "__rela_iplt_start" : "__rel_iplt_start",
      Out::elfHeader, 0, STV_HIDDEN, STB_WEAK);

  ElfSym::relaIpltEnd = addOptionalRegular(
      config->isRela ? "__rela_iplt_end" : "__rel_iplt_end",
      Out::elfHeader, 0, STV_HIDDEN, STB_WEAK);
}

template <class ELFT>
void Writer<ELFT>::forEachRelSec(
    llvm::function_ref<void(InputSectionBase &)> fn) {
  // Scan all relocations. Each relocation goes through a series
  // of tests to determine if it needs special treatment, such as
  // creating GOT, PLT, copy relocations, etc.
  // Note that relocations for non-alloc sections are directly
  // processed by InputSection::relocateNonAlloc.
  for (InputSectionBase *isec : inputSections)
    if (isec->isLive() && isa<InputSection>(isec) && (isec->flags & SHF_ALLOC))
      fn(*isec);
  for (Partition &part : partitions) {
    for (EhInputSection *es : part.ehFrame->sections)
      fn(*es);
    if (part.armExidx && part.armExidx->isLive())
      for (InputSection *ex : part.armExidx->exidxSections)
        fn(*ex);
  }
}

// This function generates assignments for predefined symbols (e.g. _end or
// _etext) and inserts them into the commands sequence to be processed at the
// appropriate time. This ensures that the value is going to be correct by the
// time any references to these symbols are processed and is equivalent to
// defining these symbols explicitly in the linker script.
template <class ELFT> void Writer<ELFT>::setReservedSymbolSections() {
  if (ElfSym::globalOffsetTable) {
    // The _GLOBAL_OFFSET_TABLE_ symbol is defined by target convention usually
    // to the start of the .got or .got.plt section.
    InputSection *gotSection = in.gotPlt;
    if (!target->gotBaseSymInGotPlt)
      gotSection = in.mipsGot ? cast<InputSection>(in.mipsGot)
                              : cast<InputSection>(in.got);
    ElfSym::globalOffsetTable->section = gotSection;
  }

  // .rela_iplt_{start,end} mark the start and the end of in.relaIplt.
  if (ElfSym::relaIpltStart && in.relaIplt->isNeeded()) {
    ElfSym::relaIpltStart->section = in.relaIplt;
    ElfSym::relaIpltEnd->section = in.relaIplt;
    ElfSym::relaIpltEnd->value = in.relaIplt->getSize();
  }

  PhdrEntry *last = nullptr;
  PhdrEntry *lastRO = nullptr;

  for (Partition &part : partitions) {
    for (PhdrEntry *p : part.phdrs) {
      if (p->p_type != PT_LOAD)
        continue;
      last = p;
      if (!(p->p_flags & PF_W))
        lastRO = p;
    }
  }

  if (lastRO) {
    // _etext is the first location after the last read-only loadable segment.
    if (ElfSym::etext1)
      ElfSym::etext1->section = lastRO->lastSec;
    if (ElfSym::etext2)
      ElfSym::etext2->section = lastRO->lastSec;
  }

  if (last) {
    // _edata points to the end of the last mapped initialized section.
    OutputSection *edata = nullptr;
    for (OutputSection *os : outputSections) {
      if (os->type != SHT_NOBITS)
        edata = os;
      if (os == last->lastSec)
        break;
    }

    if (ElfSym::edata1)
      ElfSym::edata1->section = edata;
    if (ElfSym::edata2)
      ElfSym::edata2->section = edata;

    // _end is the first location after the uninitialized data region.
    if (ElfSym::end1)
      ElfSym::end1->section = last->lastSec;
    if (ElfSym::end2)
      ElfSym::end2->section = last->lastSec;
  }

  if (ElfSym::bss)
    ElfSym::bss->section = findSection(".bss");

  // Setup MIPS _gp_disp/__gnu_local_gp symbols which should
  // be equal to the _gp symbol's value.
  if (ElfSym::mipsGp) {
    // Find GP-relative section with the lowest address
    // and use this address to calculate default _gp value.
    for (OutputSection *os : outputSections) {
      if (os->flags & SHF_MIPS_GPREL) {
        ElfSym::mipsGp->section = os;
        ElfSym::mipsGp->value = 0x7ff0;
        break;
      }
    }
  }
}

// We want to find how similar two ranks are.
// The more branches in getSectionRank that match, the more similar they are.
// Since each branch corresponds to a bit flag, we can just use
// countLeadingZeros.
static int getRankProximityAux(OutputSection *a, OutputSection *b) {
  return countLeadingZeros(a->sortRank ^ b->sortRank);
}

static int getRankProximity(OutputSection *a, BaseCommand *b) {
  auto *sec = dyn_cast<OutputSection>(b);
  return (sec && sec->hasInputSections) ? getRankProximityAux(a, sec) : -1;
}

// When placing orphan sections, we want to place them after symbol assignments
// so that an orphan after
//   begin_foo = .;
//   foo : { *(foo) }
//   end_foo = .;
// doesn't break the intended meaning of the begin/end symbols.
// We don't want to go over sections since findOrphanPos is the
// one in charge of deciding the order of the sections.
// We don't want to go over changes to '.', since doing so in
//  rx_sec : { *(rx_sec) }
//  . = ALIGN(0x1000);
//  /* The RW PT_LOAD starts here*/
//  rw_sec : { *(rw_sec) }
// would mean that the RW PT_LOAD would become unaligned.
static bool shouldSkip(BaseCommand *cmd) {
  if (auto *assign = dyn_cast<SymbolAssignment>(cmd))
    return assign->name != ".";
  return false;
}

// We want to place orphan sections so that they share as much
// characteristics with their neighbors as possible. For example, if
// both are rw, or both are tls.
static std::vector<BaseCommand *>::iterator
findOrphanPos(std::vector<BaseCommand *>::iterator b,
              std::vector<BaseCommand *>::iterator e) {
  OutputSection *sec = cast<OutputSection>(*e);

  // Find the first element that has as close a rank as possible.
  auto i = std::max_element(b, e, [=](BaseCommand *a, BaseCommand *b) {
    return getRankProximity(sec, a) < getRankProximity(sec, b);
  });
  if (i == e)
    return e;

  // Consider all existing sections with the same proximity.
  int proximity = getRankProximity(sec, *i);
  for (; i != e; ++i) {
    auto *curSec = dyn_cast<OutputSection>(*i);
    if (!curSec || !curSec->hasInputSections)
      continue;
    if (getRankProximity(sec, curSec) != proximity ||
        sec->sortRank < curSec->sortRank)
      break;
  }

  auto isOutputSecWithInputSections = [](BaseCommand *cmd) {
    auto *os = dyn_cast<OutputSection>(cmd);
    return os && os->hasInputSections;
  };
  auto j = std::find_if(llvm::make_reverse_iterator(i),
                        llvm::make_reverse_iterator(b),
                        isOutputSecWithInputSections);
  i = j.base();

  // As a special case, if the orphan section is the last section, put
  // it at the very end, past any other commands.
  // This matches bfd's behavior and is convenient when the linker script fully
  // specifies the start of the file, but doesn't care about the end (the non
  // alloc sections for example).
  auto nextSec = std::find_if(i, e, isOutputSecWithInputSections);
  if (nextSec == e)
    return e;

  while (i != e && shouldSkip(*i))
    ++i;
  return i;
}

// Adds random priorities to sections not already in the map.
static void maybeShuffle(DenseMap<const InputSectionBase *, int> &order) {
  if (!config->shuffleSectionSeed)
    return;

  std::vector<int> priorities(inputSections.size() - order.size());
  // Existing priorities are < 0, so use priorities >= 0 for the missing
  // sections.
  int curPrio = 0;
  for (int &prio : priorities)
    prio = curPrio++;
  uint32_t seed = *config->shuffleSectionSeed;
  std::mt19937 g(seed ? seed : std::random_device()());
  llvm::shuffle(priorities.begin(), priorities.end(), g);
  int prioIndex = 0;
  for (InputSectionBase *sec : inputSections) {
    if (order.try_emplace(sec, priorities[prioIndex]).second)
      ++prioIndex;
  }
}

// Builds section order for handling --symbol-ordering-file.
static DenseMap<const InputSectionBase *, int> buildSectionOrder() {
  DenseMap<const InputSectionBase *, int> sectionOrder;
  // Use the rarely used option -call-graph-ordering-file to sort sections.
  if (!config->callGraphProfile.empty())
    return computeCallGraphProfileOrder();

  if (config->symbolOrderingFile.empty())
    return sectionOrder;

  struct SymbolOrderEntry {
    int priority;
    bool present;
  };

  // Build a map from symbols to their priorities. Symbols that didn't
  // appear in the symbol ordering file have the lowest priority 0.
  // All explicitly mentioned symbols have negative (higher) priorities.
  DenseMap<StringRef, SymbolOrderEntry> symbolOrder;
  int priority = -config->symbolOrderingFile.size();
  for (StringRef s : config->symbolOrderingFile)
    symbolOrder.insert({s, {priority++, false}});

  // Build a map from sections to their priorities.
  auto addSym = [&](Symbol &sym) {
    auto it = symbolOrder.find(sym.getName());
    if (it == symbolOrder.end())
      return;
    SymbolOrderEntry &ent = it->second;
    ent.present = true;

    maybeWarnUnorderableSymbol(&sym);

    if (auto *d = dyn_cast<Defined>(&sym)) {
      if (auto *sec = dyn_cast_or_null<InputSectionBase>(d->section)) {
        int &priority = sectionOrder[cast<InputSectionBase>(sec->repl)];
        priority = std::min(priority, ent.priority);
      }
    }
  };

  // We want both global and local symbols. We get the global ones from the
  // symbol table and iterate the object files for the local ones.
  for (Symbol *sym : symtab->symbols())
    if (!sym->isLazy())
      addSym(*sym);

  for (InputFile *file : objectFiles)
    for (Symbol *sym : file->getSymbols()) {
      if (!sym->isLocal())
        break;
      addSym(*sym);
    }

  if (config->warnSymbolOrdering)
    for (auto orderEntry : symbolOrder)
      if (!orderEntry.second.present)
        warn("symbol ordering file: no such symbol: " + orderEntry.first);

  return sectionOrder;
}

// Sorts the sections in ISD according to the provided section order.
static void
sortISDBySectionOrder(InputSectionDescription *isd,
                      const DenseMap<const InputSectionBase *, int> &order) {
  std::vector<InputSection *> unorderedSections;
  std::vector<std::pair<InputSection *, int>> orderedSections;
  uint64_t unorderedSize = 0;

  for (InputSection *isec : isd->sections) {
    auto i = order.find(isec);
    if (i == order.end()) {
      unorderedSections.push_back(isec);
      unorderedSize += isec->getSize();
      continue;
    }
    orderedSections.push_back({isec, i->second});
  }
  llvm::sort(orderedSections, llvm::less_second());

  // Find an insertion point for the ordered section list in the unordered
  // section list. On targets with limited-range branches, this is the mid-point
  // of the unordered section list. This decreases the likelihood that a range
  // extension thunk will be needed to enter or exit the ordered region. If the
  // ordered section list is a list of hot functions, we can generally expect
  // the ordered functions to be called more often than the unordered functions,
  // making it more likely that any particular call will be within range, and
  // therefore reducing the number of thunks required.
  //
  // For example, imagine that you have 8MB of hot code and 32MB of cold code.
  // If the layout is:
  //
  // 8MB hot
  // 32MB cold
  //
  // only the first 8-16MB of the cold code (depending on which hot function it
  // is actually calling) can call the hot code without a range extension thunk.
  // However, if we use this layout:
  //
  // 16MB cold
  // 8MB hot
  // 16MB cold
  //
  // both the last 8-16MB of the first block of cold code and the first 8-16MB
  // of the second block of cold code can call the hot code without a thunk. So
  // we effectively double the amount of code that could potentially call into
  // the hot code without a thunk.
  size_t insPt = 0;
  if (target->getThunkSectionSpacing() && !orderedSections.empty()) {
    uint64_t unorderedPos = 0;
    for (; insPt != unorderedSections.size(); ++insPt) {
      unorderedPos += unorderedSections[insPt]->getSize();
      if (unorderedPos > unorderedSize / 2)
        break;
    }
  }

  isd->sections.clear();
  for (InputSection *isec : makeArrayRef(unorderedSections).slice(0, insPt))
    isd->sections.push_back(isec);
  for (std::pair<InputSection *, int> p : orderedSections)
    isd->sections.push_back(p.first);
  for (InputSection *isec : makeArrayRef(unorderedSections).slice(insPt))
    isd->sections.push_back(isec);
}

static void sortSection(OutputSection *sec,
                        const DenseMap<const InputSectionBase *, int> &order) {
  StringRef name = sec->name;

  // Never sort these.
  if (name == ".init" || name == ".fini")
    return;

  // IRelative relocations that usually live in the .rel[a].dyn section should
  // be proccessed last by the dynamic loader. To achieve that we add synthetic
  // sections in the required order from the begining so that the in.relaIplt
  // section is placed last in an output section. Here we just do not apply
  // sorting for an output section which holds the in.relaIplt section.
  if (in.relaIplt->getParent() == sec)
    return;

  // Sort input sections by priority using the list provided by
  // --symbol-ordering-file or --shuffle-sections=. This is a least significant
  // digit radix sort. The sections may be sorted stably again by a more
  // significant key.
  if (!order.empty())
    for (BaseCommand *b : sec->sectionCommands)
      if (auto *isd = dyn_cast<InputSectionDescription>(b))
        sortISDBySectionOrder(isd, order);

  // Sort input sections by section name suffixes for
  // __attribute__((init_priority(N))).
  if (name == ".init_array" || name == ".fini_array") {
    if (!script->hasSectionsCommand)
      sec->sortInitFini();
    return;
  }

  // Sort input sections by the special rule for .ctors and .dtors.
  if (name == ".ctors" || name == ".dtors") {
    if (!script->hasSectionsCommand)
      sec->sortCtorsDtors();
    return;
  }

  // .toc is allocated just after .got and is accessed using GOT-relative
  // relocations. Object files compiled with small code model have an
  // addressable range of [.got, .got + 0xFFFC] for GOT-relative relocations.
  // To reduce the risk of relocation overflow, .toc contents are sorted so that
  // sections having smaller relocation offsets are at beginning of .toc
  if (config->emachine == EM_PPC64 && name == ".toc") {
    if (script->hasSectionsCommand)
      return;
    assert(sec->sectionCommands.size() == 1);
    auto *isd = cast<InputSectionDescription>(sec->sectionCommands[0]);
    llvm::stable_sort(isd->sections,
                      [](const InputSection *a, const InputSection *b) -> bool {
                        return a->file->ppc64SmallCodeModelTocRelocs &&
                               !b->file->ppc64SmallCodeModelTocRelocs;
                      });
    return;
  }
}

// If no layout was provided by linker script, we want to apply default
// sorting for special input sections. This also handles --symbol-ordering-file.
template <class ELFT> void Writer<ELFT>::sortInputSections() {
  // Build the order once since it is expensive.
  DenseMap<const InputSectionBase *, int> order = buildSectionOrder();
  maybeShuffle(order);
  for (BaseCommand *base : script->sectionCommands)
    if (auto *sec = dyn_cast<OutputSection>(base))
      sortSection(sec, order);
}

template <class ELFT> void Writer<ELFT>::sortSections() {
  script->adjustSectionsBeforeSorting();

  // Don't sort if using -r. It is not necessary and we want to preserve the
  // relative order for SHF_LINK_ORDER sections.
  if (config->relocatable)
    return;

  sortInputSections();

  for (BaseCommand *base : script->sectionCommands) {
    auto *os = dyn_cast<OutputSection>(base);
    if (!os)
      continue;
    os->sortRank = getSectionRank(os);

    // We want to assign rude approximation values to outSecOff fields
    // to know the relative order of the input sections. We use it for
    // sorting SHF_LINK_ORDER sections. See resolveShfLinkOrder().
    uint64_t i = 0;
    for (InputSection *sec : getInputSections(os))
      sec->outSecOff = i++;
  }

  if (!script->hasSectionsCommand) {
    // We know that all the OutputSections are contiguous in this case.
    auto isSection = [](BaseCommand *base) { return isa<OutputSection>(base); };
    std::stable_sort(
        llvm::find_if(script->sectionCommands, isSection),
        llvm::find_if(llvm::reverse(script->sectionCommands), isSection).base(),
        compareSections);

    // Process INSERT commands. From this point onwards the order of
    // script->sectionCommands is fixed.
    script->processInsertCommands();
    return;
  }

  script->processInsertCommands();

  // Orphan sections are sections present in the input files which are
  // not explicitly placed into the output file by the linker script.
  //
  // The sections in the linker script are already in the correct
  // order. We have to figuere out where to insert the orphan
  // sections.
  //
  // The order of the sections in the script is arbitrary and may not agree with
  // compareSections. This means that we cannot easily define a strict weak
  // ordering. To see why, consider a comparison of a section in the script and
  // one not in the script. We have a two simple options:
  // * Make them equivalent (a is not less than b, and b is not less than a).
  //   The problem is then that equivalence has to be transitive and we can
  //   have sections a, b and c with only b in a script and a less than c
  //   which breaks this property.
  // * Use compareSectionsNonScript. Given that the script order doesn't have
  //   to match, we can end up with sections a, b, c, d where b and c are in the
  //   script and c is compareSectionsNonScript less than b. In which case d
  //   can be equivalent to c, a to b and d < a. As a concrete example:
  //   .a (rx) # not in script
  //   .b (rx) # in script
  //   .c (ro) # in script
  //   .d (ro) # not in script
  //
  // The way we define an order then is:
  // *  Sort only the orphan sections. They are in the end right now.
  // *  Move each orphan section to its preferred position. We try
  //    to put each section in the last position where it can share
  //    a PT_LOAD.
  //
  // There is some ambiguity as to where exactly a new entry should be
  // inserted, because Commands contains not only output section
  // commands but also other types of commands such as symbol assignment
  // expressions. There's no correct answer here due to the lack of the
  // formal specification of the linker script. We use heuristics to
  // determine whether a new output command should be added before or
  // after another commands. For the details, look at shouldSkip
  // function.

  auto i = script->sectionCommands.begin();
  auto e = script->sectionCommands.end();
  auto nonScriptI = std::find_if(i, e, [](BaseCommand *base) {
    if (auto *sec = dyn_cast<OutputSection>(base))
      return sec->sectionIndex == UINT32_MAX;
    return false;
  });

  // Sort the orphan sections.
  std::stable_sort(nonScriptI, e, compareSections);

  // As a horrible special case, skip the first . assignment if it is before any
  // section. We do this because it is common to set a load address by starting
  // the script with ". = 0xabcd" and the expectation is that every section is
  // after that.
  auto firstSectionOrDotAssignment =
      std::find_if(i, e, [](BaseCommand *cmd) { return !shouldSkip(cmd); });
  if (firstSectionOrDotAssignment != e &&
      isa<SymbolAssignment>(**firstSectionOrDotAssignment))
    ++firstSectionOrDotAssignment;
  i = firstSectionOrDotAssignment;

  while (nonScriptI != e) {
    auto pos = findOrphanPos(i, nonScriptI);
    OutputSection *orphan = cast<OutputSection>(*nonScriptI);

    // As an optimization, find all sections with the same sort rank
    // and insert them with one rotate.
    unsigned rank = orphan->sortRank;
    auto end = std::find_if(nonScriptI + 1, e, [=](BaseCommand *cmd) {
      return cast<OutputSection>(cmd)->sortRank != rank;
    });
    std::rotate(pos, nonScriptI, end);
    nonScriptI = end;
  }

  script->adjustSectionsAfterSorting();
}

static bool compareByFilePosition(InputSection *a, InputSection *b) {
  InputSection *la = a->flags & SHF_LINK_ORDER ? a->getLinkOrderDep() : nullptr;
  InputSection *lb = b->flags & SHF_LINK_ORDER ? b->getLinkOrderDep() : nullptr;
  // SHF_LINK_ORDER sections with non-zero sh_link are ordered before
  // non-SHF_LINK_ORDER sections and SHF_LINK_ORDER sections with zero sh_link.
  if (!la || !lb)
    return la && !lb;
  OutputSection *aOut = la->getParent();
  OutputSection *bOut = lb->getParent();

  if (aOut != bOut)
    return aOut->addr < bOut->addr;
  return la->outSecOff < lb->outSecOff;
}

template <class ELFT> void Writer<ELFT>::resolveShfLinkOrder() {
  for (OutputSection *sec : outputSections) {
    if (!(sec->flags & SHF_LINK_ORDER))
      continue;

    // The ARM.exidx section use SHF_LINK_ORDER, but we have consolidated
    // this processing inside the ARMExidxsyntheticsection::finalizeContents().
    if (!config->relocatable && config->emachine == EM_ARM &&
        sec->type == SHT_ARM_EXIDX)
      continue;

    // Link order may be distributed across several InputSectionDescriptions.
    // Sorting is performed separately.
    std::vector<InputSection **> scriptSections;
    std::vector<InputSection *> sections;
    for (BaseCommand *base : sec->sectionCommands) {
      auto *isd = dyn_cast<InputSectionDescription>(base);
      if (!isd)
        continue;
      bool hasLinkOrder = false;
      scriptSections.clear();
      sections.clear();
      for (InputSection *&isec : isd->sections) {
        if (isec->flags & SHF_LINK_ORDER) {
          InputSection *link = isec->getLinkOrderDep();
          if (link && !link->getParent())
            error(toString(isec) + ": sh_link points to discarded section " +
                  toString(link));
          hasLinkOrder = true;
        }
        scriptSections.push_back(&isec);
        sections.push_back(isec);
      }
      if (hasLinkOrder && errorCount() == 0) {
        llvm::stable_sort(sections, compareByFilePosition);
        for (int i = 0, n = sections.size(); i != n; ++i)
          *scriptSections[i] = sections[i];
      }
    }
  }
}

static void finalizeSynthetic(SyntheticSection *sec) {
  if (sec && sec->isNeeded() && sec->getParent())
    sec->finalizeContents();
}

// We need to generate and finalize the content that depends on the address of
// InputSections. As the generation of the content may also alter InputSection
// addresses we must converge to a fixed point. We do that here. See the comment
// in Writer<ELFT>::finalizeSections().
template <class ELFT> void Writer<ELFT>::finalizeAddressDependentContent() {
  ThunkCreator tc;
  AArch64Err843419Patcher a64p;
  ARMErr657417Patcher a32p;
  script->assignAddresses();
  // .ARM.exidx and SHF_LINK_ORDER do not require precise addresses, but they
  // do require the relative addresses of OutputSections because linker scripts
  // can assign Virtual Addresses to OutputSections that are not monotonically
  // increasing.
  for (Partition &part : partitions)
    finalizeSynthetic(part.armExidx);
  resolveShfLinkOrder();

  // Converts call x@GDPLT to call __tls_get_addr
  if (config->emachine == EM_HEXAGON)
    hexagonTLSSymbolUpdate(outputSections);

  int assignPasses = 0;
  for (;;) {
    bool changed = target->needsThunks && tc.createThunks(outputSections);

    // With Thunk Size much smaller than branch range we expect to
    // converge quickly; if we get to 15 something has gone wrong.
    if (changed && tc.pass >= 15) {
      error("thunk creation not converged");
      break;
    }

    if (config->fixCortexA53Errata843419) {
      if (changed)
        script->assignAddresses();
      changed |= a64p.createFixes();
    }
    if (config->fixCortexA8) {
      if (changed)
        script->assignAddresses();
      changed |= a32p.createFixes();
    }

    if (in.mipsGot)
      in.mipsGot->updateAllocSize();

    for (Partition &part : partitions) {
      changed |= part.relaDyn->updateAllocSize();
      if (part.relrDyn)
        changed |= part.relrDyn->updateAllocSize();
    }

    const Defined *changedSym = script->assignAddresses();
    if (!changed) {
      // Some symbols may be dependent on section addresses. When we break the
      // loop, the symbol values are finalized because a previous
      // assignAddresses() finalized section addresses.
      if (!changedSym)
        break;
      if (++assignPasses == 5) {
        errorOrWarn("assignment to symbol " + toString(*changedSym) +
                    " does not converge");
        break;
      }
    }
  }

  // If addrExpr is set, the address may not be a multiple of the alignment.
  // Warn because this is error-prone.
  for (BaseCommand *cmd : script->sectionCommands)
    if (auto *os = dyn_cast<OutputSection>(cmd))
      if (os->addr % os->alignment != 0)
        warn("address (0x" + Twine::utohexstr(os->addr) + ") of section " +
             os->name + " is not a multiple of alignment (" +
             Twine(os->alignment) + ")");
}

// If Input Sections have been shrinked (basic block sections) then
// update symbol values and sizes associated with these sections.  With basic
// block sections, input sections can shrink when the jump instructions at
// the end of the section are relaxed.
static void fixSymbolsAfterShrinking() {
  for (InputFile *File : objectFiles) {
    parallelForEach(File->getSymbols(), [&](Symbol *Sym) {
      auto *def = dyn_cast<Defined>(Sym);
      if (!def)
        return;

      const SectionBase *sec = def->section;
      if (!sec)
        return;

      const InputSectionBase *inputSec = dyn_cast<InputSectionBase>(sec->repl);
      if (!inputSec || !inputSec->bytesDropped)
        return;

      const size_t OldSize = inputSec->data().size();
      const size_t NewSize = OldSize - inputSec->bytesDropped;

      if (def->value > NewSize && def->value <= OldSize) {
        LLVM_DEBUG(llvm::dbgs()
                   << "Moving symbol " << Sym->getName() << " from "
                   << def->value << " to "
                   << def->value - inputSec->bytesDropped << " bytes\n");
        def->value -= inputSec->bytesDropped;
        return;
      }

      if (def->value + def->size > NewSize && def->value <= OldSize &&
          def->value + def->size <= OldSize) {
        LLVM_DEBUG(llvm::dbgs()
                   << "Shrinking symbol " << Sym->getName() << " from "
                   << def->size << " to " << def->size - inputSec->bytesDropped
                   << " bytes\n");
        def->size -= inputSec->bytesDropped;
      }
    });
  }
}

// If basic block sections exist, there are opportunities to delete fall thru
// jumps and shrink jump instructions after basic block reordering.  This
// relaxation pass does that.  It is only enabled when --optimize-bb-jumps
// option is used.
template <class ELFT> void Writer<ELFT>::optimizeBasicBlockJumps() {
  assert(config->optimizeBBJumps);

  script->assignAddresses();
  // For every output section that has executable input sections, this
  // does the following:
  //   1. Deletes all direct jump instructions in input sections that
  //      jump to the following section as it is not required.
  //   2. If there are two consecutive jump instructions, it checks
  //      if they can be flipped and one can be deleted.
  for (OutputSection *os : outputSections) {
    if (!(os->flags & SHF_EXECINSTR))
      continue;
    std::vector<InputSection *> sections = getInputSections(os);
    std::vector<unsigned> result(sections.size());
    // Delete all fall through jump instructions.  Also, check if two
    // consecutive jump instructions can be flipped so that a fall
    // through jmp instruction can be deleted.
    parallelForEachN(0, sections.size(), [&](size_t i) {
      InputSection *next = i + 1 < sections.size() ? sections[i + 1] : nullptr;
      InputSection &is = *sections[i];
      result[i] =
          target->deleteFallThruJmpInsn(is, is.getFile<ELFT>(), next) ? 1 : 0;
    });
    size_t numDeleted = std::count(result.begin(), result.end(), 1);
    if (numDeleted > 0) {
      script->assignAddresses();
      LLVM_DEBUG(llvm::dbgs()
                 << "Removing " << numDeleted << " fall through jumps\n");
    }
  }

  fixSymbolsAfterShrinking();

  for (OutputSection *os : outputSections) {
    std::vector<InputSection *> sections = getInputSections(os);
    for (InputSection *is : sections)
      is->trim();
  }
}

// In order to allow users to manipulate linker-synthesized sections,
// we had to add synthetic sections to the input section list early,
// even before we make decisions whether they are needed. This allows
// users to write scripts like this: ".mygot : { .got }".
//
// Doing it has an unintended side effects. If it turns out that we
// don't need a .got (for example) at all because there's no
// relocation that needs a .got, we don't want to emit .got.
//
// To deal with the above problem, this function is called after
// scanRelocations is called to remove synthetic sections that turn
// out to be empty.
static void removeUnusedSyntheticSections() {
  // All input synthetic sections that can be empty are placed after
  // all regular ones. We iterate over them all and exit at first
  // non-synthetic.
  for (InputSectionBase *s : llvm::reverse(inputSections)) {
    SyntheticSection *ss = dyn_cast<SyntheticSection>(s);
    if (!ss)
      return;
    OutputSection *os = ss->getParent();
    if (!os || ss->isNeeded())
      continue;

    // If we reach here, then ss is an unused synthetic section and we want to
    // remove it from the corresponding input section description, and
    // orphanSections.
    for (BaseCommand *b : os->sectionCommands)
      if (auto *isd = dyn_cast<InputSectionDescription>(b))
        llvm::erase_if(isd->sections,
                       [=](InputSection *isec) { return isec == ss; });
    llvm::erase_if(script->orphanSections,
                   [=](const InputSectionBase *isec) { return isec == ss; });
  }
}

// Create output section objects and add them to OutputSections.
template <class ELFT> void Writer<ELFT>::finalizeSections() {
  Out::preinitArray = findSection(".preinit_array");
  Out::initArray = findSection(".init_array");
  Out::finiArray = findSection(".fini_array");

  // The linker needs to define SECNAME_start, SECNAME_end and SECNAME_stop
  // symbols for sections, so that the runtime can get the start and end
  // addresses of each section by section name. Add such symbols.
  if (!config->relocatable) {
    addStartEndSymbols();
    for (BaseCommand *base : script->sectionCommands)
      if (auto *sec = dyn_cast<OutputSection>(base))
        addStartStopSymbols(sec);
  }

  // Add _DYNAMIC symbol. Unlike GNU gold, our _DYNAMIC symbol has no type.
  // It should be okay as no one seems to care about the type.
  // Even the author of gold doesn't remember why gold behaves that way.
  // https://sourceware.org/ml/binutils/2002-03/msg00360.html
  if (mainPart->dynamic->parent)
    symtab->addSymbol(Defined{/*file=*/nullptr, "_DYNAMIC", STB_WEAK,
                              STV_HIDDEN, STT_NOTYPE,
                              /*value=*/0, /*size=*/0, mainPart->dynamic});

  // Define __rel[a]_iplt_{start,end} symbols if needed.
  addRelIpltSymbols();

  // RISC-V's gp can address +/- 2 KiB, set it to .sdata + 0x800. This symbol
  // should only be defined in an executable. If .sdata does not exist, its
  // value/section does not matter but it has to be relative, so set its
  // st_shndx arbitrarily to 1 (Out::elfHeader).
  if (config->emachine == EM_RISCV && !config->shared) {
    OutputSection *sec = findSection(".sdata");
    ElfSym::riscvGlobalPointer =
        addOptionalRegular("__global_pointer$", sec ? sec : Out::elfHeader,
                           0x800, STV_DEFAULT, STB_GLOBAL);
  }

  if (config->emachine == EM_X86_64) {
    // On targets that support TLSDESC, _TLS_MODULE_BASE_ is defined in such a
    // way that:
    //
    // 1) Without relaxation: it produces a dynamic TLSDESC relocation that
    // computes 0.
    // 2) With LD->LE relaxation: _TLS_MODULE_BASE_@tpoff = 0 (lowest address in
    // the TLS block).
    //
    // 2) is special cased in @tpoff computation. To satisfy 1), we define it as
    // an absolute symbol of zero. This is different from GNU linkers which
    // define _TLS_MODULE_BASE_ relative to the first TLS section.
    Symbol *s = symtab->find("_TLS_MODULE_BASE_");
    if (s && s->isUndefined()) {
      s->resolve(Defined{/*file=*/nullptr, s->getName(), STB_GLOBAL, STV_HIDDEN,
                         STT_TLS, /*value=*/0, 0,
                         /*section=*/nullptr});
      ElfSym::tlsModuleBase = cast<Defined>(s);
    }
  }

  // This responsible for splitting up .eh_frame section into
  // pieces. The relocation scan uses those pieces, so this has to be
  // earlier.
  for (Partition &part : partitions)
    finalizeSynthetic(part.ehFrame);

  for (Symbol *sym : symtab->symbols())
    sym->isPreemptible = computeIsPreemptible(*sym);

  // Change values of linker-script-defined symbols from placeholders (assigned
  // by declareSymbols) to actual definitions.
  script->processSymbolAssignments();

  // Scan relocations. This must be done after every symbol is declared so that
  // we can correctly decide if a dynamic relocation is needed. This is called
  // after processSymbolAssignments() because it needs to know whether a
  // linker-script-defined symbol is absolute.
  ppc64noTocRelax.clear();
  if (!config->relocatable) {
    forEachRelSec(scanRelocations<ELFT>);
    reportUndefinedSymbols<ELFT>();
  }

  if (in.plt && in.plt->isNeeded())
    in.plt->addSymbols();
  if (in.iplt && in.iplt->isNeeded())
    in.iplt->addSymbols();

  if (!config->allowShlibUndefined) {
    // Error on undefined symbols in a shared object, if all of its DT_NEEDED
    // entries are seen. These cases would otherwise lead to runtime errors
    // reported by the dynamic linker.
    //
    // ld.bfd traces all DT_NEEDED to emulate the logic of the dynamic linker to
    // catch more cases. That is too much for us. Our approach resembles the one
    // used in ld.gold, achieves a good balance to be useful but not too smart.
    for (SharedFile *file : sharedFiles)
      file->allNeededIsKnown =
          llvm::all_of(file->dtNeeded, [&](StringRef needed) {
            return symtab->soNames.count(needed);
          });

    for (Symbol *sym : symtab->symbols())
      if (sym->isUndefined() && !sym->isWeak())
        if (auto *f = dyn_cast_or_null<SharedFile>(sym->file))
          if (f->allNeededIsKnown)
            errorOrWarn(toString(f) + ": undefined reference to " +
                        toString(*sym) + " [--no-allow-shlib-undefined]");
  }

  // Now that we have defined all possible global symbols including linker-
  // synthesized ones. Visit all symbols to give the finishing touches.
  for (Symbol *sym : symtab->symbols()) {
    if (!includeInSymtab(*sym))
      continue;
    if (in.symTab)
      in.symTab->addSymbol(sym);

    if (sym->includeInDynsym()) {
      partitions[sym->partition - 1].dynSymTab->addSymbol(sym);
      if (auto *file = dyn_cast_or_null<SharedFile>(sym->file))
        if (file->isNeeded && !sym->isUndefined())
          addVerneed(sym);
    }
  }

  // We also need to scan the dynamic relocation tables of the other partitions
  // and add any referenced symbols to the partition's dynsym.
  for (Partition &part : MutableArrayRef<Partition>(partitions).slice(1)) {
    DenseSet<Symbol *> syms;
    for (const SymbolTableEntry &e : part.dynSymTab->getSymbols())
      syms.insert(e.sym);
    for (DynamicReloc &reloc : part.relaDyn->relocs)
      if (reloc.sym && !reloc.useSymVA && syms.insert(reloc.sym).second)
        part.dynSymTab->addSymbol(reloc.sym);
  }

  // Do not proceed if there was an undefined symbol.
  if (errorCount())
    return;

  if (in.mipsGot)
    in.mipsGot->build();

  removeUnusedSyntheticSections();
  script->diagnoseOrphanHandling();

  sortSections();

  // Now that we have the final list, create a list of all the
  // OutputSections for convenience.
  for (BaseCommand *base : script->sectionCommands)
    if (auto *sec = dyn_cast<OutputSection>(base))
      outputSections.push_back(sec);

  // Prefer command line supplied address over other constraints.
  for (OutputSection *sec : outputSections) {
    auto i = config->sectionStartMap.find(sec->name);
    if (i != config->sectionStartMap.end())
      sec->addrExpr = [=] { return i->second; };
  }

  // With the outputSections available check for GDPLT relocations
  // and add __tls_get_addr symbol if needed.
  if (config->emachine == EM_HEXAGON && hexagonNeedsTLSSymbol(outputSections)) {
    Symbol *sym = symtab->addSymbol(Undefined{
        nullptr, "__tls_get_addr", STB_GLOBAL, STV_DEFAULT, STT_NOTYPE});
    sym->isPreemptible = true;
    partitions[0].dynSymTab->addSymbol(sym);
  }

  // This is a bit of a hack. A value of 0 means undef, so we set it
  // to 1 to make __ehdr_start defined. The section number is not
  // particularly relevant.
  Out::elfHeader->sectionIndex = 1;

  for (size_t i = 0, e = outputSections.size(); i != e; ++i) {
    OutputSection *sec = outputSections[i];
    sec->sectionIndex = i + 1;
    sec->shName = in.shStrTab->addString(sec->name);
  }

  // Binary and relocatable output does not have PHDRS.
  // The headers have to be created before finalize as that can influence the
  // image base and the dynamic section on mips includes the image base.
  if (!config->relocatable && !config->oFormatBinary) {
    for (Partition &part : partitions) {
      part.phdrs = script->hasPhdrsCommands() ? script->createPhdrs()
                                              : createPhdrs(part);
      if (config->emachine == EM_ARM) {
        // PT_ARM_EXIDX is the ARM EHABI equivalent of PT_GNU_EH_FRAME
        addPhdrForSection(part, SHT_ARM_EXIDX, PT_ARM_EXIDX, PF_R);
      }
      if (config->emachine == EM_MIPS) {
        // Add separate segments for MIPS-specific sections.
        addPhdrForSection(part, SHT_MIPS_REGINFO, PT_MIPS_REGINFO, PF_R);
        addPhdrForSection(part, SHT_MIPS_OPTIONS, PT_MIPS_OPTIONS, PF_R);
        addPhdrForSection(part, SHT_MIPS_ABIFLAGS, PT_MIPS_ABIFLAGS, PF_R);
      }
    }
    Out::programHeaders->size = sizeof(Elf_Phdr) * mainPart->phdrs.size();

    // Find the TLS segment. This happens before the section layout loop so that
    // Android relocation packing can look up TLS symbol addresses. We only need
    // to care about the main partition here because all TLS symbols were moved
    // to the main partition (see MarkLive.cpp).
    for (PhdrEntry *p : mainPart->phdrs)
      if (p->p_type == PT_TLS)
        Out::tlsPhdr = p;
  }

  // Some symbols are defined in term of program headers. Now that we
  // have the headers, we can find out which sections they point to.
  setReservedSymbolSections();

  finalizeSynthetic(in.bss);
  finalizeSynthetic(in.bssRelRo);
  finalizeSynthetic(in.symTabShndx);
  finalizeSynthetic(in.shStrTab);
  finalizeSynthetic(in.strTab);
  finalizeSynthetic(in.got);
  finalizeSynthetic(in.mipsGot);
  finalizeSynthetic(in.igotPlt);
  finalizeSynthetic(in.gotPlt);
  finalizeSynthetic(in.relaIplt);
  finalizeSynthetic(in.relaPlt);
  finalizeSynthetic(in.plt);
  finalizeSynthetic(in.iplt);
  finalizeSynthetic(in.ppc32Got2);
  finalizeSynthetic(in.partIndex);

  // Dynamic section must be the last one in this list and dynamic
  // symbol table section (dynSymTab) must be the first one.
  for (Partition &part : partitions) {
    finalizeSynthetic(part.dynSymTab);
    finalizeSynthetic(part.gnuHashTab);
    finalizeSynthetic(part.hashTab);
    finalizeSynthetic(part.verDef);
    finalizeSynthetic(part.relaDyn);
    finalizeSynthetic(part.relrDyn);
    finalizeSynthetic(part.ehFrameHdr);
    finalizeSynthetic(part.verSym);
    finalizeSynthetic(part.verNeed);
    finalizeSynthetic(part.dynamic);
  }

  if (!script->hasSectionsCommand && !config->relocatable)
    fixSectionAlignments();

  // This is used to:
  // 1) Create "thunks":
  //    Jump instructions in many ISAs have small displacements, and therefore
  //    they cannot jump to arbitrary addresses in memory. For example, RISC-V
  //    JAL instruction can target only +-1 MiB from PC. It is a linker's
  //    responsibility to create and insert small pieces of code between
  //    sections to extend the ranges if jump targets are out of range. Such
  //    code pieces are called "thunks".
  //
  //    We add thunks at this stage. We couldn't do this before this point
  //    because this is the earliest point where we know sizes of sections and
  //    their layouts (that are needed to determine if jump targets are in
  //    range).
  //
  // 2) Update the sections. We need to generate content that depends on the
  //    address of InputSections. For example, MIPS GOT section content or
  //    android packed relocations sections content.
  //
  // 3) Assign the final values for the linker script symbols. Linker scripts
  //    sometimes using forward symbol declarations. We want to set the correct
  //    values. They also might change after adding the thunks.
  finalizeAddressDependentContent();
  if (errorCount())
    return;

  // finalizeAddressDependentContent may have added local symbols to the static symbol table.
  finalizeSynthetic(in.symTab);
  finalizeSynthetic(in.ppc64LongBranchTarget);

  // Relaxation to delete inter-basic block jumps created by basic block
  // sections. Run after in.symTab is finalized as optimizeBasicBlockJumps
  // can relax jump instructions based on symbol offset.
  if (config->optimizeBBJumps)
    optimizeBasicBlockJumps();

  // Fill other section headers. The dynamic table is finalized
  // at the end because some tags like RELSZ depend on result
  // of finalizing other sections.
  for (OutputSection *sec : outputSections)
    sec->finalize();
}

// Ensure data sections are not mixed with executable sections when
// -execute-only is used. -execute-only is a feature to make pages executable
// but not readable, and the feature is currently supported only on AArch64.
template <class ELFT> void Writer<ELFT>::checkExecuteOnly() {
  if (!config->executeOnly)
    return;

  for (OutputSection *os : outputSections)
    if (os->flags & SHF_EXECINSTR)
      for (InputSection *isec : getInputSections(os))
        if (!(isec->flags & SHF_EXECINSTR))
          error("cannot place " + toString(isec) + " into " + toString(os->name) +
                ": -execute-only does not support intermingling data and code");
}

// The linker is expected to define SECNAME_start and SECNAME_end
// symbols for a few sections. This function defines them.
template <class ELFT> void Writer<ELFT>::addStartEndSymbols() {
  // If a section does not exist, there's ambiguity as to how we
  // define _start and _end symbols for an init/fini section. Since
  // the loader assume that the symbols are always defined, we need to
  // always define them. But what value? The loader iterates over all
  // pointers between _start and _end to run global ctors/dtors, so if
  // the section is empty, their symbol values don't actually matter
  // as long as _start and _end point to the same location.
  //
  // That said, we don't want to set the symbols to 0 (which is
  // probably the simplest value) because that could cause some
  // program to fail to link due to relocation overflow, if their
  // program text is above 2 GiB. We use the address of the .text
  // section instead to prevent that failure.
  //
  // In rare situations, the .text section may not exist. If that's the
  // case, use the image base address as a last resort.
  OutputSection *Default = findSection(".text");
  if (!Default)
    Default = Out::elfHeader;

  auto define = [=](StringRef start, StringRef end, OutputSection *os) {
    if (os) {
      addOptionalRegular(start, os, 0);
      addOptionalRegular(end, os, -1);
    } else {
      addOptionalRegular(start, Default, 0);
      addOptionalRegular(end, Default, 0);
    }
  };

  define("__preinit_array_start", "__preinit_array_end", Out::preinitArray);
  define("__init_array_start", "__init_array_end", Out::initArray);
  define("__fini_array_start", "__fini_array_end", Out::finiArray);

  if (OutputSection *sec = findSection(".ARM.exidx"))
    define("__exidx_start", "__exidx_end", sec);
}

// If a section name is valid as a C identifier (which is rare because of
// the leading '.'), linkers are expected to define __start_<secname> and
// __stop_<secname> symbols. They are at beginning and end of the section,
// respectively. This is not requested by the ELF standard, but GNU ld and
// gold provide the feature, and used by many programs.
template <class ELFT>
void Writer<ELFT>::addStartStopSymbols(OutputSection *sec) {
  StringRef s = sec->name;
  if (!isValidCIdentifier(s))
    return;
  addOptionalRegular(saver.save("__start_" + s), sec, 0,
                     config->zStartStopVisibility);
  addOptionalRegular(saver.save("__stop_" + s), sec, -1,
                     config->zStartStopVisibility);
}

static bool needsPtLoad(OutputSection *sec) {
  if (!(sec->flags & SHF_ALLOC) || sec->noload)
    return false;

  // Don't allocate VA space for TLS NOBITS sections. The PT_TLS PHDR is
  // responsible for allocating space for them, not the PT_LOAD that
  // contains the TLS initialization image.
  if ((sec->flags & SHF_TLS) && sec->type == SHT_NOBITS)
    return false;
  return true;
}

// Linker scripts are responsible for aligning addresses. Unfortunately, most
// linker scripts are designed for creating two PT_LOADs only, one RX and one
// RW. This means that there is no alignment in the RO to RX transition and we
// cannot create a PT_LOAD there.
static uint64_t computeFlags(uint64_t flags) {
  if (config->omagic)
    return PF_R | PF_W | PF_X;
  if (config->executeOnly && (flags & PF_X))
    return flags & ~PF_R;
  if (config->singleRoRx && !(flags & PF_W))
    return flags | PF_X;
  return flags;
}

// Decide which program headers to create and which sections to include in each
// one.
template <class ELFT>
std::vector<PhdrEntry *> Writer<ELFT>::createPhdrs(Partition &part) {
  std::vector<PhdrEntry *> ret;
  auto addHdr = [&](unsigned type, unsigned flags) -> PhdrEntry * {
    ret.push_back(make<PhdrEntry>(type, flags));
    return ret.back();
  };

  unsigned partNo = part.getNumber();
  bool isMain = partNo == 1;

  // Add the first PT_LOAD segment for regular output sections.
  uint64_t flags = computeFlags(PF_R);
  PhdrEntry *load = nullptr;

  // nmagic or omagic output does not have PT_PHDR, PT_INTERP, or the readonly
  // PT_LOAD.
  if (!config->nmagic && !config->omagic) {
    // The first phdr entry is PT_PHDR which describes the program header
    // itself.
    if (isMain)
      addHdr(PT_PHDR, PF_R)->add(Out::programHeaders);
    else
      addHdr(PT_PHDR, PF_R)->add(part.programHeaders->getParent());

    // PT_INTERP must be the second entry if exists.
    if (OutputSection *cmd = findSection(".interp", partNo))
      addHdr(PT_INTERP, cmd->getPhdrFlags())->add(cmd);

    // Add the headers. We will remove them if they don't fit.
    // In the other partitions the headers are ordinary sections, so they don't
    // need to be added here.
    if (isMain) {
      load = addHdr(PT_LOAD, flags);
      load->add(Out::elfHeader);
      load->add(Out::programHeaders);
    }
  }

  // PT_GNU_RELRO includes all sections that should be marked as
  // read-only by dynamic linker after processing relocations.
  // Current dynamic loaders only support one PT_GNU_RELRO PHDR, give
  // an error message if more than one PT_GNU_RELRO PHDR is required.
  PhdrEntry *relRo = make<PhdrEntry>(PT_GNU_RELRO, PF_R);
  bool inRelroPhdr = false;
  OutputSection *relroEnd = nullptr;
  for (OutputSection *sec : outputSections) {
    if (sec->partition != partNo || !needsPtLoad(sec))
      continue;
    if (isRelroSection(sec)) {
      inRelroPhdr = true;
      if (!relroEnd)
        relRo->add(sec);
      else
        error("section: " + sec->name + " is not contiguous with other relro" +
              " sections");
    } else if (inRelroPhdr) {
      inRelroPhdr = false;
      relroEnd = sec;
    }
  }

  for (OutputSection *sec : outputSections) {
    if (!needsPtLoad(sec))
      continue;

    // Normally, sections in partitions other than the current partition are
    // ignored. But partition number 255 is a special case: it contains the
    // partition end marker (.part.end). It needs to be added to the main
    // partition so that a segment is created for it in the main partition,
    // which will cause the dynamic loader to reserve space for the other
    // partitions.
    if (sec->partition != partNo) {
      if (isMain && sec->partition == 255)
        addHdr(PT_LOAD, computeFlags(sec->getPhdrFlags()))->add(sec);
      continue;
    }

    // Segments are contiguous memory regions that has the same attributes
    // (e.g. executable or writable). There is one phdr for each segment.
    // Therefore, we need to create a new phdr when the next section has
    // different flags or is loaded at a discontiguous address or memory
    // region using AT or AT> linker script command, respectively. At the same
    // time, we don't want to create a separate load segment for the headers,
    // even if the first output section has an AT or AT> attribute.
    uint64_t newFlags = computeFlags(sec->getPhdrFlags());
    bool sameLMARegion =
        load && !sec->lmaExpr && sec->lmaRegion == load->firstSec->lmaRegion;
    if (!(load && newFlags == flags && sec != relroEnd &&
          sec->memRegion == load->firstSec->memRegion &&
          (sameLMARegion || load->lastSec == Out::programHeaders))) {
      load = addHdr(PT_LOAD, newFlags);
      flags = newFlags;
    }

    load->add(sec);
  }

  // Add a TLS segment if any.
  PhdrEntry *tlsHdr = make<PhdrEntry>(PT_TLS, PF_R);
  for (OutputSection *sec : outputSections)
    if (sec->partition == partNo && sec->flags & SHF_TLS)
      tlsHdr->add(sec);
  if (tlsHdr->firstSec)
    ret.push_back(tlsHdr);

  // Add an entry for .dynamic.
  if (OutputSection *sec = part.dynamic->getParent())
    addHdr(PT_DYNAMIC, sec->getPhdrFlags())->add(sec);

  if (relRo->firstSec)
    ret.push_back(relRo);

  // PT_GNU_EH_FRAME is a special section pointing on .eh_frame_hdr.
  if (part.ehFrame->isNeeded() && part.ehFrameHdr &&
      part.ehFrame->getParent() && part.ehFrameHdr->getParent())
    addHdr(PT_GNU_EH_FRAME, part.ehFrameHdr->getParent()->getPhdrFlags())
        ->add(part.ehFrameHdr->getParent());

  // PT_OPENBSD_RANDOMIZE is an OpenBSD-specific feature. That makes
  // the dynamic linker fill the segment with random data.
  if (OutputSection *cmd = findSection(".openbsd.randomdata", partNo))
    addHdr(PT_OPENBSD_RANDOMIZE, cmd->getPhdrFlags())->add(cmd);

  if (config->zGnustack != GnuStackKind::None) {
    // PT_GNU_STACK is a special section to tell the loader to make the
    // pages for the stack non-executable. If you really want an executable
    // stack, you can pass -z execstack, but that's not recommended for
    // security reasons.
    unsigned perm = PF_R | PF_W;
    if (config->zGnustack == GnuStackKind::Exec)
      perm |= PF_X;
    addHdr(PT_GNU_STACK, perm)->p_memsz = config->zStackSize;
  }

  // PT_OPENBSD_WXNEEDED is a OpenBSD-specific header to mark the executable
  // is expected to perform W^X violations, such as calling mprotect(2) or
  // mmap(2) with PROT_WRITE | PROT_EXEC, which is prohibited by default on
  // OpenBSD.
  if (config->zWxneeded)
    addHdr(PT_OPENBSD_WXNEEDED, PF_X);

  if (OutputSection *cmd = findSection(".note.gnu.property", partNo))
    addHdr(PT_GNU_PROPERTY, PF_R)->add(cmd);

  // Create one PT_NOTE per a group of contiguous SHT_NOTE sections with the
  // same alignment.
  PhdrEntry *note = nullptr;
  for (OutputSection *sec : outputSections) {
    if (sec->partition != partNo)
      continue;
    if (sec->type == SHT_NOTE && (sec->flags & SHF_ALLOC)) {
      if (!note || sec->lmaExpr || note->lastSec->alignment != sec->alignment)
        note = addHdr(PT_NOTE, PF_R);
      note->add(sec);
    } else {
      note = nullptr;
    }
  }
  return ret;
}

template <class ELFT>
void Writer<ELFT>::addPhdrForSection(Partition &part, unsigned shType,
                                     unsigned pType, unsigned pFlags) {
  unsigned partNo = part.getNumber();
  auto i = llvm::find_if(outputSections, [=](OutputSection *cmd) {
    return cmd->partition == partNo && cmd->type == shType;
  });
  if (i == outputSections.end())
    return;

  PhdrEntry *entry = make<PhdrEntry>(pType, pFlags);
  entry->add(*i);
  part.phdrs.push_back(entry);
}

// Place the first section of each PT_LOAD to a different page (of maxPageSize).
// This is achieved by assigning an alignment expression to addrExpr of each
// such section.
template <class ELFT> void Writer<ELFT>::fixSectionAlignments() {
  const PhdrEntry *prev;
  auto pageAlign = [&](const PhdrEntry *p) {
    OutputSection *cmd = p->firstSec;
    if (!cmd)
      return;
    cmd->alignExpr = [align = cmd->alignment]() { return align; };
    if (!cmd->addrExpr) {
      // Prefer advancing to align(dot, maxPageSize) + dot%maxPageSize to avoid
      // padding in the file contents.
      //
      // When -z separate-code is used we must not have any overlap in pages
      // between an executable segment and a non-executable segment. We align to
      // the next maximum page size boundary on transitions between executable
      // and non-executable segments.
      //
      // SHT_LLVM_PART_EHDR marks the start of a partition. The partition
      // sections will be extracted to a separate file. Align to the next
      // maximum page size boundary so that we can find the ELF header at the
      // start. We cannot benefit from overlapping p_offset ranges with the
      // previous segment anyway.
      if (config->zSeparate == SeparateSegmentKind::Loadable ||
          (config->zSeparate == SeparateSegmentKind::Code && prev &&
           (prev->p_flags & PF_X) != (p->p_flags & PF_X)) ||
          cmd->type == SHT_LLVM_PART_EHDR)
        cmd->addrExpr = [] {
          return alignTo(script->getDot(), config->maxPageSize);
        };
      // PT_TLS is at the start of the first RW PT_LOAD. If `p` includes PT_TLS,
      // it must be the RW. Align to p_align(PT_TLS) to make sure
      // p_vaddr(PT_LOAD)%p_align(PT_LOAD) = 0. Otherwise, if
      // sh_addralign(.tdata) < sh_addralign(.tbss), we will set p_align(PT_TLS)
      // to sh_addralign(.tbss), while p_vaddr(PT_TLS)=p_vaddr(PT_LOAD) may not
      // be congruent to 0 modulo p_align(PT_TLS).
      //
      // Technically this is not required, but as of 2019, some dynamic loaders
      // don't handle p_vaddr%p_align != 0 correctly, e.g. glibc (i386 and
      // x86-64) doesn't make runtime address congruent to p_vaddr modulo
      // p_align for dynamic TLS blocks (PR/24606), FreeBSD rtld has the same
      // bug, musl (TLS Variant 1 architectures) before 1.1.23 handled TLS
      // blocks correctly. We need to keep the workaround for a while.
      else if (Out::tlsPhdr && Out::tlsPhdr->firstSec == p->firstSec)
        cmd->addrExpr = [] {
          return alignTo(script->getDot(), config->maxPageSize) +
                 alignTo(script->getDot() % config->maxPageSize,
                         Out::tlsPhdr->p_align);
        };
      else
        cmd->addrExpr = [] {
          return alignTo(script->getDot(), config->maxPageSize) +
                 script->getDot() % config->maxPageSize;
        };
    }
  };

  for (Partition &part : partitions) {
    prev = nullptr;
    for (const PhdrEntry *p : part.phdrs)
      if (p->p_type == PT_LOAD && p->firstSec) {
        pageAlign(p);
        prev = p;
      }
  }
}

// Compute an in-file position for a given section. The file offset must be the
// same with its virtual address modulo the page size, so that the loader can
// load executables without any address adjustment.
static uint64_t computeFileOffset(OutputSection *os, uint64_t off) {
  // The first section in a PT_LOAD has to have congruent offset and address
  // modulo the maximum page size.
  if (os->ptLoad && os->ptLoad->firstSec == os)
    return alignTo(off, os->ptLoad->p_align, os->addr);

  // File offsets are not significant for .bss sections other than the first one
  // in a PT_LOAD. By convention, we keep section offsets monotonically
  // increasing rather than setting to zero.
   if (os->type == SHT_NOBITS)
     return off;

  // If the section is not in a PT_LOAD, we just have to align it.
  if (!os->ptLoad)
    return alignTo(off, os->alignment);

  // If two sections share the same PT_LOAD the file offset is calculated
  // using this formula: Off2 = Off1 + (VA2 - VA1).
  OutputSection *first = os->ptLoad->firstSec;
  return first->offset + os->addr - first->addr;
}

// Set an in-file position to a given section and returns the end position of
// the section.
static uint64_t setFileOffset(OutputSection *os, uint64_t off) {
  off = computeFileOffset(os, off);
  os->offset = off;

  if (os->type == SHT_NOBITS)
    return off;
  return off + os->size;
}

template <class ELFT> void Writer<ELFT>::assignFileOffsetsBinary() {
  // Compute the minimum LMA of all non-empty non-NOBITS sections as minAddr.
  auto needsOffset = [](OutputSection &sec) {
    return sec.type != SHT_NOBITS && (sec.flags & SHF_ALLOC) && sec.size > 0;
  };
  uint64_t minAddr = UINT64_MAX;
  for (OutputSection *sec : outputSections)
    if (needsOffset(*sec)) {
      sec->offset = sec->getLMA();
      minAddr = std::min(minAddr, sec->offset);
    }

  // Sections are laid out at LMA minus minAddr.
  fileSize = 0;
  for (OutputSection *sec : outputSections)
    if (needsOffset(*sec)) {
      sec->offset -= minAddr;
      fileSize = std::max(fileSize, sec->offset + sec->size);
    }
}

static std::string rangeToString(uint64_t addr, uint64_t len) {
  return "[0x" + utohexstr(addr) + ", 0x" + utohexstr(addr + len - 1) + "]";
}

// Assign file offsets to output sections.
template <class ELFT> void Writer<ELFT>::assignFileOffsets() {
  uint64_t off = 0;
  off = setFileOffset(Out::elfHeader, off);
  off = setFileOffset(Out::programHeaders, off);

  PhdrEntry *lastRX = nullptr;
  for (Partition &part : partitions)
    for (PhdrEntry *p : part.phdrs)
      if (p->p_type == PT_LOAD && (p->p_flags & PF_X))
        lastRX = p;

  // Layout SHF_ALLOC sections before non-SHF_ALLOC sections. A non-SHF_ALLOC
  // will not occupy file offsets contained by a PT_LOAD.
  for (OutputSection *sec : outputSections) {
    if (!(sec->flags & SHF_ALLOC))
      continue;
    off = setFileOffset(sec, off);

    // If this is a last section of the last executable segment and that
    // segment is the last loadable segment, align the offset of the
    // following section to avoid loading non-segments parts of the file.
    if (config->zSeparate != SeparateSegmentKind::None && lastRX &&
        lastRX->lastSec == sec)
      off = alignTo(off, config->commonPageSize);
  }
  for (OutputSection *sec : outputSections)
    if (!(sec->flags & SHF_ALLOC))
      off = setFileOffset(sec, off);

  sectionHeaderOff = alignTo(off, config->wordsize);
  fileSize = sectionHeaderOff + (outputSections.size() + 1) * sizeof(Elf_Shdr);

  // Our logic assumes that sections have rising VA within the same segment.
  // With use of linker scripts it is possible to violate this rule and get file
  // offset overlaps or overflows. That should never happen with a valid script
  // which does not move the location counter backwards and usually scripts do
  // not do that. Unfortunately, there are apps in the wild, for example, Linux
  // kernel, which control segment distribution explicitly and move the counter
  // backwards, so we have to allow doing that to support linking them. We
  // perform non-critical checks for overlaps in checkSectionOverlap(), but here
  // we want to prevent file size overflows because it would crash the linker.
  for (OutputSection *sec : outputSections) {
    if (sec->type == SHT_NOBITS)
      continue;
    if ((sec->offset > fileSize) || (sec->offset + sec->size > fileSize))
      error("unable to place section " + sec->name + " at file offset " +
            rangeToString(sec->offset, sec->size) +
            "; check your linker script for overflows");
  }
}

// Finalize the program headers. We call this function after we assign
// file offsets and VAs to all sections.
template <class ELFT> void Writer<ELFT>::setPhdrs(Partition &part) {
  for (PhdrEntry *p : part.phdrs) {
    OutputSection *first = p->firstSec;
    OutputSection *last = p->lastSec;

    if (first) {
      p->p_filesz = last->offset - first->offset;
      if (last->type != SHT_NOBITS)
        p->p_filesz += last->size;

      p->p_memsz = last->addr + last->size - first->addr;
      p->p_offset = first->offset;
      p->p_vaddr = first->addr;

      // File offsets in partitions other than the main partition are relative
      // to the offset of the ELF headers. Perform that adjustment now.
      if (part.elfHeader)
        p->p_offset -= part.elfHeader->getParent()->offset;

      if (!p->hasLMA)
        p->p_paddr = first->getLMA();
    }

    if (p->p_type == PT_GNU_RELRO) {
      p->p_align = 1;
      // musl/glibc ld.so rounds the size down, so we need to round up
      // to protect the last page. This is a no-op on FreeBSD which always
      // rounds up.
      p->p_memsz = alignTo(p->p_offset + p->p_memsz, config->commonPageSize) -
                   p->p_offset;
    }
  }
}

// A helper struct for checkSectionOverlap.
namespace {
struct SectionOffset {
  OutputSection *sec;
  uint64_t offset;
};
} // namespace

// Check whether sections overlap for a specific address range (file offsets,
// load and virtual addresses).
static void checkOverlap(StringRef name, std::vector<SectionOffset> &sections,
                         bool isVirtualAddr) {
  llvm::sort(sections, [=](const SectionOffset &a, const SectionOffset &b) {
    return a.offset < b.offset;
  });

  // Finding overlap is easy given a vector is sorted by start position.
  // If an element starts before the end of the previous element, they overlap.
  for (size_t i = 1, end = sections.size(); i < end; ++i) {
    SectionOffset a = sections[i - 1];
    SectionOffset b = sections[i];
    if (b.offset >= a.offset + a.sec->size)
      continue;

    // If both sections are in OVERLAY we allow the overlapping of virtual
    // addresses, because it is what OVERLAY was designed for.
    if (isVirtualAddr && a.sec->inOverlay && b.sec->inOverlay)
      continue;

    errorOrWarn("section " + a.sec->name + " " + name +
                " range overlaps with " + b.sec->name + "\n>>> " + a.sec->name +
                " range is " + rangeToString(a.offset, a.sec->size) + "\n>>> " +
                b.sec->name + " range is " +
                rangeToString(b.offset, b.sec->size));
  }
}

// Check for overlapping sections and address overflows.
//
// In this function we check that none of the output sections have overlapping
// file offsets. For SHF_ALLOC sections we also check that the load address
// ranges and the virtual address ranges don't overlap
template <class ELFT> void Writer<ELFT>::checkSections() {
  // First, check that section's VAs fit in available address space for target.
  for (OutputSection *os : outputSections)
    if ((os->addr + os->size < os->addr) ||
        (!ELFT::Is64Bits && os->addr + os->size > UINT32_MAX))
      errorOrWarn("section " + os->name + " at 0x" + utohexstr(os->addr) +
                  " of size 0x" + utohexstr(os->size) +
                  " exceeds available address space");

  // Check for overlapping file offsets. In this case we need to skip any
  // section marked as SHT_NOBITS. These sections don't actually occupy space in
  // the file so Sec->Offset + Sec->Size can overlap with others. If --oformat
  // binary is specified only add SHF_ALLOC sections are added to the output
  // file so we skip any non-allocated sections in that case.
  std::vector<SectionOffset> fileOffs;
  for (OutputSection *sec : outputSections)
    if (sec->size > 0 && sec->type != SHT_NOBITS &&
        (!config->oFormatBinary || (sec->flags & SHF_ALLOC)))
      fileOffs.push_back({sec, sec->offset});
  checkOverlap("file", fileOffs, false);

  // When linking with -r there is no need to check for overlapping virtual/load
  // addresses since those addresses will only be assigned when the final
  // executable/shared object is created.
  if (config->relocatable)
    return;

  // Checking for overlapping virtual and load addresses only needs to take
  // into account SHF_ALLOC sections since others will not be loaded.
  // Furthermore, we also need to skip SHF_TLS sections since these will be
  // mapped to other addresses at runtime and can therefore have overlapping
  // ranges in the file.
  std::vector<SectionOffset> vmas;
  for (OutputSection *sec : outputSections)
    if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS))
      vmas.push_back({sec, sec->addr});
  checkOverlap("virtual address", vmas, true);

  // Finally, check that the load addresses don't overlap. This will usually be
  // the same as the virtual addresses but can be different when using a linker
  // script with AT().
  std::vector<SectionOffset> lmas;
  for (OutputSection *sec : outputSections)
    if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS))
      lmas.push_back({sec, sec->getLMA()});
  checkOverlap("load address", lmas, false);
}

// The entry point address is chosen in the following ways.
//
// 1. the '-e' entry command-line option;
// 2. the ENTRY(symbol) command in a linker control script;
// 3. the value of the symbol _start, if present;
// 4. the number represented by the entry symbol, if it is a number;
// 5. the address of the first byte of the .text section, if present;
// 6. the address 0.
static uint64_t getEntryAddr() {
  // Case 1, 2 or 3
  if (Symbol *b = symtab->find(config->entry))
    return b->getVA();

  // Case 4
  uint64_t addr;
  if (to_integer(config->entry, addr))
    return addr;

  // Case 5
  if (OutputSection *sec = findSection(".text")) {
    if (config->warnMissingEntry)
      warn("cannot find entry symbol " + config->entry + "; defaulting to 0x" +
           utohexstr(sec->addr));
    return sec->addr;
  }

  // Case 6
  if (config->warnMissingEntry)
    warn("cannot find entry symbol " + config->entry +
         "; not setting start address");
  return 0;
}

static uint16_t getELFType() {
  if (config->isPic)
    return ET_DYN;
  if (config->relocatable)
    return ET_REL;
  return ET_EXEC;
}

template <class ELFT> void Writer<ELFT>::writeHeader() {
  writeEhdr<ELFT>(Out::bufferStart, *mainPart);
  writePhdrs<ELFT>(Out::bufferStart + sizeof(Elf_Ehdr), *mainPart);

  auto *eHdr = reinterpret_cast<Elf_Ehdr *>(Out::bufferStart);
  eHdr->e_type = getELFType();
  eHdr->e_entry = getEntryAddr();
  eHdr->e_shoff = sectionHeaderOff;

  // Write the section header table.
  //
  // The ELF header can only store numbers up to SHN_LORESERVE in the e_shnum
  // and e_shstrndx fields. When the value of one of these fields exceeds
  // SHN_LORESERVE ELF requires us to put sentinel values in the ELF header and
  // use fields in the section header at index 0 to store
  // the value. The sentinel values and fields are:
  // e_shnum = 0, SHdrs[0].sh_size = number of sections.
  // e_shstrndx = SHN_XINDEX, SHdrs[0].sh_link = .shstrtab section index.
  auto *sHdrs = reinterpret_cast<Elf_Shdr *>(Out::bufferStart + eHdr->e_shoff);
  size_t num = outputSections.size() + 1;
  if (num >= SHN_LORESERVE)
    sHdrs->sh_size = num;
  else
    eHdr->e_shnum = num;

  uint32_t strTabIndex = in.shStrTab->getParent()->sectionIndex;
  if (strTabIndex >= SHN_LORESERVE) {
    sHdrs->sh_link = strTabIndex;
    eHdr->e_shstrndx = SHN_XINDEX;
  } else {
    eHdr->e_shstrndx = strTabIndex;
  }

  for (OutputSection *sec : outputSections)
    sec->writeHeaderTo<ELFT>(++sHdrs);
}

// Open a result file.
template <class ELFT> void Writer<ELFT>::openFile() {
  uint64_t maxSize = config->is64 ? INT64_MAX : UINT32_MAX;
  if (fileSize != size_t(fileSize) || maxSize < fileSize) {
    error("output file too large: " + Twine(fileSize) + " bytes");
    return;
  }

  unlinkAsync(config->outputFile);
  unsigned flags = 0;
  if (!config->relocatable)
    flags |= FileOutputBuffer::F_executable;
  if (!config->mmapOutputFile)
    flags |= FileOutputBuffer::F_no_mmap;
  Expected<std::unique_ptr<FileOutputBuffer>> bufferOrErr =
      FileOutputBuffer::create(config->outputFile, fileSize, flags);

  if (!bufferOrErr) {
    error("failed to open " + config->outputFile + ": " +
          llvm::toString(bufferOrErr.takeError()));
    return;
  }
  buffer = std::move(*bufferOrErr);
  Out::bufferStart = buffer->getBufferStart();
}

template <class ELFT> void Writer<ELFT>::writeSectionsBinary() {
  for (OutputSection *sec : outputSections)
    if (sec->flags & SHF_ALLOC)
      sec->writeTo<ELFT>(Out::bufferStart + sec->offset);
}

static void fillTrap(uint8_t *i, uint8_t *end) {
  for (; i + 4 <= end; i += 4)
    memcpy(i, &target->trapInstr, 4);
}

// Fill the last page of executable segments with trap instructions
// instead of leaving them as zero. Even though it is not required by any
// standard, it is in general a good thing to do for security reasons.
//
// We'll leave other pages in segments as-is because the rest will be
// overwritten by output sections.
template <class ELFT> void Writer<ELFT>::writeTrapInstr() {
  for (Partition &part : partitions) {
    // Fill the last page.
    for (PhdrEntry *p : part.phdrs)
      if (p->p_type == PT_LOAD && (p->p_flags & PF_X))
        fillTrap(Out::bufferStart + alignDown(p->firstSec->offset + p->p_filesz,
                                              config->commonPageSize),
                 Out::bufferStart + alignTo(p->firstSec->offset + p->p_filesz,
                                            config->commonPageSize));

    // Round up the file size of the last segment to the page boundary iff it is
    // an executable segment to ensure that other tools don't accidentally
    // trim the instruction padding (e.g. when stripping the file).
    PhdrEntry *last = nullptr;
    for (PhdrEntry *p : part.phdrs)
      if (p->p_type == PT_LOAD)
        last = p;

    if (last && (last->p_flags & PF_X))
      last->p_memsz = last->p_filesz =
          alignTo(last->p_filesz, config->commonPageSize);
  }
}

// Write section contents to a mmap'ed file.
template <class ELFT> void Writer<ELFT>::writeSections() {
  // In -r or -emit-relocs mode, write the relocation sections first as in
  // ELf_Rel targets we might find out that we need to modify the relocated
  // section while doing it.
  for (OutputSection *sec : outputSections)
    if (sec->type == SHT_REL || sec->type == SHT_RELA)
      sec->writeTo<ELFT>(Out::bufferStart + sec->offset);

  for (OutputSection *sec : outputSections)
    if (sec->type != SHT_REL && sec->type != SHT_RELA)
      sec->writeTo<ELFT>(Out::bufferStart + sec->offset);
}

// Split one uint8 array into small pieces of uint8 arrays.
static std::vector<ArrayRef<uint8_t>> split(ArrayRef<uint8_t> arr,
                                            size_t chunkSize) {
  std::vector<ArrayRef<uint8_t>> ret;
  while (arr.size() > chunkSize) {
    ret.push_back(arr.take_front(chunkSize));
    arr = arr.drop_front(chunkSize);
  }
  if (!arr.empty())
    ret.push_back(arr);
  return ret;
}

// Computes a hash value of Data using a given hash function.
// In order to utilize multiple cores, we first split data into 1MB
// chunks, compute a hash for each chunk, and then compute a hash value
// of the hash values.
static void
computeHash(llvm::MutableArrayRef<uint8_t> hashBuf,
            llvm::ArrayRef<uint8_t> data,
            std::function<void(uint8_t *dest, ArrayRef<uint8_t> arr)> hashFn) {
  std::vector<ArrayRef<uint8_t>> chunks = split(data, 1024 * 1024);
  std::vector<uint8_t> hashes(chunks.size() * hashBuf.size());

  // Compute hash values.
  parallelForEachN(0, chunks.size(), [&](size_t i) {
    hashFn(hashes.data() + i * hashBuf.size(), chunks[i]);
  });

  // Write to the final output buffer.
  hashFn(hashBuf.data(), hashes);
}

template <class ELFT> void Writer<ELFT>::writeBuildId() {
  if (!mainPart->buildId || !mainPart->buildId->getParent())
    return;

  if (config->buildId == BuildIdKind::Hexstring) {
    for (Partition &part : partitions)
      part.buildId->writeBuildId(config->buildIdVector);
    return;
  }

  // Compute a hash of all sections of the output file.
  size_t hashSize = mainPart->buildId->hashSize;
  std::vector<uint8_t> buildId(hashSize);
  llvm::ArrayRef<uint8_t> buf{Out::bufferStart, size_t(fileSize)};

  switch (config->buildId) {
  case BuildIdKind::Fast:
    computeHash(buildId, buf, [](uint8_t *dest, ArrayRef<uint8_t> arr) {
      write64le(dest, xxHash64(arr));
    });
    break;
  case BuildIdKind::Md5:
    computeHash(buildId, buf, [&](uint8_t *dest, ArrayRef<uint8_t> arr) {
      memcpy(dest, MD5::hash(arr).data(), hashSize);
    });
    break;
  case BuildIdKind::Sha1:
    computeHash(buildId, buf, [&](uint8_t *dest, ArrayRef<uint8_t> arr) {
      memcpy(dest, SHA1::hash(arr).data(), hashSize);
    });
    break;
  case BuildIdKind::Uuid:
    if (auto ec = llvm::getRandomBytes(buildId.data(), hashSize))
      error("entropy source failure: " + ec.message());
    break;
  default:
    llvm_unreachable("unknown BuildIdKind");
  }
  for (Partition &part : partitions)
    part.buildId->writeBuildId(buildId);
}

template void elf::createSyntheticSections<ELF32LE>();
template void elf::createSyntheticSections<ELF32BE>();
template void elf::createSyntheticSections<ELF64LE>();
template void elf::createSyntheticSections<ELF64BE>();

template void elf::writeResult<ELF32LE>();
template void elf::writeResult<ELF32BE>();
template void elf::writeResult<ELF64LE>();
template void elf::writeResult<ELF64BE>();