DwarfParser.hpp 30.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
//===--------------------------- DwarfParser.hpp --------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//
//  Parses DWARF CFIs (FDEs and CIEs).
//
//===----------------------------------------------------------------------===//

#ifndef __DWARF_PARSER_HPP__
#define __DWARF_PARSER_HPP__

#include <inttypes.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>

#include "libunwind.h"
#include "dwarf2.h"
#include "Registers.hpp"

#include "config.h"

namespace libunwind {

/// CFI_Parser does basic parsing of a CFI (Call Frame Information) records.
/// See DWARF Spec for details:
///    http://refspecs.linuxbase.org/LSB_3.1.0/LSB-Core-generic/LSB-Core-generic/ehframechpt.html
///
template <typename A>
class CFI_Parser {
public:
  typedef typename A::pint_t pint_t;

  /// Information encoded in a CIE (Common Information Entry)
  struct CIE_Info {
    pint_t    cieStart;
    pint_t    cieLength;
    pint_t    cieInstructions;
    uint8_t   pointerEncoding;
    uint8_t   lsdaEncoding;
    uint8_t   personalityEncoding;
    uint8_t   personalityOffsetInCIE;
    pint_t    personality;
    uint32_t  codeAlignFactor;
    int       dataAlignFactor;
    bool      isSignalFrame;
    bool      fdesHaveAugmentationData;
    uint8_t   returnAddressRegister;
#if defined(_LIBUNWIND_TARGET_AARCH64)
    bool      addressesSignedWithBKey;
#endif
  };

  /// Information about an FDE (Frame Description Entry)
  struct FDE_Info {
    pint_t  fdeStart;
    pint_t  fdeLength;
    pint_t  fdeInstructions;
    pint_t  pcStart;
    pint_t  pcEnd;
    pint_t  lsda;
  };

  enum {
    kMaxRegisterNumber = _LIBUNWIND_HIGHEST_DWARF_REGISTER
  };
  enum RegisterSavedWhere {
    kRegisterUnused,
    kRegisterUndefined,
    kRegisterInCFA,
    kRegisterOffsetFromCFA,
    kRegisterInRegister,
    kRegisterAtExpression,
    kRegisterIsExpression
  };
  struct RegisterLocation {
    RegisterSavedWhere location;
    bool initialStateSaved;
    int64_t value;
  };
  /// Information about a frame layout and registers saved determined
  /// by "running" the DWARF FDE "instructions"
  struct PrologInfo {
    uint32_t          cfaRegister;
    int32_t           cfaRegisterOffset;  // CFA = (cfaRegister)+cfaRegisterOffset
    int64_t           cfaExpression;      // CFA = expression
    uint32_t          spExtraArgSize;
    uint32_t          codeOffsetAtStackDecrement;
    bool              registersInOtherRegisters;
    bool              sameValueUsed;
    RegisterLocation  savedRegisters[kMaxRegisterNumber + 1];
    enum class InitializeTime { kLazy, kNormal };

    // When saving registers, this data structure is lazily initialized.
    PrologInfo(InitializeTime IT = InitializeTime::kNormal) {
      if (IT == InitializeTime::kNormal)
        memset(this, 0, sizeof(*this));
    }
    void checkSaveRegister(uint64_t reg, PrologInfo &initialState) {
      if (!savedRegisters[reg].initialStateSaved) {
        initialState.savedRegisters[reg] = savedRegisters[reg];
        savedRegisters[reg].initialStateSaved = true;
      }
    }
    void setRegister(uint64_t reg, RegisterSavedWhere newLocation,
                     int64_t newValue, PrologInfo &initialState) {
      checkSaveRegister(reg, initialState);
      savedRegisters[reg].location = newLocation;
      savedRegisters[reg].value = newValue;
    }
    void setRegisterLocation(uint64_t reg, RegisterSavedWhere newLocation,
                             PrologInfo &initialState) {
      checkSaveRegister(reg, initialState);
      savedRegisters[reg].location = newLocation;
    }
    void setRegisterValue(uint64_t reg, int64_t newValue,
                          PrologInfo &initialState) {
      checkSaveRegister(reg, initialState);
      savedRegisters[reg].value = newValue;
    }
    void restoreRegisterToInitialState(uint64_t reg, PrologInfo &initialState) {
      if (savedRegisters[reg].initialStateSaved)
        savedRegisters[reg] = initialState.savedRegisters[reg];
      // else the register still holds its initial state
    }
  };

  struct PrologInfoStackEntry {
    PrologInfoStackEntry(PrologInfoStackEntry *n, const PrologInfo &i)
        : next(n), info(i) {}
    PrologInfoStackEntry *next;
    PrologInfo info;
  };

  static bool findFDE(A &addressSpace, pint_t pc, pint_t ehSectionStart,
                      uintptr_t sectionLength, pint_t fdeHint, FDE_Info *fdeInfo,
                      CIE_Info *cieInfo);
  static const char *decodeFDE(A &addressSpace, pint_t fdeStart,
                               FDE_Info *fdeInfo, CIE_Info *cieInfo);
  static bool parseFDEInstructions(A &addressSpace, const FDE_Info &fdeInfo,
                                   const CIE_Info &cieInfo, pint_t upToPC,
                                   int arch, PrologInfo *results);

  static const char *parseCIE(A &addressSpace, pint_t cie, CIE_Info *cieInfo);

private:
  static bool parseInstructions(A &addressSpace, pint_t instructions,
                                pint_t instructionsEnd, const CIE_Info &cieInfo,
                                pint_t pcoffset,
                                PrologInfoStackEntry *&rememberStack, int arch,
                                PrologInfo *results);
};

/// Parse a FDE into a CIE_Info and an FDE_Info
template <typename A>
const char *CFI_Parser<A>::decodeFDE(A &addressSpace, pint_t fdeStart,
                                     FDE_Info *fdeInfo, CIE_Info *cieInfo) {
  pint_t p = fdeStart;
  pint_t cfiLength = (pint_t)addressSpace.get32(p);
  p += 4;
  if (cfiLength == 0xffffffff) {
    // 0xffffffff means length is really next 8 bytes
    cfiLength = (pint_t)addressSpace.get64(p);
    p += 8;
  }
  if (cfiLength == 0)
    return "FDE has zero length"; // zero terminator
  uint32_t ciePointer = addressSpace.get32(p);
  if (ciePointer == 0)
    return "FDE is really a CIE"; // this is a CIE not an FDE
  pint_t nextCFI = p + cfiLength;
  pint_t cieStart = p - ciePointer;
  const char *err = parseCIE(addressSpace, cieStart, cieInfo);
  if (err != NULL)
    return err;
  p += 4;
  // Parse pc begin and range.
  pint_t pcStart =
      addressSpace.getEncodedP(p, nextCFI, cieInfo->pointerEncoding);
  pint_t pcRange =
      addressSpace.getEncodedP(p, nextCFI, cieInfo->pointerEncoding & 0x0F);
  // Parse rest of info.
  fdeInfo->lsda = 0;
  // Check for augmentation length.
  if (cieInfo->fdesHaveAugmentationData) {
    pint_t augLen = (pint_t)addressSpace.getULEB128(p, nextCFI);
    pint_t endOfAug = p + augLen;
    if (cieInfo->lsdaEncoding != DW_EH_PE_omit) {
      // Peek at value (without indirection).  Zero means no LSDA.
      pint_t lsdaStart = p;
      if (addressSpace.getEncodedP(p, nextCFI, cieInfo->lsdaEncoding & 0x0F) !=
          0) {
        // Reset pointer and re-parse LSDA address.
        p = lsdaStart;
        fdeInfo->lsda =
            addressSpace.getEncodedP(p, nextCFI, cieInfo->lsdaEncoding);
      }
    }
    p = endOfAug;
  }
  fdeInfo->fdeStart = fdeStart;
  fdeInfo->fdeLength = nextCFI - fdeStart;
  fdeInfo->fdeInstructions = p;
  fdeInfo->pcStart = pcStart;
  fdeInfo->pcEnd = pcStart + pcRange;
  return NULL; // success
}

/// Scan an eh_frame section to find an FDE for a pc
template <typename A>
bool CFI_Parser<A>::findFDE(A &addressSpace, pint_t pc, pint_t ehSectionStart,
                            uintptr_t sectionLength, pint_t fdeHint,
                            FDE_Info *fdeInfo, CIE_Info *cieInfo) {
  //fprintf(stderr, "findFDE(0x%llX)\n", (long long)pc);
  pint_t p = (fdeHint != 0) ? fdeHint : ehSectionStart;
  const pint_t ehSectionEnd = (sectionLength == UINTPTR_MAX)
                                  ? static_cast<pint_t>(-1)
                                  : (ehSectionStart + sectionLength);
  while (p < ehSectionEnd) {
    pint_t currentCFI = p;
    //fprintf(stderr, "findFDE() CFI at 0x%llX\n", (long long)p);
    pint_t cfiLength = addressSpace.get32(p);
    p += 4;
    if (cfiLength == 0xffffffff) {
      // 0xffffffff means length is really next 8 bytes
      cfiLength = (pint_t)addressSpace.get64(p);
      p += 8;
    }
    if (cfiLength == 0)
      return false; // zero terminator
    uint32_t id = addressSpace.get32(p);
    if (id == 0) {
      // Skip over CIEs.
      p += cfiLength;
    } else {
      // Process FDE to see if it covers pc.
      pint_t nextCFI = p + cfiLength;
      uint32_t ciePointer = addressSpace.get32(p);
      pint_t cieStart = p - ciePointer;
      // Validate pointer to CIE is within section.
      if ((ehSectionStart <= cieStart) && (cieStart < ehSectionEnd)) {
        if (parseCIE(addressSpace, cieStart, cieInfo) == NULL) {
          p += 4;
          // Parse pc begin and range.
          pint_t pcStart =
              addressSpace.getEncodedP(p, nextCFI, cieInfo->pointerEncoding);
          pint_t pcRange = addressSpace.getEncodedP(
              p, nextCFI, cieInfo->pointerEncoding & 0x0F);
          // Test if pc is within the function this FDE covers.
          if ((pcStart < pc) && (pc <= pcStart + pcRange)) {
            // parse rest of info
            fdeInfo->lsda = 0;
            // check for augmentation length
            if (cieInfo->fdesHaveAugmentationData) {
              pint_t augLen = (pint_t)addressSpace.getULEB128(p, nextCFI);
              pint_t endOfAug = p + augLen;
              if (cieInfo->lsdaEncoding != DW_EH_PE_omit) {
                // Peek at value (without indirection).  Zero means no LSDA.
                pint_t lsdaStart = p;
                if (addressSpace.getEncodedP(
                        p, nextCFI, cieInfo->lsdaEncoding & 0x0F) != 0) {
                  // Reset pointer and re-parse LSDA address.
                  p = lsdaStart;
                  fdeInfo->lsda = addressSpace
                      .getEncodedP(p, nextCFI, cieInfo->lsdaEncoding);
                }
              }
              p = endOfAug;
            }
            fdeInfo->fdeStart = currentCFI;
            fdeInfo->fdeLength = nextCFI - currentCFI;
            fdeInfo->fdeInstructions = p;
            fdeInfo->pcStart = pcStart;
            fdeInfo->pcEnd = pcStart + pcRange;
            return true;
          } else {
            // pc is not in begin/range, skip this FDE
          }
        } else {
          // Malformed CIE, now augmentation describing pc range encoding.
        }
      } else {
        // malformed FDE.  CIE is bad
      }
      p = nextCFI;
    }
  }
  return false;
}

/// Extract info from a CIE
template <typename A>
const char *CFI_Parser<A>::parseCIE(A &addressSpace, pint_t cie,
                                    CIE_Info *cieInfo) {
  cieInfo->pointerEncoding = 0;
  cieInfo->lsdaEncoding = DW_EH_PE_omit;
  cieInfo->personalityEncoding = 0;
  cieInfo->personalityOffsetInCIE = 0;
  cieInfo->personality = 0;
  cieInfo->codeAlignFactor = 0;
  cieInfo->dataAlignFactor = 0;
  cieInfo->isSignalFrame = false;
  cieInfo->fdesHaveAugmentationData = false;
#if defined(_LIBUNWIND_TARGET_AARCH64)
  cieInfo->addressesSignedWithBKey = false;
#endif
  cieInfo->cieStart = cie;
  pint_t p = cie;
  pint_t cieLength = (pint_t)addressSpace.get32(p);
  p += 4;
  pint_t cieContentEnd = p + cieLength;
  if (cieLength == 0xffffffff) {
    // 0xffffffff means length is really next 8 bytes
    cieLength = (pint_t)addressSpace.get64(p);
    p += 8;
    cieContentEnd = p + cieLength;
  }
  if (cieLength == 0)
    return NULL;
  // CIE ID is always 0
  if (addressSpace.get32(p) != 0)
    return "CIE ID is not zero";
  p += 4;
  // Version is always 1 or 3
  uint8_t version = addressSpace.get8(p);
  if ((version != 1) && (version != 3))
    return "CIE version is not 1 or 3";
  ++p;
  // save start of augmentation string and find end
  pint_t strStart = p;
  while (addressSpace.get8(p) != 0)
    ++p;
  ++p;
  // parse code aligment factor
  cieInfo->codeAlignFactor = (uint32_t)addressSpace.getULEB128(p, cieContentEnd);
  // parse data alignment factor
  cieInfo->dataAlignFactor = (int)addressSpace.getSLEB128(p, cieContentEnd);
  // parse return address register
  uint64_t raReg = (version == 1) ? addressSpace.get8(p++)
                                  : addressSpace.getULEB128(p, cieContentEnd);
  assert(raReg < 255 && "return address register too large");
  cieInfo->returnAddressRegister = (uint8_t)raReg;
  // parse augmentation data based on augmentation string
  const char *result = NULL;
  if (addressSpace.get8(strStart) == 'z') {
    // parse augmentation data length
    addressSpace.getULEB128(p, cieContentEnd);
    for (pint_t s = strStart; addressSpace.get8(s) != '\0'; ++s) {
      switch (addressSpace.get8(s)) {
      case 'z':
        cieInfo->fdesHaveAugmentationData = true;
        break;
      case 'P':
        cieInfo->personalityEncoding = addressSpace.get8(p);
        ++p;
        cieInfo->personalityOffsetInCIE = (uint8_t)(p - cie);
        cieInfo->personality = addressSpace
            .getEncodedP(p, cieContentEnd, cieInfo->personalityEncoding);
        break;
      case 'L':
        cieInfo->lsdaEncoding = addressSpace.get8(p);
        ++p;
        break;
      case 'R':
        cieInfo->pointerEncoding = addressSpace.get8(p);
        ++p;
        break;
      case 'S':
        cieInfo->isSignalFrame = true;
        break;
#if defined(_LIBUNWIND_TARGET_AARCH64)
      case 'B':
        cieInfo->addressesSignedWithBKey = true;
        break;
#endif
      default:
        // ignore unknown letters
        break;
      }
    }
  }
  cieInfo->cieLength = cieContentEnd - cieInfo->cieStart;
  cieInfo->cieInstructions = p;
  return result;
}


/// "run" the DWARF instructions and create the abstact PrologInfo for an FDE
template <typename A>
bool CFI_Parser<A>::parseFDEInstructions(A &addressSpace,
                                         const FDE_Info &fdeInfo,
                                         const CIE_Info &cieInfo, pint_t upToPC,
                                         int arch, PrologInfo *results) {
  PrologInfoStackEntry *rememberStack = NULL;

  // parse CIE then FDE instructions
  bool returnValue =
      parseInstructions(addressSpace, cieInfo.cieInstructions,
                        cieInfo.cieStart + cieInfo.cieLength, cieInfo,
                        (pint_t)(-1), rememberStack, arch, results) &&
      parseInstructions(addressSpace, fdeInfo.fdeInstructions,
                        fdeInfo.fdeStart + fdeInfo.fdeLength, cieInfo,
                        upToPC - fdeInfo.pcStart, rememberStack, arch, results);

#if !defined(_LIBUNWIND_NO_HEAP)
  // Clean up rememberStack. Even in the case where every DW_CFA_remember_state
  // is paired with a DW_CFA_restore_state, parseInstructions can skip restore
  // opcodes if it reaches the target PC and stops interpreting, so we have to
  // make sure we don't leak memory.
  while (rememberStack) {
    PrologInfoStackEntry *next = rememberStack->next;
    free(rememberStack);
    rememberStack = next;
  }
#endif

  return returnValue;
}

/// "run" the DWARF instructions
template <typename A>
bool CFI_Parser<A>::parseInstructions(A &addressSpace, pint_t instructions,
                                      pint_t instructionsEnd,
                                      const CIE_Info &cieInfo, pint_t pcoffset,
                                      PrologInfoStackEntry *&rememberStack,
                                      int arch, PrologInfo *results) {
  pint_t p = instructions;
  pint_t codeOffset = 0;
  // initialState initialized as registers in results are modified. Use
  // PrologInfo accessor functions to avoid reading uninitialized data.
  PrologInfo initialState(PrologInfo::InitializeTime::kLazy);

  _LIBUNWIND_TRACE_DWARF("parseInstructions(instructions=0x%0" PRIx64 ")\n",
                         static_cast<uint64_t>(instructionsEnd));

  // see DWARF Spec, section 6.4.2 for details on unwind opcodes
  while ((p < instructionsEnd) && (codeOffset < pcoffset)) {
    uint64_t reg;
    uint64_t reg2;
    int64_t offset;
    uint64_t length;
    uint8_t opcode = addressSpace.get8(p);
    uint8_t operand;
#if !defined(_LIBUNWIND_NO_HEAP)
    PrologInfoStackEntry *entry;
#endif
    ++p;
    switch (opcode) {
    case DW_CFA_nop:
      _LIBUNWIND_TRACE_DWARF("DW_CFA_nop\n");
      break;
    case DW_CFA_set_loc:
      codeOffset =
          addressSpace.getEncodedP(p, instructionsEnd, cieInfo.pointerEncoding);
      _LIBUNWIND_TRACE_DWARF("DW_CFA_set_loc\n");
      break;
    case DW_CFA_advance_loc1:
      codeOffset += (addressSpace.get8(p) * cieInfo.codeAlignFactor);
      p += 1;
      _LIBUNWIND_TRACE_DWARF("DW_CFA_advance_loc1: new offset=%" PRIu64 "\n",
                             static_cast<uint64_t>(codeOffset));
      break;
    case DW_CFA_advance_loc2:
      codeOffset += (addressSpace.get16(p) * cieInfo.codeAlignFactor);
      p += 2;
      _LIBUNWIND_TRACE_DWARF("DW_CFA_advance_loc2: new offset=%" PRIu64 "\n",
                             static_cast<uint64_t>(codeOffset));
      break;
    case DW_CFA_advance_loc4:
      codeOffset += (addressSpace.get32(p) * cieInfo.codeAlignFactor);
      p += 4;
      _LIBUNWIND_TRACE_DWARF("DW_CFA_advance_loc4: new offset=%" PRIu64 "\n",
                             static_cast<uint64_t>(codeOffset));
      break;
    case DW_CFA_offset_extended:
      reg = addressSpace.getULEB128(p, instructionsEnd);
      offset = (int64_t)addressSpace.getULEB128(p, instructionsEnd)
                                                  * cieInfo.dataAlignFactor;
      if (reg > kMaxRegisterNumber) {
        _LIBUNWIND_LOG0(
                "malformed DW_CFA_offset_extended DWARF unwind, reg too big");
        return false;
      }
      results->setRegister(reg, kRegisterInCFA, offset, initialState);
      _LIBUNWIND_TRACE_DWARF("DW_CFA_offset_extended(reg=%" PRIu64 ", "
                             "offset=%" PRId64 ")\n",
                             reg, offset);
      break;
    case DW_CFA_restore_extended:
      reg = addressSpace.getULEB128(p, instructionsEnd);
      if (reg > kMaxRegisterNumber) {
        _LIBUNWIND_LOG0(
            "malformed DW_CFA_restore_extended DWARF unwind, reg too big");
        return false;
      }
      results->restoreRegisterToInitialState(reg, initialState);
      _LIBUNWIND_TRACE_DWARF("DW_CFA_restore_extended(reg=%" PRIu64 ")\n", reg);
      break;
    case DW_CFA_undefined:
      reg = addressSpace.getULEB128(p, instructionsEnd);
      if (reg > kMaxRegisterNumber) {
        _LIBUNWIND_LOG0(
                "malformed DW_CFA_undefined DWARF unwind, reg too big");
        return false;
      }
      results->setRegisterLocation(reg, kRegisterUndefined, initialState);
      _LIBUNWIND_TRACE_DWARF("DW_CFA_undefined(reg=%" PRIu64 ")\n", reg);
      break;
    case DW_CFA_same_value:
      reg = addressSpace.getULEB128(p, instructionsEnd);
      if (reg > kMaxRegisterNumber) {
        _LIBUNWIND_LOG0(
                "malformed DW_CFA_same_value DWARF unwind, reg too big");
        return false;
      }
      // <rdar://problem/8456377> DW_CFA_same_value unsupported
      // "same value" means register was stored in frame, but its current
      // value has not changed, so no need to restore from frame.
      // We model this as if the register was never saved.
      results->setRegisterLocation(reg, kRegisterUnused, initialState);
      // set flag to disable conversion to compact unwind
      results->sameValueUsed = true;
      _LIBUNWIND_TRACE_DWARF("DW_CFA_same_value(reg=%" PRIu64 ")\n", reg);
      break;
    case DW_CFA_register:
      reg = addressSpace.getULEB128(p, instructionsEnd);
      reg2 = addressSpace.getULEB128(p, instructionsEnd);
      if (reg > kMaxRegisterNumber) {
        _LIBUNWIND_LOG0(
                "malformed DW_CFA_register DWARF unwind, reg too big");
        return false;
      }
      if (reg2 > kMaxRegisterNumber) {
        _LIBUNWIND_LOG0(
                "malformed DW_CFA_register DWARF unwind, reg2 too big");
        return false;
      }
      results->setRegister(reg, kRegisterInRegister, (int64_t)reg2,
                           initialState);
      // set flag to disable conversion to compact unwind
      results->registersInOtherRegisters = true;
      _LIBUNWIND_TRACE_DWARF(
          "DW_CFA_register(reg=%" PRIu64 ", reg2=%" PRIu64 ")\n", reg, reg2);
      break;
#if !defined(_LIBUNWIND_NO_HEAP)
    case DW_CFA_remember_state:
      // avoid operator new, because that would be an upward dependency
      entry = (PrologInfoStackEntry *)malloc(sizeof(PrologInfoStackEntry));
      if (entry != NULL) {
        entry->next = rememberStack;
        entry->info = *results;
        rememberStack = entry;
      } else {
        return false;
      }
      _LIBUNWIND_TRACE_DWARF("DW_CFA_remember_state\n");
      break;
    case DW_CFA_restore_state:
      if (rememberStack != NULL) {
        PrologInfoStackEntry *top = rememberStack;
        *results = top->info;
        rememberStack = top->next;
        free((char *)top);
      } else {
        return false;
      }
      _LIBUNWIND_TRACE_DWARF("DW_CFA_restore_state\n");
      break;
#endif
    case DW_CFA_def_cfa:
      reg = addressSpace.getULEB128(p, instructionsEnd);
      offset = (int64_t)addressSpace.getULEB128(p, instructionsEnd);
      if (reg > kMaxRegisterNumber) {
        _LIBUNWIND_LOG0("malformed DW_CFA_def_cfa DWARF unwind, reg too big");
        return false;
      }
      results->cfaRegister = (uint32_t)reg;
      results->cfaRegisterOffset = (int32_t)offset;
      _LIBUNWIND_TRACE_DWARF(
          "DW_CFA_def_cfa(reg=%" PRIu64 ", offset=%" PRIu64 ")\n", reg, offset);
      break;
    case DW_CFA_def_cfa_register:
      reg = addressSpace.getULEB128(p, instructionsEnd);
      if (reg > kMaxRegisterNumber) {
        _LIBUNWIND_LOG0(
            "malformed DW_CFA_def_cfa_register DWARF unwind, reg too big");
        return false;
      }
      results->cfaRegister = (uint32_t)reg;
      _LIBUNWIND_TRACE_DWARF("DW_CFA_def_cfa_register(%" PRIu64 ")\n", reg);
      break;
    case DW_CFA_def_cfa_offset:
      results->cfaRegisterOffset = (int32_t)
                                  addressSpace.getULEB128(p, instructionsEnd);
      results->codeOffsetAtStackDecrement = (uint32_t)codeOffset;
      _LIBUNWIND_TRACE_DWARF("DW_CFA_def_cfa_offset(%d)\n",
                             results->cfaRegisterOffset);
      break;
    case DW_CFA_def_cfa_expression:
      results->cfaRegister = 0;
      results->cfaExpression = (int64_t)p;
      length = addressSpace.getULEB128(p, instructionsEnd);
      assert(length < static_cast<pint_t>(~0) && "pointer overflow");
      p += static_cast<pint_t>(length);
      _LIBUNWIND_TRACE_DWARF("DW_CFA_def_cfa_expression(expression=0x%" PRIx64
                             ", length=%" PRIu64 ")\n",
                             results->cfaExpression, length);
      break;
    case DW_CFA_expression:
      reg = addressSpace.getULEB128(p, instructionsEnd);
      if (reg > kMaxRegisterNumber) {
        _LIBUNWIND_LOG0(
                "malformed DW_CFA_expression DWARF unwind, reg too big");
        return false;
      }
      results->setRegister(reg, kRegisterAtExpression, (int64_t)p,
                           initialState);
      length = addressSpace.getULEB128(p, instructionsEnd);
      assert(length < static_cast<pint_t>(~0) && "pointer overflow");
      p += static_cast<pint_t>(length);
      _LIBUNWIND_TRACE_DWARF("DW_CFA_expression(reg=%" PRIu64 ", "
                             "expression=0x%" PRIx64 ", "
                             "length=%" PRIu64 ")\n",
                             reg, results->savedRegisters[reg].value, length);
      break;
    case DW_CFA_offset_extended_sf:
      reg = addressSpace.getULEB128(p, instructionsEnd);
      if (reg > kMaxRegisterNumber) {
        _LIBUNWIND_LOG0(
            "malformed DW_CFA_offset_extended_sf DWARF unwind, reg too big");
        return false;
      }
      offset =
          addressSpace.getSLEB128(p, instructionsEnd) * cieInfo.dataAlignFactor;
      results->setRegister(reg, kRegisterInCFA, offset, initialState);
      _LIBUNWIND_TRACE_DWARF("DW_CFA_offset_extended_sf(reg=%" PRIu64 ", "
                             "offset=%" PRId64 ")\n",
                             reg, offset);
      break;
    case DW_CFA_def_cfa_sf:
      reg = addressSpace.getULEB128(p, instructionsEnd);
      offset =
          addressSpace.getSLEB128(p, instructionsEnd) * cieInfo.dataAlignFactor;
      if (reg > kMaxRegisterNumber) {
        _LIBUNWIND_LOG0(
                "malformed DW_CFA_def_cfa_sf DWARF unwind, reg too big");
        return false;
      }
      results->cfaRegister = (uint32_t)reg;
      results->cfaRegisterOffset = (int32_t)offset;
      _LIBUNWIND_TRACE_DWARF("DW_CFA_def_cfa_sf(reg=%" PRIu64 ", "
                             "offset=%" PRId64 ")\n",
                             reg, offset);
      break;
    case DW_CFA_def_cfa_offset_sf:
      results->cfaRegisterOffset = (int32_t)
        (addressSpace.getSLEB128(p, instructionsEnd) * cieInfo.dataAlignFactor);
      results->codeOffsetAtStackDecrement = (uint32_t)codeOffset;
      _LIBUNWIND_TRACE_DWARF("DW_CFA_def_cfa_offset_sf(%d)\n",
                             results->cfaRegisterOffset);
      break;
    case DW_CFA_val_offset:
      reg = addressSpace.getULEB128(p, instructionsEnd);
      if (reg > kMaxRegisterNumber) {
        _LIBUNWIND_LOG(
                "malformed DW_CFA_val_offset DWARF unwind, reg (%" PRIu64
                ") out of range\n",
                reg);
        return false;
      }
      offset = (int64_t)addressSpace.getULEB128(p, instructionsEnd)
                                                    * cieInfo.dataAlignFactor;
      results->setRegister(reg, kRegisterOffsetFromCFA, offset, initialState);
      _LIBUNWIND_TRACE_DWARF("DW_CFA_val_offset(reg=%" PRIu64 ", "
                             "offset=%" PRId64 "\n",
                             reg, offset);
      break;
    case DW_CFA_val_offset_sf:
      reg = addressSpace.getULEB128(p, instructionsEnd);
      if (reg > kMaxRegisterNumber) {
        _LIBUNWIND_LOG0(
                "malformed DW_CFA_val_offset_sf DWARF unwind, reg too big");
        return false;
      }
      offset =
          addressSpace.getSLEB128(p, instructionsEnd) * cieInfo.dataAlignFactor;
      results->setRegister(reg, kRegisterOffsetFromCFA, offset, initialState);
      _LIBUNWIND_TRACE_DWARF("DW_CFA_val_offset_sf(reg=%" PRIu64 ", "
                             "offset=%" PRId64 "\n",
                             reg, offset);
      break;
    case DW_CFA_val_expression:
      reg = addressSpace.getULEB128(p, instructionsEnd);
      if (reg > kMaxRegisterNumber) {
        _LIBUNWIND_LOG0(
                "malformed DW_CFA_val_expression DWARF unwind, reg too big");
        return false;
      }
      results->setRegister(reg, kRegisterIsExpression, (int64_t)p,
                           initialState);
      length = addressSpace.getULEB128(p, instructionsEnd);
      assert(length < static_cast<pint_t>(~0) && "pointer overflow");
      p += static_cast<pint_t>(length);
      _LIBUNWIND_TRACE_DWARF("DW_CFA_val_expression(reg=%" PRIu64 ", "
                             "expression=0x%" PRIx64 ", length=%" PRIu64 ")\n",
                             reg, results->savedRegisters[reg].value, length);
      break;
    case DW_CFA_GNU_args_size:
      length = addressSpace.getULEB128(p, instructionsEnd);
      results->spExtraArgSize = (uint32_t)length;
      _LIBUNWIND_TRACE_DWARF("DW_CFA_GNU_args_size(%" PRIu64 ")\n", length);
      break;
    case DW_CFA_GNU_negative_offset_extended:
      reg = addressSpace.getULEB128(p, instructionsEnd);
      if (reg > kMaxRegisterNumber) {
        _LIBUNWIND_LOG0("malformed DW_CFA_GNU_negative_offset_extended DWARF "
                        "unwind, reg too big");
        return false;
      }
      offset = (int64_t)addressSpace.getULEB128(p, instructionsEnd)
                                                    * cieInfo.dataAlignFactor;
      results->setRegister(reg, kRegisterInCFA, -offset, initialState);
      _LIBUNWIND_TRACE_DWARF(
          "DW_CFA_GNU_negative_offset_extended(%" PRId64 ")\n", offset);
      break;

#if defined(_LIBUNWIND_TARGET_AARCH64) || defined(_LIBUNWIND_TARGET_SPARC)
    // The same constant is used to represent different instructions on
    // AArch64 (negate_ra_state) and SPARC (window_save).
    static_assert(DW_CFA_AARCH64_negate_ra_state == DW_CFA_GNU_window_save,
                  "uses the same constant");
    case DW_CFA_AARCH64_negate_ra_state:
      switch (arch) {
#if defined(_LIBUNWIND_TARGET_AARCH64)
        case REGISTERS_ARM64: {
          int64_t value =
              results->savedRegisters[UNW_ARM64_RA_SIGN_STATE].value ^ 0x1;
          results->setRegisterValue(UNW_ARM64_RA_SIGN_STATE, value, initialState);
          _LIBUNWIND_TRACE_DWARF("DW_CFA_AARCH64_negate_ra_state\n");
        } break;
#endif

#if defined(_LIBUNWIND_TARGET_SPARC)
      // case DW_CFA_GNU_window_save:
      case REGISTERS_SPARC:
        _LIBUNWIND_TRACE_DWARF("DW_CFA_GNU_window_save()\n");
        for (reg = UNW_SPARC_O0; reg <= UNW_SPARC_O7; reg++) {
          results->setRegister(reg, kRegisterInRegister,
                               ((int64_t)reg - UNW_SPARC_O0) + UNW_SPARC_I0,
                               initialState);
        }

        for (reg = UNW_SPARC_L0; reg <= UNW_SPARC_I7; reg++) {
          results->setRegister(reg, kRegisterInCFA,
                               ((int64_t)reg - UNW_SPARC_L0) * 4, initialState);
        }
        break;
#endif
      }
      break;
#else
      (void)arch;
#endif

    default:
      operand = opcode & 0x3F;
      switch (opcode & 0xC0) {
      case DW_CFA_offset:
        reg = operand;
        if (reg > kMaxRegisterNumber) {
          _LIBUNWIND_LOG("malformed DW_CFA_offset DWARF unwind, reg (%" PRIu64
                         ") out of range",
                  reg);
          return false;
        }
        offset = (int64_t)addressSpace.getULEB128(p, instructionsEnd)
                                                    * cieInfo.dataAlignFactor;
        results->setRegister(reg, kRegisterInCFA, offset, initialState);
        _LIBUNWIND_TRACE_DWARF("DW_CFA_offset(reg=%d, offset=%" PRId64 ")\n",
                               operand, offset);
        break;
      case DW_CFA_advance_loc:
        codeOffset += operand * cieInfo.codeAlignFactor;
        _LIBUNWIND_TRACE_DWARF("DW_CFA_advance_loc: new offset=%" PRIu64 "\n",
                               static_cast<uint64_t>(codeOffset));
        break;
      case DW_CFA_restore:
        reg = operand;
        if (reg > kMaxRegisterNumber) {
          _LIBUNWIND_LOG("malformed DW_CFA_restore DWARF unwind, reg (%" PRIu64
                         ") out of range",
                  reg);
          return false;
        }
        results->restoreRegisterToInitialState(reg, initialState);
        _LIBUNWIND_TRACE_DWARF("DW_CFA_restore(reg=%" PRIu64 ")\n",
                               static_cast<uint64_t>(operand));
        break;
      default:
        _LIBUNWIND_TRACE_DWARF("unknown CFA opcode 0x%02X\n", opcode);
        return false;
      }
    }
  }

  return true;
}

} // namespace libunwind

#endif // __DWARF_PARSER_HPP__