ARM.cpp 31.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852
//===- ARM.cpp ------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "InputFiles.h"
#include "Symbols.h"
#include "SyntheticSections.h"
#include "Target.h"
#include "Thunks.h"
#include "lld/Common/ErrorHandler.h"
#include "llvm/Object/ELF.h"
#include "llvm/Support/Endian.h"

using namespace llvm;
using namespace llvm::support::endian;
using namespace llvm::ELF;
using namespace lld;
using namespace lld::elf;

namespace {
class ARM final : public TargetInfo {
public:
  ARM();
  uint32_t calcEFlags() const override;
  RelExpr getRelExpr(RelType type, const Symbol &s,
                     const uint8_t *loc) const override;
  RelType getDynRel(RelType type) const override;
  int64_t getImplicitAddend(const uint8_t *buf, RelType type) const override;
  void writeGotPlt(uint8_t *buf, const Symbol &s) const override;
  void writeIgotPlt(uint8_t *buf, const Symbol &s) const override;
  void writePltHeader(uint8_t *buf) const override;
  void writePlt(uint8_t *buf, const Symbol &sym,
                uint64_t pltEntryAddr) const override;
  void addPltSymbols(InputSection &isec, uint64_t off) const override;
  void addPltHeaderSymbols(InputSection &isd) const override;
  bool needsThunk(RelExpr expr, RelType type, const InputFile *file,
                  uint64_t branchAddr, const Symbol &s,
                  int64_t a) const override;
  uint32_t getThunkSectionSpacing() const override;
  bool inBranchRange(RelType type, uint64_t src, uint64_t dst) const override;
  void relocate(uint8_t *loc, const Relocation &rel,
                uint64_t val) const override;
};
} // namespace

ARM::ARM() {
  copyRel = R_ARM_COPY;
  relativeRel = R_ARM_RELATIVE;
  iRelativeRel = R_ARM_IRELATIVE;
  gotRel = R_ARM_GLOB_DAT;
  noneRel = R_ARM_NONE;
  pltRel = R_ARM_JUMP_SLOT;
  symbolicRel = R_ARM_ABS32;
  tlsGotRel = R_ARM_TLS_TPOFF32;
  tlsModuleIndexRel = R_ARM_TLS_DTPMOD32;
  tlsOffsetRel = R_ARM_TLS_DTPOFF32;
  gotBaseSymInGotPlt = false;
  pltHeaderSize = 32;
  pltEntrySize = 16;
  ipltEntrySize = 16;
  trapInstr = {0xd4, 0xd4, 0xd4, 0xd4};
  needsThunks = true;
  defaultMaxPageSize = 65536;
}

uint32_t ARM::calcEFlags() const {
  // The ABIFloatType is used by loaders to detect the floating point calling
  // convention.
  uint32_t abiFloatType = 0;
  if (config->armVFPArgs == ARMVFPArgKind::Base ||
      config->armVFPArgs == ARMVFPArgKind::Default)
    abiFloatType = EF_ARM_ABI_FLOAT_SOFT;
  else if (config->armVFPArgs == ARMVFPArgKind::VFP)
    abiFloatType = EF_ARM_ABI_FLOAT_HARD;

  // We don't currently use any features incompatible with EF_ARM_EABI_VER5,
  // but we don't have any firm guarantees of conformance. Linux AArch64
  // kernels (as of 2016) require an EABI version to be set.
  return EF_ARM_EABI_VER5 | abiFloatType;
}

RelExpr ARM::getRelExpr(RelType type, const Symbol &s,
                        const uint8_t *loc) const {
  switch (type) {
  case R_ARM_THM_JUMP11:
    return R_PC;
  case R_ARM_CALL:
  case R_ARM_JUMP24:
  case R_ARM_PC24:
  case R_ARM_PLT32:
  case R_ARM_PREL31:
  case R_ARM_THM_JUMP19:
  case R_ARM_THM_JUMP24:
  case R_ARM_THM_CALL:
    return R_PLT_PC;
  case R_ARM_GOTOFF32:
    // (S + A) - GOT_ORG
    return R_GOTREL;
  case R_ARM_GOT_BREL:
    // GOT(S) + A - GOT_ORG
    return R_GOT_OFF;
  case R_ARM_GOT_PREL:
  case R_ARM_TLS_IE32:
    // GOT(S) + A - P
    return R_GOT_PC;
  case R_ARM_SBREL32:
    return R_ARM_SBREL;
  case R_ARM_TARGET1:
    return config->target1Rel ? R_PC : R_ABS;
  case R_ARM_TARGET2:
    if (config->target2 == Target2Policy::Rel)
      return R_PC;
    if (config->target2 == Target2Policy::Abs)
      return R_ABS;
    return R_GOT_PC;
  case R_ARM_TLS_GD32:
    return R_TLSGD_PC;
  case R_ARM_TLS_LDM32:
    return R_TLSLD_PC;
  case R_ARM_TLS_LDO32:
    return R_DTPREL;
  case R_ARM_BASE_PREL:
    // B(S) + A - P
    // FIXME: currently B(S) assumed to be .got, this may not hold for all
    // platforms.
    return R_GOTONLY_PC;
  case R_ARM_MOVW_PREL_NC:
  case R_ARM_MOVT_PREL:
  case R_ARM_REL32:
  case R_ARM_THM_MOVW_PREL_NC:
  case R_ARM_THM_MOVT_PREL:
    return R_PC;
  case R_ARM_ALU_PC_G0:
  case R_ARM_LDR_PC_G0:
  case R_ARM_THM_ALU_PREL_11_0:
  case R_ARM_THM_PC8:
  case R_ARM_THM_PC12:
    return R_ARM_PCA;
  case R_ARM_MOVW_BREL_NC:
  case R_ARM_MOVW_BREL:
  case R_ARM_MOVT_BREL:
  case R_ARM_THM_MOVW_BREL_NC:
  case R_ARM_THM_MOVW_BREL:
  case R_ARM_THM_MOVT_BREL:
    return R_ARM_SBREL;
  case R_ARM_NONE:
    return R_NONE;
  case R_ARM_TLS_LE32:
    return R_TLS;
  case R_ARM_V4BX:
    // V4BX is just a marker to indicate there's a "bx rN" instruction at the
    // given address. It can be used to implement a special linker mode which
    // rewrites ARMv4T inputs to ARMv4. Since we support only ARMv4 input and
    // not ARMv4 output, we can just ignore it.
    return R_NONE;
  default:
    return R_ABS;
  }
}

RelType ARM::getDynRel(RelType type) const {
  if ((type == R_ARM_ABS32) || (type == R_ARM_TARGET1 && !config->target1Rel))
    return R_ARM_ABS32;
  return R_ARM_NONE;
}

void ARM::writeGotPlt(uint8_t *buf, const Symbol &) const {
  write32le(buf, in.plt->getVA());
}

void ARM::writeIgotPlt(uint8_t *buf, const Symbol &s) const {
  // An ARM entry is the address of the ifunc resolver function.
  write32le(buf, s.getVA());
}

// Long form PLT Header that does not have any restrictions on the displacement
// of the .plt from the .plt.got.
static void writePltHeaderLong(uint8_t *buf) {
  const uint8_t pltData[] = {
      0x04, 0xe0, 0x2d, 0xe5, //     str lr, [sp,#-4]!
      0x04, 0xe0, 0x9f, 0xe5, //     ldr lr, L2
      0x0e, 0xe0, 0x8f, 0xe0, // L1: add lr, pc, lr
      0x08, 0xf0, 0xbe, 0xe5, //     ldr pc, [lr, #8]
      0x00, 0x00, 0x00, 0x00, // L2: .word   &(.got.plt) - L1 - 8
      0xd4, 0xd4, 0xd4, 0xd4, //     Pad to 32-byte boundary
      0xd4, 0xd4, 0xd4, 0xd4, //     Pad to 32-byte boundary
      0xd4, 0xd4, 0xd4, 0xd4};
  memcpy(buf, pltData, sizeof(pltData));
  uint64_t gotPlt = in.gotPlt->getVA();
  uint64_t l1 = in.plt->getVA() + 8;
  write32le(buf + 16, gotPlt - l1 - 8);
}

// The default PLT header requires the .plt.got to be within 128 Mb of the
// .plt in the positive direction.
void ARM::writePltHeader(uint8_t *buf) const {
  // Use a similar sequence to that in writePlt(), the difference is the calling
  // conventions mean we use lr instead of ip. The PLT entry is responsible for
  // saving lr on the stack, the dynamic loader is responsible for reloading
  // it.
  const uint32_t pltData[] = {
      0xe52de004, // L1: str lr, [sp,#-4]!
      0xe28fe600, //     add lr, pc,  #0x0NN00000 &(.got.plt - L1 - 4)
      0xe28eea00, //     add lr, lr,  #0x000NN000 &(.got.plt - L1 - 4)
      0xe5bef000, //     ldr pc, [lr, #0x00000NNN] &(.got.plt -L1 - 4)
  };

  uint64_t offset = in.gotPlt->getVA() - in.plt->getVA() - 4;
  if (!llvm::isUInt<27>(offset)) {
    // We cannot encode the Offset, use the long form.
    writePltHeaderLong(buf);
    return;
  }
  write32le(buf + 0, pltData[0]);
  write32le(buf + 4, pltData[1] | ((offset >> 20) & 0xff));
  write32le(buf + 8, pltData[2] | ((offset >> 12) & 0xff));
  write32le(buf + 12, pltData[3] | (offset & 0xfff));
  memcpy(buf + 16, trapInstr.data(), 4); // Pad to 32-byte boundary
  memcpy(buf + 20, trapInstr.data(), 4);
  memcpy(buf + 24, trapInstr.data(), 4);
  memcpy(buf + 28, trapInstr.data(), 4);
}

void ARM::addPltHeaderSymbols(InputSection &isec) const {
  addSyntheticLocal("$a", STT_NOTYPE, 0, 0, isec);
  addSyntheticLocal("$d", STT_NOTYPE, 16, 0, isec);
}

// Long form PLT entries that do not have any restrictions on the displacement
// of the .plt from the .plt.got.
static void writePltLong(uint8_t *buf, uint64_t gotPltEntryAddr,
                         uint64_t pltEntryAddr) {
  const uint8_t pltData[] = {
      0x04, 0xc0, 0x9f, 0xe5, //     ldr ip, L2
      0x0f, 0xc0, 0x8c, 0xe0, // L1: add ip, ip, pc
      0x00, 0xf0, 0x9c, 0xe5, //     ldr pc, [ip]
      0x00, 0x00, 0x00, 0x00, // L2: .word   Offset(&(.plt.got) - L1 - 8
  };
  memcpy(buf, pltData, sizeof(pltData));
  uint64_t l1 = pltEntryAddr + 4;
  write32le(buf + 12, gotPltEntryAddr - l1 - 8);
}

// The default PLT entries require the .plt.got to be within 128 Mb of the
// .plt in the positive direction.
void ARM::writePlt(uint8_t *buf, const Symbol &sym,
                   uint64_t pltEntryAddr) const {
  // The PLT entry is similar to the example given in Appendix A of ELF for
  // the Arm Architecture. Instead of using the Group Relocations to find the
  // optimal rotation for the 8-bit immediate used in the add instructions we
  // hard code the most compact rotations for simplicity. This saves a load
  // instruction over the long plt sequences.
  const uint32_t pltData[] = {
      0xe28fc600, // L1: add ip, pc,  #0x0NN00000  Offset(&(.plt.got) - L1 - 8
      0xe28cca00, //     add ip, ip,  #0x000NN000  Offset(&(.plt.got) - L1 - 8
      0xe5bcf000, //     ldr pc, [ip, #0x00000NNN] Offset(&(.plt.got) - L1 - 8
  };

  uint64_t offset = sym.getGotPltVA() - pltEntryAddr - 8;
  if (!llvm::isUInt<27>(offset)) {
    // We cannot encode the Offset, use the long form.
    writePltLong(buf, sym.getGotPltVA(), pltEntryAddr);
    return;
  }
  write32le(buf + 0, pltData[0] | ((offset >> 20) & 0xff));
  write32le(buf + 4, pltData[1] | ((offset >> 12) & 0xff));
  write32le(buf + 8, pltData[2] | (offset & 0xfff));
  memcpy(buf + 12, trapInstr.data(), 4); // Pad to 16-byte boundary
}

void ARM::addPltSymbols(InputSection &isec, uint64_t off) const {
  addSyntheticLocal("$a", STT_NOTYPE, off, 0, isec);
  addSyntheticLocal("$d", STT_NOTYPE, off + 12, 0, isec);
}

bool ARM::needsThunk(RelExpr expr, RelType type, const InputFile *file,
                     uint64_t branchAddr, const Symbol &s,
                     int64_t /*a*/) const {
  // If S is an undefined weak symbol and does not have a PLT entry then it
  // will be resolved as a branch to the next instruction.
  if (s.isUndefWeak() && !s.isInPlt())
    return false;
  // A state change from ARM to Thumb and vice versa must go through an
  // interworking thunk if the relocation type is not R_ARM_CALL or
  // R_ARM_THM_CALL.
  switch (type) {
  case R_ARM_PC24:
  case R_ARM_PLT32:
  case R_ARM_JUMP24:
    // Source is ARM, all PLT entries are ARM so no interworking required.
    // Otherwise we need to interwork if STT_FUNC Symbol has bit 0 set (Thumb).
    if (s.isFunc() && expr == R_PC && (s.getVA() & 1))
      return true;
    LLVM_FALLTHROUGH;
  case R_ARM_CALL: {
    uint64_t dst = (expr == R_PLT_PC) ? s.getPltVA() : s.getVA();
    return !inBranchRange(type, branchAddr, dst);
  }
  case R_ARM_THM_JUMP19:
  case R_ARM_THM_JUMP24:
    // Source is Thumb, all PLT entries are ARM so interworking is required.
    // Otherwise we need to interwork if STT_FUNC Symbol has bit 0 clear (ARM).
    if (expr == R_PLT_PC || (s.isFunc() && (s.getVA() & 1) == 0))
      return true;
    LLVM_FALLTHROUGH;
  case R_ARM_THM_CALL: {
    uint64_t dst = (expr == R_PLT_PC) ? s.getPltVA() : s.getVA();
    return !inBranchRange(type, branchAddr, dst);
  }
  }
  return false;
}

uint32_t ARM::getThunkSectionSpacing() const {
  // The placing of pre-created ThunkSections is controlled by the value
  // thunkSectionSpacing returned by getThunkSectionSpacing(). The aim is to
  // place the ThunkSection such that all branches from the InputSections
  // prior to the ThunkSection can reach a Thunk placed at the end of the
  // ThunkSection. Graphically:
  // | up to thunkSectionSpacing .text input sections |
  // | ThunkSection                                   |
  // | up to thunkSectionSpacing .text input sections |
  // | ThunkSection                                   |

  // Pre-created ThunkSections are spaced roughly 16MiB apart on ARMv7. This
  // is to match the most common expected case of a Thumb 2 encoded BL, BLX or
  // B.W:
  // ARM B, BL, BLX range +/- 32MiB
  // Thumb B.W, BL, BLX range +/- 16MiB
  // Thumb B<cc>.W range +/- 1MiB
  // If a branch cannot reach a pre-created ThunkSection a new one will be
  // created so we can handle the rare cases of a Thumb 2 conditional branch.
  // We intentionally use a lower size for thunkSectionSpacing than the maximum
  // branch range so the end of the ThunkSection is more likely to be within
  // range of the branch instruction that is furthest away. The value we shorten
  // thunkSectionSpacing by is set conservatively to allow us to create 16,384
  // 12 byte Thunks at any offset in a ThunkSection without risk of a branch to
  // one of the Thunks going out of range.

  // On Arm the thunkSectionSpacing depends on the range of the Thumb Branch
  // range. On earlier Architectures such as ARMv4, ARMv5 and ARMv6 (except
  // ARMv6T2) the range is +/- 4MiB.

  return (config->armJ1J2BranchEncoding) ? 0x1000000 - 0x30000
                                         : 0x400000 - 0x7500;
}

bool ARM::inBranchRange(RelType type, uint64_t src, uint64_t dst) const {
  uint64_t range;
  uint64_t instrSize;

  switch (type) {
  case R_ARM_PC24:
  case R_ARM_PLT32:
  case R_ARM_JUMP24:
  case R_ARM_CALL:
    range = 0x2000000;
    instrSize = 4;
    break;
  case R_ARM_THM_JUMP19:
    range = 0x100000;
    instrSize = 2;
    break;
  case R_ARM_THM_JUMP24:
  case R_ARM_THM_CALL:
    range = config->armJ1J2BranchEncoding ? 0x1000000 : 0x400000;
    instrSize = 2;
    break;
  default:
    return true;
  }
  // PC at Src is 2 instructions ahead, immediate of branch is signed
  if (src > dst)
    range -= 2 * instrSize;
  else
    range += instrSize;

  if ((dst & 0x1) == 0)
    // Destination is ARM, if ARM caller then Src is already 4-byte aligned.
    // If Thumb Caller (BLX) the Src address has bottom 2 bits cleared to ensure
    // destination will be 4 byte aligned.
    src &= ~0x3;
  else
    // Bit 0 == 1 denotes Thumb state, it is not part of the range
    dst &= ~0x1;

  uint64_t distance = (src > dst) ? src - dst : dst - src;
  return distance <= range;
}

// Helper to produce message text when LLD detects that a CALL relocation to
// a non STT_FUNC symbol that may result in incorrect interworking between ARM
// or Thumb.
static void stateChangeWarning(uint8_t *loc, RelType relt, const Symbol &s) {
  assert(!s.isFunc());
  if (s.isSection()) {
    // Section symbols must be defined and in a section. Users cannot change
    // the type. Use the section name as getName() returns an empty string.
    warn(getErrorLocation(loc) + "branch and link relocation: " +
         toString(relt) + " to STT_SECTION symbol " +
         cast<Defined>(s).section->name + " ; interworking not performed");
  } else {
    // Warn with hint on how to alter the symbol type.
    warn(getErrorLocation(loc) + "branch and link relocation: " +
         toString(relt) + " to non STT_FUNC symbol: " + s.getName() +
         " interworking not performed; consider using directive '.type " +
         s.getName() +
         ", %function' to give symbol type STT_FUNC if"
         " interworking between ARM and Thumb is required");
  }
}

// Utility functions taken from ARMAddressingModes.h, only changes are LLD
// coding style.

// Rotate a 32-bit unsigned value right by a specified amt of bits.
static uint32_t rotr32(uint32_t val, uint32_t amt) {
  assert(amt < 32 && "Invalid rotate amount");
  return (val >> amt) | (val << ((32 - amt) & 31));
}

// Rotate a 32-bit unsigned value left by a specified amt of bits.
static uint32_t rotl32(uint32_t val, uint32_t amt) {
  assert(amt < 32 && "Invalid rotate amount");
  return (val << amt) | (val >> ((32 - amt) & 31));
}

// Try to encode a 32-bit unsigned immediate imm with an immediate shifter
// operand, this form is an 8-bit immediate rotated right by an even number of
// bits. We compute the rotate amount to use.  If this immediate value cannot be
// handled with a single shifter-op, determine a good rotate amount that will
// take a maximal chunk of bits out of the immediate.
static uint32_t getSOImmValRotate(uint32_t imm) {
  // 8-bit (or less) immediates are trivially shifter_operands with a rotate
  // of zero.
  if ((imm & ~255U) == 0)
    return 0;

  // Use CTZ to compute the rotate amount.
  unsigned tz = llvm::countTrailingZeros(imm);

  // Rotate amount must be even.  Something like 0x200 must be rotated 8 bits,
  // not 9.
  unsigned rotAmt = tz & ~1;

  // If we can handle this spread, return it.
  if ((rotr32(imm, rotAmt) & ~255U) == 0)
    return (32 - rotAmt) & 31; // HW rotates right, not left.

  // For values like 0xF000000F, we should ignore the low 6 bits, then
  // retry the hunt.
  if (imm & 63U) {
    unsigned tz2 = countTrailingZeros(imm & ~63U);
    unsigned rotAmt2 = tz2 & ~1;
    if ((rotr32(imm, rotAmt2) & ~255U) == 0)
      return (32 - rotAmt2) & 31; // HW rotates right, not left.
  }

  // Otherwise, we have no way to cover this span of bits with a single
  // shifter_op immediate.  Return a chunk of bits that will be useful to
  // handle.
  return (32 - rotAmt) & 31; // HW rotates right, not left.
}

void ARM::relocate(uint8_t *loc, const Relocation &rel, uint64_t val) const {
  switch (rel.type) {
  case R_ARM_ABS32:
  case R_ARM_BASE_PREL:
  case R_ARM_GOTOFF32:
  case R_ARM_GOT_BREL:
  case R_ARM_GOT_PREL:
  case R_ARM_REL32:
  case R_ARM_RELATIVE:
  case R_ARM_SBREL32:
  case R_ARM_TARGET1:
  case R_ARM_TARGET2:
  case R_ARM_TLS_GD32:
  case R_ARM_TLS_IE32:
  case R_ARM_TLS_LDM32:
  case R_ARM_TLS_LDO32:
  case R_ARM_TLS_LE32:
  case R_ARM_TLS_TPOFF32:
  case R_ARM_TLS_DTPOFF32:
    write32le(loc, val);
    break;
  case R_ARM_PREL31:
    checkInt(loc, val, 31, rel);
    write32le(loc, (read32le(loc) & 0x80000000) | (val & ~0x80000000));
    break;
  case R_ARM_CALL: {
    // R_ARM_CALL is used for BL and BLX instructions, for symbols of type
    // STT_FUNC we choose whether to write a BL or BLX depending on the
    // value of bit 0 of Val. With bit 0 == 1 denoting Thumb. If the symbol is
    // not of type STT_FUNC then we must preserve the original instruction.
    // PLT entries are always ARM state so we know we don't need to interwork.
    assert(rel.sym); // R_ARM_CALL is always reached via relocate().
    bool bit0Thumb = val & 1;
    bool isBlx = (read32le(loc) & 0xfe000000) == 0xfa000000;
    // lld 10.0 and before always used bit0Thumb when deciding to write a BLX
    // even when type not STT_FUNC.
    if (!rel.sym->isFunc() && isBlx != bit0Thumb)
      stateChangeWarning(loc, rel.type, *rel.sym);
    if (rel.sym->isFunc() ? bit0Thumb : isBlx) {
      // The BLX encoding is 0xfa:H:imm24 where Val = imm24:H:'1'
      checkInt(loc, val, 26, rel);
      write32le(loc, 0xfa000000 |                    // opcode
                         ((val & 2) << 23) |         // H
                         ((val >> 2) & 0x00ffffff)); // imm24
      break;
    }
    // BLX (always unconditional) instruction to an ARM Target, select an
    // unconditional BL.
    write32le(loc, 0xeb000000 | (read32le(loc) & 0x00ffffff));
    // fall through as BL encoding is shared with B
  }
    LLVM_FALLTHROUGH;
  case R_ARM_JUMP24:
  case R_ARM_PC24:
  case R_ARM_PLT32:
    checkInt(loc, val, 26, rel);
    write32le(loc, (read32le(loc) & ~0x00ffffff) | ((val >> 2) & 0x00ffffff));
    break;
  case R_ARM_THM_JUMP11:
    checkInt(loc, val, 12, rel);
    write16le(loc, (read32le(loc) & 0xf800) | ((val >> 1) & 0x07ff));
    break;
  case R_ARM_THM_JUMP19:
    // Encoding T3: Val = S:J2:J1:imm6:imm11:0
    checkInt(loc, val, 21, rel);
    write16le(loc,
              (read16le(loc) & 0xfbc0) |   // opcode cond
                  ((val >> 10) & 0x0400) | // S
                  ((val >> 12) & 0x003f)); // imm6
    write16le(loc + 2,
              0x8000 |                    // opcode
                  ((val >> 8) & 0x0800) | // J2
                  ((val >> 5) & 0x2000) | // J1
                  ((val >> 1) & 0x07ff)); // imm11
    break;
  case R_ARM_THM_CALL: {
    // R_ARM_THM_CALL is used for BL and BLX instructions, for symbols of type
    // STT_FUNC we choose whether to write a BL or BLX depending on the
    // value of bit 0 of Val. With bit 0 == 0 denoting ARM, if the symbol is
    // not of type STT_FUNC then we must preserve the original instruction.
    // PLT entries are always ARM state so we know we need to interwork.
    assert(rel.sym); // R_ARM_THM_CALL is always reached via relocate().
    bool bit0Thumb = val & 1;
    bool isBlx = (read16le(loc + 2) & 0x1000) == 0;
    // lld 10.0 and before always used bit0Thumb when deciding to write a BLX
    // even when type not STT_FUNC. PLT entries generated by LLD are always ARM.
    if (!rel.sym->isFunc() && !rel.sym->isInPlt() && isBlx == bit0Thumb)
      stateChangeWarning(loc, rel.type, *rel.sym);
    if (rel.sym->isFunc() || rel.sym->isInPlt() ? !bit0Thumb : isBlx) {
      // We are writing a BLX. Ensure BLX destination is 4-byte aligned. As
      // the BLX instruction may only be two byte aligned. This must be done
      // before overflow check.
      val = alignTo(val, 4);
      write16le(loc + 2, read16le(loc + 2) & ~0x1000);
    } else {
      write16le(loc + 2, (read16le(loc + 2) & ~0x1000) | 1 << 12);
    }
    if (!config->armJ1J2BranchEncoding) {
      // Older Arm architectures do not support R_ARM_THM_JUMP24 and have
      // different encoding rules and range due to J1 and J2 always being 1.
      checkInt(loc, val, 23, rel);
      write16le(loc,
                0xf000 |                     // opcode
                    ((val >> 12) & 0x07ff)); // imm11
      write16le(loc + 2,
                (read16le(loc + 2) & 0xd000) | // opcode
                    0x2800 |                   // J1 == J2 == 1
                    ((val >> 1) & 0x07ff));    // imm11
      break;
    }
  }
    // Fall through as rest of encoding is the same as B.W
    LLVM_FALLTHROUGH;
  case R_ARM_THM_JUMP24:
    // Encoding B  T4, BL T1, BLX T2: Val = S:I1:I2:imm10:imm11:0
    checkInt(loc, val, 25, rel);
    write16le(loc,
              0xf000 |                     // opcode
                  ((val >> 14) & 0x0400) | // S
                  ((val >> 12) & 0x03ff)); // imm10
    write16le(loc + 2,
              (read16le(loc + 2) & 0xd000) |                  // opcode
                  (((~(val >> 10)) ^ (val >> 11)) & 0x2000) | // J1
                  (((~(val >> 11)) ^ (val >> 13)) & 0x0800) | // J2
                  ((val >> 1) & 0x07ff));                     // imm11
    break;
  case R_ARM_MOVW_ABS_NC:
  case R_ARM_MOVW_PREL_NC:
  case R_ARM_MOVW_BREL_NC:
    write32le(loc, (read32le(loc) & ~0x000f0fff) | ((val & 0xf000) << 4) |
                       (val & 0x0fff));
    break;
  case R_ARM_MOVT_ABS:
  case R_ARM_MOVT_PREL:
  case R_ARM_MOVT_BREL:
    write32le(loc, (read32le(loc) & ~0x000f0fff) |
                       (((val >> 16) & 0xf000) << 4) | ((val >> 16) & 0xfff));
    break;
  case R_ARM_THM_MOVT_ABS:
  case R_ARM_THM_MOVT_PREL:
  case R_ARM_THM_MOVT_BREL:
    // Encoding T1: A = imm4:i:imm3:imm8
    write16le(loc,
              0xf2c0 |                     // opcode
                  ((val >> 17) & 0x0400) | // i
                  ((val >> 28) & 0x000f)); // imm4
    write16le(loc + 2,
              (read16le(loc + 2) & 0x8f00) | // opcode
                  ((val >> 12) & 0x7000) |   // imm3
                  ((val >> 16) & 0x00ff));   // imm8
    break;
  case R_ARM_THM_MOVW_ABS_NC:
  case R_ARM_THM_MOVW_PREL_NC:
  case R_ARM_THM_MOVW_BREL_NC:
    // Encoding T3: A = imm4:i:imm3:imm8
    write16le(loc,
              0xf240 |                     // opcode
                  ((val >> 1) & 0x0400) |  // i
                  ((val >> 12) & 0x000f)); // imm4
    write16le(loc + 2,
              (read16le(loc + 2) & 0x8f00) | // opcode
                  ((val << 4) & 0x7000) |    // imm3
                  (val & 0x00ff));           // imm8
    break;
  case R_ARM_ALU_PC_G0: {
    // ADR (literal) add = bit23, sub = bit22
    // literal is a 12-bit modified immediate, made up of a 4-bit even rotate
    // right and an 8-bit immediate. The code-sequence here is derived from
    // ARMAddressingModes.h in llvm/Target/ARM/MCTargetDesc. In our case we
    // want to give an error if we cannot encode the constant.
    uint32_t opcode = 0x00800000;
    if (val >> 63) {
      opcode = 0x00400000;
      val = ~val + 1;
    }
    if ((val & ~255U) != 0) {
      uint32_t rotAmt = getSOImmValRotate(val);
      // Error if we cannot encode this with a single shift
      if (rotr32(~255U, rotAmt) & val)
        error(getErrorLocation(loc) + "unencodeable immediate " +
              Twine(val).str() + " for relocation " + toString(rel.type));
      val = rotl32(val, rotAmt) | ((rotAmt >> 1) << 8);
    }
    write32le(loc, (read32le(loc) & 0xff0ff000) | opcode | val);
    break;
  }
  case R_ARM_LDR_PC_G0: {
    // R_ARM_LDR_PC_G0 is S + A - P, we have ((S + A) | T) - P, if S is a
    // function then addr is 0 (modulo 2) and Pa is 0 (modulo 4) so we can clear
    // bottom bit to recover S + A - P.
    if (rel.sym->isFunc())
      val &= ~0x1;
    // LDR (literal) u = bit23
    int64_t imm = val;
    uint32_t u = 0x00800000;
    if (imm < 0) {
      imm = -imm;
      u = 0;
    }
    checkUInt(loc, imm, 12, rel);
    write32le(loc, (read32le(loc) & 0xff7ff000) | u | imm);
    break;
  }
  case R_ARM_THM_ALU_PREL_11_0: {
    // ADR encoding T2 (sub), T3 (add) i:imm3:imm8
    int64_t imm = val;
    uint16_t sub = 0;
    if (imm < 0) {
      imm = -imm;
      sub = 0x00a0;
    }
    checkUInt(loc, imm, 12, rel);
    write16le(loc, (read16le(loc) & 0xfb0f) | sub | (imm & 0x800) >> 1);
    write16le(loc + 2,
              (read16le(loc + 2) & 0x8f00) | (imm & 0x700) << 4 | (imm & 0xff));
    break;
  }
  case R_ARM_THM_PC8:
    // ADR and LDR literal encoding T1 positive offset only imm8:00
    // R_ARM_THM_PC8 is S + A - Pa, we have ((S + A) | T) - Pa, if S is a
    // function then addr is 0 (modulo 2) and Pa is 0 (modulo 4) so we can clear
    // bottom bit to recover S + A - Pa.
    if (rel.sym->isFunc())
      val &= ~0x1;
    checkUInt(loc, val, 10, rel);
    checkAlignment(loc, val, 4, rel);
    write16le(loc, (read16le(loc) & 0xff00) | (val & 0x3fc) >> 2);
    break;
  case R_ARM_THM_PC12: {
    // LDR (literal) encoding T2, add = (U == '1') imm12
    // imm12 is unsigned
    // R_ARM_THM_PC12 is S + A - Pa, we have ((S + A) | T) - Pa, if S is a
    // function then addr is 0 (modulo 2) and Pa is 0 (modulo 4) so we can clear
    // bottom bit to recover S + A - Pa.
    if (rel.sym->isFunc())
      val &= ~0x1;
    int64_t imm12 = val;
    uint16_t u = 0x0080;
    if (imm12 < 0) {
      imm12 = -imm12;
      u = 0;
    }
    checkUInt(loc, imm12, 12, rel);
    write16le(loc, read16le(loc) | u);
    write16le(loc + 2, (read16le(loc + 2) & 0xf000) | imm12);
    break;
  }
  default:
    error(getErrorLocation(loc) + "unrecognized relocation " +
          toString(rel.type));
  }
}

int64_t ARM::getImplicitAddend(const uint8_t *buf, RelType type) const {
  switch (type) {
  default:
    return 0;
  case R_ARM_ABS32:
  case R_ARM_BASE_PREL:
  case R_ARM_GOTOFF32:
  case R_ARM_GOT_BREL:
  case R_ARM_GOT_PREL:
  case R_ARM_REL32:
  case R_ARM_TARGET1:
  case R_ARM_TARGET2:
  case R_ARM_TLS_GD32:
  case R_ARM_TLS_LDM32:
  case R_ARM_TLS_LDO32:
  case R_ARM_TLS_IE32:
  case R_ARM_TLS_LE32:
    return SignExtend64<32>(read32le(buf));
  case R_ARM_PREL31:
    return SignExtend64<31>(read32le(buf));
  case R_ARM_CALL:
  case R_ARM_JUMP24:
  case R_ARM_PC24:
  case R_ARM_PLT32:
    return SignExtend64<26>(read32le(buf) << 2);
  case R_ARM_THM_JUMP11:
    return SignExtend64<12>(read16le(buf) << 1);
  case R_ARM_THM_JUMP19: {
    // Encoding T3: A = S:J2:J1:imm10:imm6:0
    uint16_t hi = read16le(buf);
    uint16_t lo = read16le(buf + 2);
    return SignExtend64<20>(((hi & 0x0400) << 10) | // S
                            ((lo & 0x0800) << 8) |  // J2
                            ((lo & 0x2000) << 5) |  // J1
                            ((hi & 0x003f) << 12) | // imm6
                            ((lo & 0x07ff) << 1));  // imm11:0
  }
  case R_ARM_THM_CALL:
    if (!config->armJ1J2BranchEncoding) {
      // Older Arm architectures do not support R_ARM_THM_JUMP24 and have
      // different encoding rules and range due to J1 and J2 always being 1.
      uint16_t hi = read16le(buf);
      uint16_t lo = read16le(buf + 2);
      return SignExtend64<22>(((hi & 0x7ff) << 12) | // imm11
                              ((lo & 0x7ff) << 1));  // imm11:0
      break;
    }
    LLVM_FALLTHROUGH;
  case R_ARM_THM_JUMP24: {
    // Encoding B T4, BL T1, BLX T2: A = S:I1:I2:imm10:imm11:0
    // I1 = NOT(J1 EOR S), I2 = NOT(J2 EOR S)
    uint16_t hi = read16le(buf);
    uint16_t lo = read16le(buf + 2);
    return SignExtend64<24>(((hi & 0x0400) << 14) |                    // S
                            (~((lo ^ (hi << 3)) << 10) & 0x00800000) | // I1
                            (~((lo ^ (hi << 1)) << 11) & 0x00400000) | // I2
                            ((hi & 0x003ff) << 12) |                   // imm0
                            ((lo & 0x007ff) << 1)); // imm11:0
  }
  // ELF for the ARM Architecture 4.6.1.1 the implicit addend for MOVW and
  // MOVT is in the range -32768 <= A < 32768
  case R_ARM_MOVW_ABS_NC:
  case R_ARM_MOVT_ABS:
  case R_ARM_MOVW_PREL_NC:
  case R_ARM_MOVT_PREL:
  case R_ARM_MOVW_BREL_NC:
  case R_ARM_MOVT_BREL: {
    uint64_t val = read32le(buf) & 0x000f0fff;
    return SignExtend64<16>(((val & 0x000f0000) >> 4) | (val & 0x00fff));
  }
  case R_ARM_THM_MOVW_ABS_NC:
  case R_ARM_THM_MOVT_ABS:
  case R_ARM_THM_MOVW_PREL_NC:
  case R_ARM_THM_MOVT_PREL:
  case R_ARM_THM_MOVW_BREL_NC:
  case R_ARM_THM_MOVT_BREL: {
    // Encoding T3: A = imm4:i:imm3:imm8
    uint16_t hi = read16le(buf);
    uint16_t lo = read16le(buf + 2);
    return SignExtend64<16>(((hi & 0x000f) << 12) | // imm4
                            ((hi & 0x0400) << 1) |  // i
                            ((lo & 0x7000) >> 4) |  // imm3
                            (lo & 0x00ff));         // imm8
  }
  case R_ARM_ALU_PC_G0: {
    // 12-bit immediate is a modified immediate made up of a 4-bit even
    // right rotation and 8-bit constant. After the rotation the value
    // is zero-extended. When bit 23 is set the instruction is an add, when
    // bit 22 is set it is a sub.
    uint32_t instr = read32le(buf);
    uint32_t val = rotr32(instr & 0xff, ((instr & 0xf00) >> 8) * 2);
    return (instr & 0x00400000) ? -val : val;
  }
  case R_ARM_LDR_PC_G0: {
    // ADR (literal) add = bit23, sub = bit22
    // LDR (literal) u = bit23 unsigned imm12
    bool u = read32le(buf) & 0x00800000;
    uint32_t imm12 = read32le(buf) & 0xfff;
    return u ? imm12 : -imm12;
  }
  case R_ARM_THM_ALU_PREL_11_0: {
    // Thumb2 ADR, which is an alias for a sub or add instruction with an
    // unsigned immediate.
    // ADR encoding T2 (sub), T3 (add) i:imm3:imm8
    uint16_t hi = read16le(buf);
    uint16_t lo = read16le(buf + 2);
    uint64_t imm = (hi & 0x0400) << 1 | // i
                   (lo & 0x7000) >> 4 | // imm3
                   (lo & 0x00ff);       // imm8
    // For sub, addend is negative, add is positive.
    return (hi & 0x00f0) ? -imm : imm;
  }
  case R_ARM_THM_PC8:
    // ADR and LDR (literal) encoding T1
    // From ELF for the ARM Architecture the initial signed addend is formed
    // from an unsigned field using expression (((imm8:00 + 4) & 0x3ff) – 4)
    // this trick permits the PC bias of -4 to be encoded using imm8 = 0xff
    return ((((read16le(buf) & 0xff) << 2) + 4) & 0x3ff) - 4;
  case R_ARM_THM_PC12: {
    // LDR (literal) encoding T2, add = (U == '1') imm12
    bool u = read16le(buf) & 0x0080;
    uint64_t imm12 = read16le(buf + 2) & 0x0fff;
    return u ? imm12 : -imm12;
  }
  }
}

TargetInfo *elf::getARMTargetInfo() {
  static ARM target;
  return &target;
}