InputSection.cpp 55.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
//===- InputSection.cpp ---------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "InputSection.h"
#include "Config.h"
#include "EhFrame.h"
#include "InputFiles.h"
#include "LinkerScript.h"
#include "OutputSections.h"
#include "Relocations.h"
#include "SymbolTable.h"
#include "Symbols.h"
#include "SyntheticSections.h"
#include "Target.h"
#include "Thunks.h"
#include "lld/Common/ErrorHandler.h"
#include "lld/Common/Memory.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Compression.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/Threading.h"
#include "llvm/Support/xxhash.h"
#include <algorithm>
#include <mutex>
#include <set>
#include <unordered_set>
#include <vector>

using namespace llvm;
using namespace llvm::ELF;
using namespace llvm::object;
using namespace llvm::support;
using namespace llvm::support::endian;
using namespace llvm::sys;
using namespace lld;
using namespace lld::elf;

std::vector<InputSectionBase *> elf::inputSections;
DenseSet<std::pair<const Symbol *, uint64_t>> elf::ppc64noTocRelax;

// Returns a string to construct an error message.
std::string lld::toString(const InputSectionBase *sec) {
  return (toString(sec->file) + ":(" + sec->name + ")").str();
}

template <class ELFT>
static ArrayRef<uint8_t> getSectionContents(ObjFile<ELFT> &file,
                                            const typename ELFT::Shdr &hdr) {
  if (hdr.sh_type == SHT_NOBITS)
    return makeArrayRef<uint8_t>(nullptr, hdr.sh_size);
  return check(file.getObj().getSectionContents(hdr));
}

InputSectionBase::InputSectionBase(InputFile *file, uint64_t flags,
                                   uint32_t type, uint64_t entsize,
                                   uint32_t link, uint32_t info,
                                   uint32_t alignment, ArrayRef<uint8_t> data,
                                   StringRef name, Kind sectionKind)
    : SectionBase(sectionKind, name, flags, entsize, alignment, type, info,
                  link),
      file(file), rawData(data) {
  // In order to reduce memory allocation, we assume that mergeable
  // sections are smaller than 4 GiB, which is not an unreasonable
  // assumption as of 2017.
  if (sectionKind == SectionBase::Merge && rawData.size() > UINT32_MAX)
    error(toString(this) + ": section too large");

  numRelocations = 0;
  areRelocsRela = false;

  // The ELF spec states that a value of 0 means the section has
  // no alignment constraints.
  uint32_t v = std::max<uint32_t>(alignment, 1);
  if (!isPowerOf2_64(v))
    fatal(toString(this) + ": sh_addralign is not a power of 2");
  this->alignment = v;

  // In ELF, each section can be compressed by zlib, and if compressed,
  // section name may be mangled by appending "z" (e.g. ".zdebug_info").
  // If that's the case, demangle section name so that we can handle a
  // section as if it weren't compressed.
  if ((flags & SHF_COMPRESSED) || name.startswith(".zdebug")) {
    if (!zlib::isAvailable())
      error(toString(file) + ": contains a compressed section, " +
            "but zlib is not available");
    parseCompressedHeader();
  }
}

// Drop SHF_GROUP bit unless we are producing a re-linkable object file.
// SHF_GROUP is a marker that a section belongs to some comdat group.
// That flag doesn't make sense in an executable.
static uint64_t getFlags(uint64_t flags) {
  flags &= ~(uint64_t)SHF_INFO_LINK;
  if (!config->relocatable)
    flags &= ~(uint64_t)SHF_GROUP;
  return flags;
}

// GNU assembler 2.24 and LLVM 4.0.0's MC (the newest release as of
// March 2017) fail to infer section types for sections starting with
// ".init_array." or ".fini_array.". They set SHT_PROGBITS instead of
// SHF_INIT_ARRAY. As a result, the following assembler directive
// creates ".init_array.100" with SHT_PROGBITS, for example.
//
//   .section .init_array.100, "aw"
//
// This function forces SHT_{INIT,FINI}_ARRAY so that we can handle
// incorrect inputs as if they were correct from the beginning.
static uint64_t getType(uint64_t type, StringRef name) {
  if (type == SHT_PROGBITS && name.startswith(".init_array."))
    return SHT_INIT_ARRAY;
  if (type == SHT_PROGBITS && name.startswith(".fini_array."))
    return SHT_FINI_ARRAY;
  return type;
}

template <class ELFT>
InputSectionBase::InputSectionBase(ObjFile<ELFT> &file,
                                   const typename ELFT::Shdr &hdr,
                                   StringRef name, Kind sectionKind)
    : InputSectionBase(&file, getFlags(hdr.sh_flags),
                       getType(hdr.sh_type, name), hdr.sh_entsize, hdr.sh_link,
                       hdr.sh_info, hdr.sh_addralign,
                       getSectionContents(file, hdr), name, sectionKind) {
  // We reject object files having insanely large alignments even though
  // they are allowed by the spec. I think 4GB is a reasonable limitation.
  // We might want to relax this in the future.
  if (hdr.sh_addralign > UINT32_MAX)
    fatal(toString(&file) + ": section sh_addralign is too large");
}

size_t InputSectionBase::getSize() const {
  if (auto *s = dyn_cast<SyntheticSection>(this))
    return s->getSize();
  if (uncompressedSize >= 0)
    return uncompressedSize;
  return rawData.size() - bytesDropped;
}

void InputSectionBase::uncompress() const {
  size_t size = uncompressedSize;
  char *uncompressedBuf;
  {
    static std::mutex mu;
    std::lock_guard<std::mutex> lock(mu);
    uncompressedBuf = bAlloc.Allocate<char>(size);
  }

  if (Error e = zlib::uncompress(toStringRef(rawData), uncompressedBuf, size))
    fatal(toString(this) +
          ": uncompress failed: " + llvm::toString(std::move(e)));
  rawData = makeArrayRef((uint8_t *)uncompressedBuf, size);
  uncompressedSize = -1;
}

uint64_t InputSectionBase::getOffsetInFile() const {
  const uint8_t *fileStart = (const uint8_t *)file->mb.getBufferStart();
  const uint8_t *secStart = data().begin();
  return secStart - fileStart;
}

uint64_t SectionBase::getOffset(uint64_t offset) const {
  switch (kind()) {
  case Output: {
    auto *os = cast<OutputSection>(this);
    // For output sections we treat offset -1 as the end of the section.
    return offset == uint64_t(-1) ? os->size : offset;
  }
  case Regular:
  case Synthetic:
    return cast<InputSection>(this)->getOffset(offset);
  case EHFrame:
    // The file crtbeginT.o has relocations pointing to the start of an empty
    // .eh_frame that is known to be the first in the link. It does that to
    // identify the start of the output .eh_frame.
    return offset;
  case Merge:
    const MergeInputSection *ms = cast<MergeInputSection>(this);
    if (InputSection *isec = ms->getParent())
      return isec->getOffset(ms->getParentOffset(offset));
    return ms->getParentOffset(offset);
  }
  llvm_unreachable("invalid section kind");
}

uint64_t SectionBase::getVA(uint64_t offset) const {
  const OutputSection *out = getOutputSection();
  return (out ? out->addr : 0) + getOffset(offset);
}

OutputSection *SectionBase::getOutputSection() {
  InputSection *sec;
  if (auto *isec = dyn_cast<InputSection>(this))
    sec = isec;
  else if (auto *ms = dyn_cast<MergeInputSection>(this))
    sec = ms->getParent();
  else if (auto *eh = dyn_cast<EhInputSection>(this))
    sec = eh->getParent();
  else
    return cast<OutputSection>(this);
  return sec ? sec->getParent() : nullptr;
}

// When a section is compressed, `rawData` consists with a header followed
// by zlib-compressed data. This function parses a header to initialize
// `uncompressedSize` member and remove the header from `rawData`.
void InputSectionBase::parseCompressedHeader() {
  using Chdr64 = typename ELF64LE::Chdr;
  using Chdr32 = typename ELF32LE::Chdr;

  // Old-style header
  if (name.startswith(".zdebug")) {
    if (!toStringRef(rawData).startswith("ZLIB")) {
      error(toString(this) + ": corrupted compressed section header");
      return;
    }
    rawData = rawData.slice(4);

    if (rawData.size() < 8) {
      error(toString(this) + ": corrupted compressed section header");
      return;
    }

    uncompressedSize = read64be(rawData.data());
    rawData = rawData.slice(8);

    // Restore the original section name.
    // (e.g. ".zdebug_info" -> ".debug_info")
    name = saver.save("." + name.substr(2));
    return;
  }

  assert(flags & SHF_COMPRESSED);
  flags &= ~(uint64_t)SHF_COMPRESSED;

  // New-style 64-bit header
  if (config->is64) {
    if (rawData.size() < sizeof(Chdr64)) {
      error(toString(this) + ": corrupted compressed section");
      return;
    }

    auto *hdr = reinterpret_cast<const Chdr64 *>(rawData.data());
    if (hdr->ch_type != ELFCOMPRESS_ZLIB) {
      error(toString(this) + ": unsupported compression type");
      return;
    }

    uncompressedSize = hdr->ch_size;
    alignment = std::max<uint32_t>(hdr->ch_addralign, 1);
    rawData = rawData.slice(sizeof(*hdr));
    return;
  }

  // New-style 32-bit header
  if (rawData.size() < sizeof(Chdr32)) {
    error(toString(this) + ": corrupted compressed section");
    return;
  }

  auto *hdr = reinterpret_cast<const Chdr32 *>(rawData.data());
  if (hdr->ch_type != ELFCOMPRESS_ZLIB) {
    error(toString(this) + ": unsupported compression type");
    return;
  }

  uncompressedSize = hdr->ch_size;
  alignment = std::max<uint32_t>(hdr->ch_addralign, 1);
  rawData = rawData.slice(sizeof(*hdr));
}

InputSection *InputSectionBase::getLinkOrderDep() const {
  assert(flags & SHF_LINK_ORDER);
  if (!link)
    return nullptr;
  return cast<InputSection>(file->getSections()[link]);
}

// Find a function symbol that encloses a given location.
template <class ELFT>
Defined *InputSectionBase::getEnclosingFunction(uint64_t offset) {
  for (Symbol *b : file->getSymbols())
    if (Defined *d = dyn_cast<Defined>(b))
      if (d->section == this && d->type == STT_FUNC && d->value <= offset &&
          offset < d->value + d->size)
        return d;
  return nullptr;
}

// Returns a source location string. Used to construct an error message.
template <class ELFT>
std::string InputSectionBase::getLocation(uint64_t offset) {
  std::string secAndOffset = (name + "+0x" + utohexstr(offset)).str();

  // We don't have file for synthetic sections.
  if (getFile<ELFT>() == nullptr)
    return (config->outputFile + ":(" + secAndOffset + ")")
        .str();

  // First check if we can get desired values from debugging information.
  if (Optional<DILineInfo> info = getFile<ELFT>()->getDILineInfo(this, offset))
    return info->FileName + ":" + std::to_string(info->Line) + ":(" +
           secAndOffset + ")";

  // File->sourceFile contains STT_FILE symbol that contains a
  // source file name. If it's missing, we use an object file name.
  std::string srcFile = std::string(getFile<ELFT>()->sourceFile);
  if (srcFile.empty())
    srcFile = toString(file);

  if (Defined *d = getEnclosingFunction<ELFT>(offset))
    return srcFile + ":(function " + toString(*d) + ": " + secAndOffset + ")";

  // If there's no symbol, print out the offset in the section.
  return (srcFile + ":(" + secAndOffset + ")");
}

// This function is intended to be used for constructing an error message.
// The returned message looks like this:
//
//   foo.c:42 (/home/alice/possibly/very/long/path/foo.c:42)
//
//  Returns an empty string if there's no way to get line info.
std::string InputSectionBase::getSrcMsg(const Symbol &sym, uint64_t offset) {
  return file->getSrcMsg(sym, *this, offset);
}

// Returns a filename string along with an optional section name. This
// function is intended to be used for constructing an error
// message. The returned message looks like this:
//
//   path/to/foo.o:(function bar)
//
// or
//
//   path/to/foo.o:(function bar) in archive path/to/bar.a
std::string InputSectionBase::getObjMsg(uint64_t off) {
  std::string filename = std::string(file->getName());

  std::string archive;
  if (!file->archiveName.empty())
    archive = " in archive " + file->archiveName;

  // Find a symbol that encloses a given location.
  for (Symbol *b : file->getSymbols())
    if (auto *d = dyn_cast<Defined>(b))
      if (d->section == this && d->value <= off && off < d->value + d->size)
        return filename + ":(" + toString(*d) + ")" + archive;

  // If there's no symbol, print out the offset in the section.
  return (filename + ":(" + name + "+0x" + utohexstr(off) + ")" + archive)
      .str();
}

InputSection InputSection::discarded(nullptr, 0, 0, 0, ArrayRef<uint8_t>(), "");

InputSection::InputSection(InputFile *f, uint64_t flags, uint32_t type,
                           uint32_t alignment, ArrayRef<uint8_t> data,
                           StringRef name, Kind k)
    : InputSectionBase(f, flags, type,
                       /*Entsize*/ 0, /*Link*/ 0, /*Info*/ 0, alignment, data,
                       name, k) {}

template <class ELFT>
InputSection::InputSection(ObjFile<ELFT> &f, const typename ELFT::Shdr &header,
                           StringRef name)
    : InputSectionBase(f, header, name, InputSectionBase::Regular) {}

bool InputSection::classof(const SectionBase *s) {
  return s->kind() == SectionBase::Regular ||
         s->kind() == SectionBase::Synthetic;
}

OutputSection *InputSection::getParent() const {
  return cast_or_null<OutputSection>(parent);
}

// Copy SHT_GROUP section contents. Used only for the -r option.
template <class ELFT> void InputSection::copyShtGroup(uint8_t *buf) {
  // ELFT::Word is the 32-bit integral type in the target endianness.
  using u32 = typename ELFT::Word;
  ArrayRef<u32> from = getDataAs<u32>();
  auto *to = reinterpret_cast<u32 *>(buf);

  // The first entry is not a section number but a flag.
  *to++ = from[0];

  // Adjust section numbers because section numbers in an input object files are
  // different in the output. We also need to handle combined or discarded
  // members.
  ArrayRef<InputSectionBase *> sections = file->getSections();
  std::unordered_set<uint32_t> seen;
  for (uint32_t idx : from.slice(1)) {
    OutputSection *osec = sections[idx]->getOutputSection();
    if (osec && seen.insert(osec->sectionIndex).second)
      *to++ = osec->sectionIndex;
  }
}

InputSectionBase *InputSection::getRelocatedSection() const {
  if (!file || (type != SHT_RELA && type != SHT_REL))
    return nullptr;
  ArrayRef<InputSectionBase *> sections = file->getSections();
  return sections[info];
}

// This is used for -r and --emit-relocs. We can't use memcpy to copy
// relocations because we need to update symbol table offset and section index
// for each relocation. So we copy relocations one by one.
template <class ELFT, class RelTy>
void InputSection::copyRelocations(uint8_t *buf, ArrayRef<RelTy> rels) {
  InputSectionBase *sec = getRelocatedSection();

  for (const RelTy &rel : rels) {
    RelType type = rel.getType(config->isMips64EL);
    const ObjFile<ELFT> *file = getFile<ELFT>();
    Symbol &sym = file->getRelocTargetSym(rel);

    auto *p = reinterpret_cast<typename ELFT::Rela *>(buf);
    buf += sizeof(RelTy);

    if (RelTy::IsRela)
      p->r_addend = getAddend<ELFT>(rel);

    // Output section VA is zero for -r, so r_offset is an offset within the
    // section, but for --emit-relocs it is a virtual address.
    p->r_offset = sec->getVA(rel.r_offset);
    p->setSymbolAndType(in.symTab->getSymbolIndex(&sym), type,
                        config->isMips64EL);

    if (sym.type == STT_SECTION) {
      // We combine multiple section symbols into only one per
      // section. This means we have to update the addend. That is
      // trivial for Elf_Rela, but for Elf_Rel we have to write to the
      // section data. We do that by adding to the Relocation vector.

      // .eh_frame is horribly special and can reference discarded sections. To
      // avoid having to parse and recreate .eh_frame, we just replace any
      // relocation in it pointing to discarded sections with R_*_NONE, which
      // hopefully creates a frame that is ignored at runtime. Also, don't warn
      // on .gcc_except_table and debug sections.
      //
      // See the comment in maybeReportUndefined for PPC32 .got2 and PPC64 .toc
      auto *d = dyn_cast<Defined>(&sym);
      if (!d) {
        if (!isDebugSection(*sec) && sec->name != ".eh_frame" &&
            sec->name != ".gcc_except_table" && sec->name != ".got2" &&
            sec->name != ".toc") {
          uint32_t secIdx = cast<Undefined>(sym).discardedSecIdx;
          Elf_Shdr_Impl<ELFT> sec =
              CHECK(file->getObj().sections(), file)[secIdx];
          warn("relocation refers to a discarded section: " +
               CHECK(file->getObj().getSectionName(sec), file) +
               "\n>>> referenced by " + getObjMsg(p->r_offset));
        }
        p->setSymbolAndType(0, 0, false);
        continue;
      }
      SectionBase *section = d->section->repl;
      if (!section->isLive()) {
        p->setSymbolAndType(0, 0, false);
        continue;
      }

      int64_t addend = getAddend<ELFT>(rel);
      const uint8_t *bufLoc = sec->data().begin() + rel.r_offset;
      if (!RelTy::IsRela)
        addend = target->getImplicitAddend(bufLoc, type);

      if (config->emachine == EM_MIPS &&
          target->getRelExpr(type, sym, bufLoc) == R_MIPS_GOTREL) {
        // Some MIPS relocations depend on "gp" value. By default,
        // this value has 0x7ff0 offset from a .got section. But
        // relocatable files produced by a compiler or a linker
        // might redefine this default value and we must use it
        // for a calculation of the relocation result. When we
        // generate EXE or DSO it's trivial. Generating a relocatable
        // output is more difficult case because the linker does
        // not calculate relocations in this mode and loses
        // individual "gp" values used by each input object file.
        // As a workaround we add the "gp" value to the relocation
        // addend and save it back to the file.
        addend += sec->getFile<ELFT>()->mipsGp0;
      }

      if (RelTy::IsRela)
        p->r_addend = sym.getVA(addend) - section->getOutputSection()->addr;
      else if (config->relocatable && type != target->noneRel)
        sec->relocations.push_back({R_ABS, type, rel.r_offset, addend, &sym});
    } else if (config->emachine == EM_PPC && type == R_PPC_PLTREL24 &&
               p->r_addend >= 0x8000) {
      // Similar to R_MIPS_GPREL{16,32}. If the addend of R_PPC_PLTREL24
      // indicates that r30 is relative to the input section .got2
      // (r_addend>=0x8000), after linking, r30 should be relative to the output
      // section .got2 . To compensate for the shift, adjust r_addend by
      // ppc32Got2OutSecOff.
      p->r_addend += sec->file->ppc32Got2OutSecOff;
    }
  }
}

// The ARM and AArch64 ABI handle pc-relative relocations to undefined weak
// references specially. The general rule is that the value of the symbol in
// this context is the address of the place P. A further special case is that
// branch relocations to an undefined weak reference resolve to the next
// instruction.
static uint32_t getARMUndefinedRelativeWeakVA(RelType type, uint32_t a,
                                              uint32_t p) {
  switch (type) {
  // Unresolved branch relocations to weak references resolve to next
  // instruction, this will be either 2 or 4 bytes on from P.
  case R_ARM_THM_JUMP11:
    return p + 2 + a;
  case R_ARM_CALL:
  case R_ARM_JUMP24:
  case R_ARM_PC24:
  case R_ARM_PLT32:
  case R_ARM_PREL31:
  case R_ARM_THM_JUMP19:
  case R_ARM_THM_JUMP24:
    return p + 4 + a;
  case R_ARM_THM_CALL:
    // We don't want an interworking BLX to ARM
    return p + 5 + a;
  // Unresolved non branch pc-relative relocations
  // R_ARM_TARGET2 which can be resolved relatively is not present as it never
  // targets a weak-reference.
  case R_ARM_MOVW_PREL_NC:
  case R_ARM_MOVT_PREL:
  case R_ARM_REL32:
  case R_ARM_THM_ALU_PREL_11_0:
  case R_ARM_THM_MOVW_PREL_NC:
  case R_ARM_THM_MOVT_PREL:
  case R_ARM_THM_PC12:
    return p + a;
  // p + a is unrepresentable as negative immediates can't be encoded.
  case R_ARM_THM_PC8:
    return p;
  }
  llvm_unreachable("ARM pc-relative relocation expected\n");
}

// The comment above getARMUndefinedRelativeWeakVA applies to this function.
static uint64_t getAArch64UndefinedRelativeWeakVA(uint64_t type, uint64_t a,
                                                  uint64_t p) {
  switch (type) {
  // Unresolved branch relocations to weak references resolve to next
  // instruction, this is 4 bytes on from P.
  case R_AARCH64_CALL26:
  case R_AARCH64_CONDBR19:
  case R_AARCH64_JUMP26:
  case R_AARCH64_TSTBR14:
    return p + 4 + a;
  // Unresolved non branch pc-relative relocations
  case R_AARCH64_PREL16:
  case R_AARCH64_PREL32:
  case R_AARCH64_PREL64:
  case R_AARCH64_ADR_PREL_LO21:
  case R_AARCH64_LD_PREL_LO19:
  case R_AARCH64_PLT32:
    return p + a;
  }
  llvm_unreachable("AArch64 pc-relative relocation expected\n");
}

// ARM SBREL relocations are of the form S + A - B where B is the static base
// The ARM ABI defines base to be "addressing origin of the output segment
// defining the symbol S". We defined the "addressing origin"/static base to be
// the base of the PT_LOAD segment containing the Sym.
// The procedure call standard only defines a Read Write Position Independent
// RWPI variant so in practice we should expect the static base to be the base
// of the RW segment.
static uint64_t getARMStaticBase(const Symbol &sym) {
  OutputSection *os = sym.getOutputSection();
  if (!os || !os->ptLoad || !os->ptLoad->firstSec)
    fatal("SBREL relocation to " + sym.getName() + " without static base");
  return os->ptLoad->firstSec->addr;
}

// For R_RISCV_PC_INDIRECT (R_RISCV_PCREL_LO12_{I,S}), the symbol actually
// points the corresponding R_RISCV_PCREL_HI20 relocation, and the target VA
// is calculated using PCREL_HI20's symbol.
//
// This function returns the R_RISCV_PCREL_HI20 relocation from
// R_RISCV_PCREL_LO12's symbol and addend.
static Relocation *getRISCVPCRelHi20(const Symbol *sym, uint64_t addend) {
  const Defined *d = cast<Defined>(sym);
  if (!d->section) {
    error("R_RISCV_PCREL_LO12 relocation points to an absolute symbol: " +
          sym->getName());
    return nullptr;
  }
  InputSection *isec = cast<InputSection>(d->section);

  if (addend != 0)
    warn("Non-zero addend in R_RISCV_PCREL_LO12 relocation to " +
         isec->getObjMsg(d->value) + " is ignored");

  // Relocations are sorted by offset, so we can use std::equal_range to do
  // binary search.
  Relocation r;
  r.offset = d->value;
  auto range =
      std::equal_range(isec->relocations.begin(), isec->relocations.end(), r,
                       [](const Relocation &lhs, const Relocation &rhs) {
                         return lhs.offset < rhs.offset;
                       });

  for (auto it = range.first; it != range.second; ++it)
    if (it->type == R_RISCV_PCREL_HI20 || it->type == R_RISCV_GOT_HI20 ||
        it->type == R_RISCV_TLS_GD_HI20 || it->type == R_RISCV_TLS_GOT_HI20)
      return &*it;

  error("R_RISCV_PCREL_LO12 relocation points to " + isec->getObjMsg(d->value) +
        " without an associated R_RISCV_PCREL_HI20 relocation");
  return nullptr;
}

// A TLS symbol's virtual address is relative to the TLS segment. Add a
// target-specific adjustment to produce a thread-pointer-relative offset.
static int64_t getTlsTpOffset(const Symbol &s) {
  // On targets that support TLSDESC, _TLS_MODULE_BASE_@tpoff = 0.
  if (&s == ElfSym::tlsModuleBase)
    return 0;

  // There are 2 TLS layouts. Among targets we support, x86 uses TLS Variant 2
  // while most others use Variant 1. At run time TP will be aligned to p_align.

  // Variant 1. TP will be followed by an optional gap (which is the size of 2
  // pointers on ARM/AArch64, 0 on other targets), followed by alignment
  // padding, then the static TLS blocks. The alignment padding is added so that
  // (TP + gap + padding) is congruent to p_vaddr modulo p_align.
  //
  // Variant 2. Static TLS blocks, followed by alignment padding are placed
  // before TP. The alignment padding is added so that (TP - padding -
  // p_memsz) is congruent to p_vaddr modulo p_align.
  PhdrEntry *tls = Out::tlsPhdr;
  switch (config->emachine) {
    // Variant 1.
  case EM_ARM:
  case EM_AARCH64:
    return s.getVA(0) + config->wordsize * 2 +
           ((tls->p_vaddr - config->wordsize * 2) & (tls->p_align - 1));
  case EM_MIPS:
  case EM_PPC:
  case EM_PPC64:
    // Adjusted Variant 1. TP is placed with a displacement of 0x7000, which is
    // to allow a signed 16-bit offset to reach 0x1000 of TCB/thread-library
    // data and 0xf000 of the program's TLS segment.
    return s.getVA(0) + (tls->p_vaddr & (tls->p_align - 1)) - 0x7000;
  case EM_RISCV:
    return s.getVA(0) + (tls->p_vaddr & (tls->p_align - 1));

    // Variant 2.
  case EM_HEXAGON:
  case EM_SPARCV9:
  case EM_386:
  case EM_X86_64:
    return s.getVA(0) - tls->p_memsz -
           ((-tls->p_vaddr - tls->p_memsz) & (tls->p_align - 1));
  default:
    llvm_unreachable("unhandled Config->EMachine");
  }
}

uint64_t InputSectionBase::getRelocTargetVA(const InputFile *file, RelType type,
                                            int64_t a, uint64_t p,
                                            const Symbol &sym, RelExpr expr) {
  switch (expr) {
  case R_ABS:
  case R_DTPREL:
  case R_RELAX_TLS_LD_TO_LE_ABS:
  case R_RELAX_GOT_PC_NOPIC:
  case R_RISCV_ADD:
    return sym.getVA(a);
  case R_ADDEND:
    return a;
  case R_ARM_SBREL:
    return sym.getVA(a) - getARMStaticBase(sym);
  case R_GOT:
  case R_RELAX_TLS_GD_TO_IE_ABS:
    return sym.getGotVA() + a;
  case R_GOTONLY_PC:
    return in.got->getVA() + a - p;
  case R_GOTPLTONLY_PC:
    return in.gotPlt->getVA() + a - p;
  case R_GOTREL:
  case R_PPC64_RELAX_TOC:
    return sym.getVA(a) - in.got->getVA();
  case R_GOTPLTREL:
    return sym.getVA(a) - in.gotPlt->getVA();
  case R_GOTPLT:
  case R_RELAX_TLS_GD_TO_IE_GOTPLT:
    return sym.getGotVA() + a - in.gotPlt->getVA();
  case R_TLSLD_GOT_OFF:
  case R_GOT_OFF:
  case R_RELAX_TLS_GD_TO_IE_GOT_OFF:
    return sym.getGotOffset() + a;
  case R_AARCH64_GOT_PAGE_PC:
  case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC:
    return getAArch64Page(sym.getGotVA() + a) - getAArch64Page(p);
  case R_GOT_PC:
  case R_RELAX_TLS_GD_TO_IE:
    return sym.getGotVA() + a - p;
  case R_MIPS_GOTREL:
    return sym.getVA(a) - in.mipsGot->getGp(file);
  case R_MIPS_GOT_GP:
    return in.mipsGot->getGp(file) + a;
  case R_MIPS_GOT_GP_PC: {
    // R_MIPS_LO16 expression has R_MIPS_GOT_GP_PC type iif the target
    // is _gp_disp symbol. In that case we should use the following
    // formula for calculation "AHL + GP - P + 4". For details see p. 4-19 at
    // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
    // microMIPS variants of these relocations use slightly different
    // expressions: AHL + GP - P + 3 for %lo() and AHL + GP - P - 1 for %hi()
    // to correctly handle less-significant bit of the microMIPS symbol.
    uint64_t v = in.mipsGot->getGp(file) + a - p;
    if (type == R_MIPS_LO16 || type == R_MICROMIPS_LO16)
      v += 4;
    if (type == R_MICROMIPS_LO16 || type == R_MICROMIPS_HI16)
      v -= 1;
    return v;
  }
  case R_MIPS_GOT_LOCAL_PAGE:
    // If relocation against MIPS local symbol requires GOT entry, this entry
    // should be initialized by 'page address'. This address is high 16-bits
    // of sum the symbol's value and the addend.
    return in.mipsGot->getVA() + in.mipsGot->getPageEntryOffset(file, sym, a) -
           in.mipsGot->getGp(file);
  case R_MIPS_GOT_OFF:
  case R_MIPS_GOT_OFF32:
    // In case of MIPS if a GOT relocation has non-zero addend this addend
    // should be applied to the GOT entry content not to the GOT entry offset.
    // That is why we use separate expression type.
    return in.mipsGot->getVA() + in.mipsGot->getSymEntryOffset(file, sym, a) -
           in.mipsGot->getGp(file);
  case R_MIPS_TLSGD:
    return in.mipsGot->getVA() + in.mipsGot->getGlobalDynOffset(file, sym) -
           in.mipsGot->getGp(file);
  case R_MIPS_TLSLD:
    return in.mipsGot->getVA() + in.mipsGot->getTlsIndexOffset(file) -
           in.mipsGot->getGp(file);
  case R_AARCH64_PAGE_PC: {
    uint64_t val = sym.isUndefWeak() ? p + a : sym.getVA(a);
    return getAArch64Page(val) - getAArch64Page(p);
  }
  case R_RISCV_PC_INDIRECT: {
    if (const Relocation *hiRel = getRISCVPCRelHi20(&sym, a))
      return getRelocTargetVA(file, hiRel->type, hiRel->addend, sym.getVA(),
                              *hiRel->sym, hiRel->expr);
    return 0;
  }
  case R_PC:
  case R_ARM_PCA: {
    uint64_t dest;
    if (expr == R_ARM_PCA)
      // Some PC relative ARM (Thumb) relocations align down the place.
      p = p & 0xfffffffc;
    if (sym.isUndefWeak()) {
      // On ARM and AArch64 a branch to an undefined weak resolves to the
      // next instruction, otherwise the place.
      if (config->emachine == EM_ARM)
        dest = getARMUndefinedRelativeWeakVA(type, a, p);
      else if (config->emachine == EM_AARCH64)
        dest = getAArch64UndefinedRelativeWeakVA(type, a, p);
      else if (config->emachine == EM_PPC)
        dest = p;
      else
        dest = sym.getVA(a);
    } else {
      dest = sym.getVA(a);
    }
    return dest - p;
  }
  case R_PLT:
    return sym.getPltVA() + a;
  case R_PLT_PC:
  case R_PPC64_CALL_PLT:
    return sym.getPltVA() + a - p;
  case R_PPC32_PLTREL:
    // R_PPC_PLTREL24 uses the addend (usually 0 or 0x8000) to indicate r30
    // stores _GLOBAL_OFFSET_TABLE_ or .got2+0x8000. The addend is ignored for
    // target VA computation.
    return sym.getPltVA() - p;
  case R_PPC64_CALL: {
    uint64_t symVA = sym.getVA(a);
    // If we have an undefined weak symbol, we might get here with a symbol
    // address of zero. That could overflow, but the code must be unreachable,
    // so don't bother doing anything at all.
    if (!symVA)
      return 0;

    // PPC64 V2 ABI describes two entry points to a function. The global entry
    // point is used for calls where the caller and callee (may) have different
    // TOC base pointers and r2 needs to be modified to hold the TOC base for
    // the callee. For local calls the caller and callee share the same
    // TOC base and so the TOC pointer initialization code should be skipped by
    // branching to the local entry point.
    return symVA - p + getPPC64GlobalEntryToLocalEntryOffset(sym.stOther);
  }
  case R_PPC64_TOCBASE:
    return getPPC64TocBase() + a;
  case R_RELAX_GOT_PC:
  case R_PPC64_RELAX_GOT_PC:
    return sym.getVA(a) - p;
  case R_RELAX_TLS_GD_TO_LE:
  case R_RELAX_TLS_IE_TO_LE:
  case R_RELAX_TLS_LD_TO_LE:
  case R_TLS:
    // It is not very clear what to return if the symbol is undefined. With
    // --noinhibit-exec, even a non-weak undefined reference may reach here.
    // Just return A, which matches R_ABS, and the behavior of some dynamic
    // loaders.
    if (sym.isUndefined() || sym.isLazy())
      return a;
    return getTlsTpOffset(sym) + a;
  case R_RELAX_TLS_GD_TO_LE_NEG:
  case R_NEG_TLS:
    if (sym.isUndefined())
      return a;
    return -getTlsTpOffset(sym) + a;
  case R_SIZE:
    return sym.getSize() + a;
  case R_TLSDESC:
    return in.got->getGlobalDynAddr(sym) + a;
  case R_TLSDESC_PC:
    return in.got->getGlobalDynAddr(sym) + a - p;
  case R_AARCH64_TLSDESC_PAGE:
    return getAArch64Page(in.got->getGlobalDynAddr(sym) + a) -
           getAArch64Page(p);
  case R_TLSGD_GOT:
    return in.got->getGlobalDynOffset(sym) + a;
  case R_TLSGD_GOTPLT:
    return in.got->getVA() + in.got->getGlobalDynOffset(sym) + a - in.gotPlt->getVA();
  case R_TLSGD_PC:
    return in.got->getGlobalDynAddr(sym) + a - p;
  case R_TLSLD_GOTPLT:
    return in.got->getVA() + in.got->getTlsIndexOff() + a - in.gotPlt->getVA();
  case R_TLSLD_GOT:
    return in.got->getTlsIndexOff() + a;
  case R_TLSLD_PC:
    return in.got->getTlsIndexVA() + a - p;
  default:
    llvm_unreachable("invalid expression");
  }
}

// This function applies relocations to sections without SHF_ALLOC bit.
// Such sections are never mapped to memory at runtime. Debug sections are
// an example. Relocations in non-alloc sections are much easier to
// handle than in allocated sections because it will never need complex
// treatment such as GOT or PLT (because at runtime no one refers them).
// So, we handle relocations for non-alloc sections directly in this
// function as a performance optimization.
template <class ELFT, class RelTy>
void InputSection::relocateNonAlloc(uint8_t *buf, ArrayRef<RelTy> rels) {
  const unsigned bits = sizeof(typename ELFT::uint) * 8;
  const bool isDebug = isDebugSection(*this);
  const bool isDebugLocOrRanges =
      isDebug && (name == ".debug_loc" || name == ".debug_ranges");
  const bool isDebugLine = isDebug && name == ".debug_line";
  Optional<uint64_t> tombstone;
  for (const auto &patAndValue : llvm::reverse(config->deadRelocInNonAlloc))
    if (patAndValue.first.match(this->name)) {
      tombstone = patAndValue.second;
      break;
    }

  for (const RelTy &rel : rels) {
    RelType type = rel.getType(config->isMips64EL);

    // GCC 8.0 or earlier have a bug that they emit R_386_GOTPC relocations
    // against _GLOBAL_OFFSET_TABLE_ for .debug_info. The bug has been fixed
    // in 2017 (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82630), but we
    // need to keep this bug-compatible code for a while.
    if (config->emachine == EM_386 && type == R_386_GOTPC)
      continue;

    uint64_t offset = rel.r_offset;
    uint8_t *bufLoc = buf + offset;
    int64_t addend = getAddend<ELFT>(rel);
    if (!RelTy::IsRela)
      addend += target->getImplicitAddend(bufLoc, type);

    Symbol &sym = getFile<ELFT>()->getRelocTargetSym(rel);
    RelExpr expr = target->getRelExpr(type, sym, bufLoc);
    if (expr == R_NONE)
      continue;

    if (expr == R_SIZE) {
      target->relocateNoSym(bufLoc, type,
                            SignExtend64<bits>(sym.getSize() + addend));
      continue;
    }

    if (expr != R_ABS && expr != R_DTPREL && expr != R_RISCV_ADD) {
      std::string msg = getLocation<ELFT>(offset) +
                        ": has non-ABS relocation " + toString(type) +
                        " against symbol '" + toString(sym) + "'";
      if (expr != R_PC && expr != R_ARM_PCA) {
        error(msg);
        return;
      }

      // If the control reaches here, we found a PC-relative relocation in a
      // non-ALLOC section. Since non-ALLOC section is not loaded into memory
      // at runtime, the notion of PC-relative doesn't make sense here. So,
      // this is a usage error. However, GNU linkers historically accept such
      // relocations without any errors and relocate them as if they were at
      // address 0. For bug-compatibilty, we accept them with warnings. We
      // know Steel Bank Common Lisp as of 2018 have this bug.
      warn(msg);
      target->relocateNoSym(
          bufLoc, type,
          SignExtend64<bits>(sym.getVA(addend - offset - outSecOff)));
      continue;
    }

    if (tombstone ||
        (isDebug && (type == target->symbolicRel || expr == R_DTPREL))) {
      // Resolve relocations in .debug_* referencing (discarded symbols or ICF
      // folded section symbols) to a tombstone value. Resolving to addend is
      // unsatisfactory because the result address range may collide with a
      // valid range of low address, or leave multiple CUs claiming ownership of
      // the same range of code, which may confuse consumers.
      //
      // To address the problems, we use -1 as a tombstone value for most
      // .debug_* sections. We have to ignore the addend because we don't want
      // to resolve an address attribute (which may have a non-zero addend) to
      // -1+addend (wrap around to a low address).
      //
      // R_DTPREL type relocations represent an offset into the dynamic thread
      // vector. The computed value is st_value plus a non-negative offset.
      // Negative values are invalid, so -1 can be used as the tombstone value.
      //
      // If the referenced symbol is discarded (made Undefined), or the
      // section defining the referenced symbol is garbage collected,
      // sym.getOutputSection() is nullptr. `ds->section->repl != ds->section`
      // catches the ICF folded case. However, resolving a relocation in
      // .debug_line to -1 would stop debugger users from setting breakpoints on
      // the folded-in function, so exclude .debug_line.
      //
      // For pre-DWARF-v5 .debug_loc and .debug_ranges, -1 is a reserved value
      // (base address selection entry), use 1 (which is used by GNU ld for
      // .debug_ranges).
      //
      // TODO To reduce disruption, we use 0 instead of -1 as the tombstone
      // value. Enable -1 in a future release.
      auto *ds = dyn_cast<Defined>(&sym);
      if (!sym.getOutputSection() ||
          (ds && ds->section->repl != ds->section && !isDebugLine)) {
        // If -z dead-reloc-in-nonalloc= is specified, respect it.
        const uint64_t value = tombstone ? SignExtend64<bits>(*tombstone)
                                         : (isDebugLocOrRanges ? 1 : 0);
        target->relocateNoSym(bufLoc, type, value);
        continue;
      }
    }
    target->relocateNoSym(bufLoc, type, SignExtend64<bits>(sym.getVA(addend)));
  }
}

// This is used when '-r' is given.
// For REL targets, InputSection::copyRelocations() may store artificial
// relocations aimed to update addends. They are handled in relocateAlloc()
// for allocatable sections, and this function does the same for
// non-allocatable sections, such as sections with debug information.
static void relocateNonAllocForRelocatable(InputSection *sec, uint8_t *buf) {
  const unsigned bits = config->is64 ? 64 : 32;

  for (const Relocation &rel : sec->relocations) {
    // InputSection::copyRelocations() adds only R_ABS relocations.
    assert(rel.expr == R_ABS);
    uint8_t *bufLoc = buf + rel.offset;
    uint64_t targetVA = SignExtend64(rel.sym->getVA(rel.addend), bits);
    target->relocate(bufLoc, rel, targetVA);
  }
}

template <class ELFT>
void InputSectionBase::relocate(uint8_t *buf, uint8_t *bufEnd) {
  if (flags & SHF_EXECINSTR)
    adjustSplitStackFunctionPrologues<ELFT>(buf, bufEnd);

  if (flags & SHF_ALLOC) {
    relocateAlloc(buf, bufEnd);
    return;
  }

  auto *sec = cast<InputSection>(this);
  if (config->relocatable)
    relocateNonAllocForRelocatable(sec, buf);
  else if (sec->areRelocsRela)
    sec->relocateNonAlloc<ELFT>(buf, sec->template relas<ELFT>());
  else
    sec->relocateNonAlloc<ELFT>(buf, sec->template rels<ELFT>());
}

void InputSectionBase::relocateAlloc(uint8_t *buf, uint8_t *bufEnd) {
  assert(flags & SHF_ALLOC);
  const unsigned bits = config->wordsize * 8;
  uint64_t lastPPCRelaxedRelocOff = UINT64_C(-1);

  for (const Relocation &rel : relocations) {
    if (rel.expr == R_NONE)
      continue;
    uint64_t offset = rel.offset;
    uint8_t *bufLoc = buf + offset;
    RelType type = rel.type;

    uint64_t addrLoc = getOutputSection()->addr + offset;
    if (auto *sec = dyn_cast<InputSection>(this))
      addrLoc += sec->outSecOff;
    RelExpr expr = rel.expr;
    uint64_t targetVA = SignExtend64(
        getRelocTargetVA(file, type, rel.addend, addrLoc, *rel.sym, expr),
        bits);

    switch (expr) {
    case R_RELAX_GOT_PC:
    case R_RELAX_GOT_PC_NOPIC:
      target->relaxGot(bufLoc, rel, targetVA);
      break;
    case R_PPC64_RELAX_GOT_PC: {
      // The R_PPC64_PCREL_OPT relocation must appear immediately after
      // R_PPC64_GOT_PCREL34 in the relocations table at the same offset.
      // We can only relax R_PPC64_PCREL_OPT if we have also relaxed
      // the associated R_PPC64_GOT_PCREL34 since only the latter has an
      // associated symbol. So save the offset when relaxing R_PPC64_GOT_PCREL34
      // and only relax the other if the saved offset matches.
      if (type == R_PPC64_GOT_PCREL34)
        lastPPCRelaxedRelocOff = offset;
      if (type == R_PPC64_PCREL_OPT && offset != lastPPCRelaxedRelocOff)
        break;
      target->relaxGot(bufLoc, rel, targetVA);
      break;
    }
    case R_PPC64_RELAX_TOC:
      // rel.sym refers to the STT_SECTION symbol associated to the .toc input
      // section. If an R_PPC64_TOC16_LO (.toc + addend) references the TOC
      // entry, there may be R_PPC64_TOC16_HA not paired with
      // R_PPC64_TOC16_LO_DS. Don't relax. This loses some relaxation
      // opportunities but is safe.
      if (ppc64noTocRelax.count({rel.sym, rel.addend}) ||
          !tryRelaxPPC64TocIndirection(rel, bufLoc))
        target->relocate(bufLoc, rel, targetVA);
      break;
    case R_RELAX_TLS_IE_TO_LE:
      target->relaxTlsIeToLe(bufLoc, rel, targetVA);
      break;
    case R_RELAX_TLS_LD_TO_LE:
    case R_RELAX_TLS_LD_TO_LE_ABS:
      target->relaxTlsLdToLe(bufLoc, rel, targetVA);
      break;
    case R_RELAX_TLS_GD_TO_LE:
    case R_RELAX_TLS_GD_TO_LE_NEG:
      target->relaxTlsGdToLe(bufLoc, rel, targetVA);
      break;
    case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC:
    case R_RELAX_TLS_GD_TO_IE:
    case R_RELAX_TLS_GD_TO_IE_ABS:
    case R_RELAX_TLS_GD_TO_IE_GOT_OFF:
    case R_RELAX_TLS_GD_TO_IE_GOTPLT:
      target->relaxTlsGdToIe(bufLoc, rel, targetVA);
      break;
    case R_PPC64_CALL:
      // If this is a call to __tls_get_addr, it may be part of a TLS
      // sequence that has been relaxed and turned into a nop. In this
      // case, we don't want to handle it as a call.
      if (read32(bufLoc) == 0x60000000) // nop
        break;

      // Patch a nop (0x60000000) to a ld.
      if (rel.sym->needsTocRestore) {
        // gcc/gfortran 5.4, 6.3 and earlier versions do not add nop for
        // recursive calls even if the function is preemptible. This is not
        // wrong in the common case where the function is not preempted at
        // runtime. Just ignore.
        if ((bufLoc + 8 > bufEnd || read32(bufLoc + 4) != 0x60000000) &&
            rel.sym->file != file) {
          // Use substr(6) to remove the "__plt_" prefix.
          errorOrWarn(getErrorLocation(bufLoc) + "call to " +
                      lld::toString(*rel.sym).substr(6) +
                      " lacks nop, can't restore toc");
          break;
        }
        write32(bufLoc + 4, 0xe8410018); // ld %r2, 24(%r1)
      }
      target->relocate(bufLoc, rel, targetVA);
      break;
    default:
      target->relocate(bufLoc, rel, targetVA);
      break;
    }
  }

  // Apply jumpInstrMods.  jumpInstrMods are created when the opcode of
  // a jmp insn must be modified to shrink the jmp insn or to flip the jmp
  // insn.  This is primarily used to relax and optimize jumps created with
  // basic block sections.
  if (isa<InputSection>(this)) {
    for (const JumpInstrMod &jumpMod : jumpInstrMods) {
      uint64_t offset = jumpMod.offset;
      uint8_t *bufLoc = buf + offset;
      target->applyJumpInstrMod(bufLoc, jumpMod.original, jumpMod.size);
    }
  }
}

// For each function-defining prologue, find any calls to __morestack,
// and replace them with calls to __morestack_non_split.
static void switchMorestackCallsToMorestackNonSplit(
    DenseSet<Defined *> &prologues, std::vector<Relocation *> &morestackCalls) {

  // If the target adjusted a function's prologue, all calls to
  // __morestack inside that function should be switched to
  // __morestack_non_split.
  Symbol *moreStackNonSplit = symtab->find("__morestack_non_split");
  if (!moreStackNonSplit) {
    error("Mixing split-stack objects requires a definition of "
          "__morestack_non_split");
    return;
  }

  // Sort both collections to compare addresses efficiently.
  llvm::sort(morestackCalls, [](const Relocation *l, const Relocation *r) {
    return l->offset < r->offset;
  });
  std::vector<Defined *> functions(prologues.begin(), prologues.end());
  llvm::sort(functions, [](const Defined *l, const Defined *r) {
    return l->value < r->value;
  });

  auto it = morestackCalls.begin();
  for (Defined *f : functions) {
    // Find the first call to __morestack within the function.
    while (it != morestackCalls.end() && (*it)->offset < f->value)
      ++it;
    // Adjust all calls inside the function.
    while (it != morestackCalls.end() && (*it)->offset < f->value + f->size) {
      (*it)->sym = moreStackNonSplit;
      ++it;
    }
  }
}

static bool enclosingPrologueAttempted(uint64_t offset,
                                       const DenseSet<Defined *> &prologues) {
  for (Defined *f : prologues)
    if (f->value <= offset && offset < f->value + f->size)
      return true;
  return false;
}

// If a function compiled for split stack calls a function not
// compiled for split stack, then the caller needs its prologue
// adjusted to ensure that the called function will have enough stack
// available. Find those functions, and adjust their prologues.
template <class ELFT>
void InputSectionBase::adjustSplitStackFunctionPrologues(uint8_t *buf,
                                                         uint8_t *end) {
  if (!getFile<ELFT>()->splitStack)
    return;
  DenseSet<Defined *> prologues;
  std::vector<Relocation *> morestackCalls;

  for (Relocation &rel : relocations) {
    // Local symbols can't possibly be cross-calls, and should have been
    // resolved long before this line.
    if (rel.sym->isLocal())
      continue;

    // Ignore calls into the split-stack api.
    if (rel.sym->getName().startswith("__morestack")) {
      if (rel.sym->getName().equals("__morestack"))
        morestackCalls.push_back(&rel);
      continue;
    }

    // A relocation to non-function isn't relevant. Sometimes
    // __morestack is not marked as a function, so this check comes
    // after the name check.
    if (rel.sym->type != STT_FUNC)
      continue;

    // If the callee's-file was compiled with split stack, nothing to do.  In
    // this context, a "Defined" symbol is one "defined by the binary currently
    // being produced". So an "undefined" symbol might be provided by a shared
    // library. It is not possible to tell how such symbols were compiled, so be
    // conservative.
    if (Defined *d = dyn_cast<Defined>(rel.sym))
      if (InputSection *isec = cast_or_null<InputSection>(d->section))
        if (!isec || !isec->getFile<ELFT>() || isec->getFile<ELFT>()->splitStack)
          continue;

    if (enclosingPrologueAttempted(rel.offset, prologues))
      continue;

    if (Defined *f = getEnclosingFunction<ELFT>(rel.offset)) {
      prologues.insert(f);
      if (target->adjustPrologueForCrossSplitStack(buf + f->value, end,
                                                   f->stOther))
        continue;
      if (!getFile<ELFT>()->someNoSplitStack)
        error(lld::toString(this) + ": " + f->getName() +
              " (with -fsplit-stack) calls " + rel.sym->getName() +
              " (without -fsplit-stack), but couldn't adjust its prologue");
    }
  }

  if (target->needsMoreStackNonSplit)
    switchMorestackCallsToMorestackNonSplit(prologues, morestackCalls);
}

template <class ELFT> void InputSection::writeTo(uint8_t *buf) {
  if (type == SHT_NOBITS)
    return;

  if (auto *s = dyn_cast<SyntheticSection>(this)) {
    s->writeTo(buf + outSecOff);
    return;
  }

  // If -r or --emit-relocs is given, then an InputSection
  // may be a relocation section.
  if (type == SHT_RELA) {
    copyRelocations<ELFT>(buf + outSecOff, getDataAs<typename ELFT::Rela>());
    return;
  }
  if (type == SHT_REL) {
    copyRelocations<ELFT>(buf + outSecOff, getDataAs<typename ELFT::Rel>());
    return;
  }

  // If -r is given, we may have a SHT_GROUP section.
  if (type == SHT_GROUP) {
    copyShtGroup<ELFT>(buf + outSecOff);
    return;
  }

  // If this is a compressed section, uncompress section contents directly
  // to the buffer.
  if (uncompressedSize >= 0) {
    size_t size = uncompressedSize;
    if (Error e = zlib::uncompress(toStringRef(rawData),
                                   (char *)(buf + outSecOff), size))
      fatal(toString(this) +
            ": uncompress failed: " + llvm::toString(std::move(e)));
    uint8_t *bufEnd = buf + outSecOff + size;
    relocate<ELFT>(buf + outSecOff, bufEnd);
    return;
  }

  // Copy section contents from source object file to output file
  // and then apply relocations.
  memcpy(buf + outSecOff, data().data(), data().size());
  uint8_t *bufEnd = buf + outSecOff + data().size();
  relocate<ELFT>(buf + outSecOff, bufEnd);
}

void InputSection::replace(InputSection *other) {
  alignment = std::max(alignment, other->alignment);

  // When a section is replaced with another section that was allocated to
  // another partition, the replacement section (and its associated sections)
  // need to be placed in the main partition so that both partitions will be
  // able to access it.
  if (partition != other->partition) {
    partition = 1;
    for (InputSection *isec : dependentSections)
      isec->partition = 1;
  }

  other->repl = repl;
  other->markDead();
}

template <class ELFT>
EhInputSection::EhInputSection(ObjFile<ELFT> &f,
                               const typename ELFT::Shdr &header,
                               StringRef name)
    : InputSectionBase(f, header, name, InputSectionBase::EHFrame) {}

SyntheticSection *EhInputSection::getParent() const {
  return cast_or_null<SyntheticSection>(parent);
}

// Returns the index of the first relocation that points to a region between
// Begin and Begin+Size.
template <class IntTy, class RelTy>
static unsigned getReloc(IntTy begin, IntTy size, const ArrayRef<RelTy> &rels,
                         unsigned &relocI) {
  // Start search from RelocI for fast access. That works because the
  // relocations are sorted in .eh_frame.
  for (unsigned n = rels.size(); relocI < n; ++relocI) {
    const RelTy &rel = rels[relocI];
    if (rel.r_offset < begin)
      continue;

    if (rel.r_offset < begin + size)
      return relocI;
    return -1;
  }
  return -1;
}

// .eh_frame is a sequence of CIE or FDE records.
// This function splits an input section into records and returns them.
template <class ELFT> void EhInputSection::split() {
  if (areRelocsRela)
    split<ELFT>(relas<ELFT>());
  else
    split<ELFT>(rels<ELFT>());
}

template <class ELFT, class RelTy>
void EhInputSection::split(ArrayRef<RelTy> rels) {
  unsigned relI = 0;
  for (size_t off = 0, end = data().size(); off != end;) {
    size_t size = readEhRecordSize(this, off);
    pieces.emplace_back(off, this, size, getReloc(off, size, rels, relI));
    // The empty record is the end marker.
    if (size == 4)
      break;
    off += size;
  }
}

static size_t findNull(StringRef s, size_t entSize) {
  // Optimize the common case.
  if (entSize == 1)
    return s.find(0);

  for (unsigned i = 0, n = s.size(); i != n; i += entSize) {
    const char *b = s.begin() + i;
    if (std::all_of(b, b + entSize, [](char c) { return c == 0; }))
      return i;
  }
  return StringRef::npos;
}

SyntheticSection *MergeInputSection::getParent() const {
  return cast_or_null<SyntheticSection>(parent);
}

// Split SHF_STRINGS section. Such section is a sequence of
// null-terminated strings.
void MergeInputSection::splitStrings(ArrayRef<uint8_t> data, size_t entSize) {
  size_t off = 0;
  bool isAlloc = flags & SHF_ALLOC;
  StringRef s = toStringRef(data);

  while (!s.empty()) {
    size_t end = findNull(s, entSize);
    if (end == StringRef::npos)
      fatal(toString(this) + ": string is not null terminated");
    size_t size = end + entSize;

    pieces.emplace_back(off, xxHash64(s.substr(0, size)), !isAlloc);
    s = s.substr(size);
    off += size;
  }
}

// Split non-SHF_STRINGS section. Such section is a sequence of
// fixed size records.
void MergeInputSection::splitNonStrings(ArrayRef<uint8_t> data,
                                        size_t entSize) {
  size_t size = data.size();
  assert((size % entSize) == 0);
  bool isAlloc = flags & SHF_ALLOC;

  for (size_t i = 0; i != size; i += entSize)
    pieces.emplace_back(i, xxHash64(data.slice(i, entSize)), !isAlloc);
}

template <class ELFT>
MergeInputSection::MergeInputSection(ObjFile<ELFT> &f,
                                     const typename ELFT::Shdr &header,
                                     StringRef name)
    : InputSectionBase(f, header, name, InputSectionBase::Merge) {}

MergeInputSection::MergeInputSection(uint64_t flags, uint32_t type,
                                     uint64_t entsize, ArrayRef<uint8_t> data,
                                     StringRef name)
    : InputSectionBase(nullptr, flags, type, entsize, /*Link*/ 0, /*Info*/ 0,
                       /*Alignment*/ entsize, data, name, SectionBase::Merge) {}

// This function is called after we obtain a complete list of input sections
// that need to be linked. This is responsible to split section contents
// into small chunks for further processing.
//
// Note that this function is called from parallelForEach. This must be
// thread-safe (i.e. no memory allocation from the pools).
void MergeInputSection::splitIntoPieces() {
  assert(pieces.empty());

  if (flags & SHF_STRINGS)
    splitStrings(data(), entsize);
  else
    splitNonStrings(data(), entsize);
}

SectionPiece *MergeInputSection::getSectionPiece(uint64_t offset) {
  if (this->data().size() <= offset)
    fatal(toString(this) + ": offset is outside the section");

  // If Offset is not at beginning of a section piece, it is not in the map.
  // In that case we need to  do a binary search of the original section piece vector.
  auto it = partition_point(
      pieces, [=](SectionPiece p) { return p.inputOff <= offset; });
  return &it[-1];
}

// Returns the offset in an output section for a given input offset.
// Because contents of a mergeable section is not contiguous in output,
// it is not just an addition to a base output offset.
uint64_t MergeInputSection::getParentOffset(uint64_t offset) const {
  // If Offset is not at beginning of a section piece, it is not in the map.
  // In that case we need to search from the original section piece vector.
  const SectionPiece &piece =
      *(const_cast<MergeInputSection *>(this)->getSectionPiece (offset));
  uint64_t addend = offset - piece.inputOff;
  return piece.outputOff + addend;
}

template InputSection::InputSection(ObjFile<ELF32LE> &, const ELF32LE::Shdr &,
                                    StringRef);
template InputSection::InputSection(ObjFile<ELF32BE> &, const ELF32BE::Shdr &,
                                    StringRef);
template InputSection::InputSection(ObjFile<ELF64LE> &, const ELF64LE::Shdr &,
                                    StringRef);
template InputSection::InputSection(ObjFile<ELF64BE> &, const ELF64BE::Shdr &,
                                    StringRef);

template std::string InputSectionBase::getLocation<ELF32LE>(uint64_t);
template std::string InputSectionBase::getLocation<ELF32BE>(uint64_t);
template std::string InputSectionBase::getLocation<ELF64LE>(uint64_t);
template std::string InputSectionBase::getLocation<ELF64BE>(uint64_t);

template void InputSection::writeTo<ELF32LE>(uint8_t *);
template void InputSection::writeTo<ELF32BE>(uint8_t *);
template void InputSection::writeTo<ELF64LE>(uint8_t *);
template void InputSection::writeTo<ELF64BE>(uint8_t *);

template MergeInputSection::MergeInputSection(ObjFile<ELF32LE> &,
                                              const ELF32LE::Shdr &, StringRef);
template MergeInputSection::MergeInputSection(ObjFile<ELF32BE> &,
                                              const ELF32BE::Shdr &, StringRef);
template MergeInputSection::MergeInputSection(ObjFile<ELF64LE> &,
                                              const ELF64LE::Shdr &, StringRef);
template MergeInputSection::MergeInputSection(ObjFile<ELF64BE> &,
                                              const ELF64BE::Shdr &, StringRef);

template EhInputSection::EhInputSection(ObjFile<ELF32LE> &,
                                        const ELF32LE::Shdr &, StringRef);
template EhInputSection::EhInputSection(ObjFile<ELF32BE> &,
                                        const ELF32BE::Shdr &, StringRef);
template EhInputSection::EhInputSection(ObjFile<ELF64LE> &,
                                        const ELF64LE::Shdr &, StringRef);
template EhInputSection::EhInputSection(ObjFile<ELF64BE> &,
                                        const ELF64BE::Shdr &, StringRef);

template void EhInputSection::split<ELF32LE>();
template void EhInputSection::split<ELF32BE>();
template void EhInputSection::split<ELF64LE>();
template void EhInputSection::split<ELF64BE>();