gdb_pretty_printer_test.sh.cpp 22.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
// -*- C++ -*-
//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// REQUIRES: libcxx_gdb
//
// RUN: %{cxx} %{flags} %s -o %t.exe %{compile_flags} -g %{link_flags}
// Ensure locale-independence for unicode tests.
// RUN: %{libcxx_gdb} -nx -batch -iex "set autoload off" -ex "source %S/../../utils/gdb/libcxx/printers.py" -ex "python register_libcxx_printer_loader()" -ex "source %S/gdb_pretty_printer_test.py" %t.exe

#include <bitset>
#include <deque>
#include <list>
#include <map>
#include <memory>
#include <queue>
#include <set>
#include <sstream>
#include <stack>
#include <string>
#include <tuple>
#include <unordered_map>
#include <unordered_set>

#include "test_macros.h"

// To write a pretty-printer test:
//
// 1. Declare a variable of the type you want to test
//
// 2. Set its value to something which will test the pretty printer in an
//    interesting way.
//
// 3. Call ComparePrettyPrintToChars with that variable, and a "const char*"
//    value to compare to the printer's output.
//
//    Or
//
//    Call ComparePrettyPrintToChars with that variable, and a "const char*"
//    *python* regular expression to match against the printer's output.
//    The set of special characters in a Python regular expression overlaps
//    with a lot of things the pretty printers print--brackets, for
//    example--so take care to escape appropriately.
//
// Alternatively, construct a string that gdb can parse as an expression,
// so that printing the value of the expression will test the pretty printer
// in an interesting way. Then, call CompareExpressionPrettyPrintToChars or
// CompareExpressionPrettyPrintToRegex to compare the printer's output.

// Avoids setting a breakpoint in every-single instantiation of
// ComparePrettyPrintTo*.  Also, make sure neither it, nor the
// variables we need present in the Compare functions are optimized
// away.
#ifdef TEST_COMPILER_GCC
#define OPT_NONE __attribute__((noinline))
#else
#define OPT_NONE __attribute__((optnone))
#endif
void StopForDebugger(void *value, void *check) OPT_NONE;
void StopForDebugger(void *value, void *check)  {}


// Prevents the compiler optimizing away the parameter in the caller function.
template <typename Type>
void MarkAsLive(Type &&t) OPT_NONE;
template <typename Type>
void MarkAsLive(Type &&t) {}

// In all of the Compare(Expression)PrettyPrintTo(Regex/Chars) functions below,
// the python script sets a breakpoint just before the call to StopForDebugger,
// compares the result to the expectation.
//
// The expectation is a literal string to be matched exactly in
// *PrettyPrintToChars functions, and is a python regular expression in
// *PrettyPrintToRegex functions.
//
// In ComparePrettyPrint* functions, the value is a variable of any type. In
// CompareExpressionPrettyPrint functions, the value is a string expression that
// gdb will parse and print the result.
//
// The python script will print either "PASS", or a detailed failure explanation
// along with the line that has invoke the function. The testing will continue
// in either case.

template <typename TypeToPrint> void ComparePrettyPrintToChars(
    TypeToPrint value,
    const char *expectation) {
  StopForDebugger(&value, &expectation);
}

template <typename TypeToPrint> void ComparePrettyPrintToRegex(
    TypeToPrint value,
    const char *expectation) {
  StopForDebugger(&value, &expectation);
}

void CompareExpressionPrettyPrintToChars(
    std::string value,
    const char *expectation) {
  StopForDebugger(&value, &expectation);
}

void CompareExpressionPrettyPrintToRegex(
    std::string value,
    const char *expectation) {
  StopForDebugger(&value, &expectation);
}

namespace example {
  struct example_struct {
    int a = 0;
    int arr[1000];
  };
}

// If enabled, the self test will "fail"--because we want to be sure it properly
// diagnoses tests that *should* fail. Evaluate the output by hand.
void framework_self_test() {
#ifdef FRAMEWORK_SELF_TEST
  // Use the most simple data structure we can.
  const char a = 'a';

  // Tests that should pass
  ComparePrettyPrintToChars(a, "97 'a'");
  ComparePrettyPrintToRegex(a, ".*");

  // Tests that should fail.
  ComparePrettyPrintToChars(a, "b");
  ComparePrettyPrintToRegex(a, "b");
#endif
}

// A simple pass-through allocator to check that we handle CompressedPair
// correctly.
template <typename T> class UncompressibleAllocator : public std::allocator<T> {
 public:
  char X;
};

void string_test() {
  std::string short_string("kdjflskdjf");
  // The display_hint "string" adds quotes the printed result.
  ComparePrettyPrintToChars(short_string, "\"kdjflskdjf\"");

  std::basic_string<char, std::char_traits<char>, UncompressibleAllocator<char>>
      long_string("mehmet bizim dostumuz agzi kirik testimiz");
  ComparePrettyPrintToChars(long_string,
                            "\"mehmet bizim dostumuz agzi kirik testimiz\"");
}

namespace a_namespace {
// To test name-lookup in the presence of using inside a namespace. Inside this
// namespace, unqualified string_view variables will appear in the debug info as
// "a_namespace::string_view, rather than "std::string_view".
//
// There is nothing special here about string_view; it's just the data structure
// where lookup with using inside a namespace wasn't always working.

using string_view = std::string_view;

void string_view_test() {
  std::string_view i_am_empty;
  ComparePrettyPrintToChars(i_am_empty, "std::string_view of length 0: \"\"");

  std::string source_string("to be or not to be");
  std::string_view to_be(source_string);
  ComparePrettyPrintToChars(
      to_be, "std::string_view of length 18: \"to be or not to be\"");

  const char char_arr[] = "what a wonderful world";
  std::string_view wonderful(&char_arr[7], 9);
  ComparePrettyPrintToChars(
      wonderful, "std::string_view of length 9: \"wonderful\"");

  const char char_arr1[] = "namespace_stringview";
  string_view namespace_stringview(&char_arr1[10], 10);
  ComparePrettyPrintToChars(
      namespace_stringview, "std::string_view of length 10: \"stringview\"");
}
}

void u16string_test() {
  std::u16string test0 = u"Hello World";
  ComparePrettyPrintToChars(test0, "u\"Hello World\"");
  std::u16string test1 = u"\U00010196\u20AC\u00A3\u0024";
  ComparePrettyPrintToChars(test1, "u\"\U00010196\u20AC\u00A3\u0024\"");
  std::u16string test2 = u"\u0024\u0025\u0026\u0027";
  ComparePrettyPrintToChars(test2, "u\"\u0024\u0025\u0026\u0027\"");
  std::u16string test3 = u"mehmet bizim dostumuz agzi kirik testimiz";
  ComparePrettyPrintToChars(test3,
                            ("u\"mehmet bizim dostumuz agzi kirik testimiz\""));
}

void u32string_test() {
  std::u32string test0 = U"Hello World";
  ComparePrettyPrintToChars(test0, "U\"Hello World\"");
  std::u32string test1 =
      U"\U0001d552\U0001d553\U0001d554\U0001d555\U0001d556\U0001d557";
  ComparePrettyPrintToChars(
      test1,
      ("U\"\U0001d552\U0001d553\U0001d554\U0001d555\U0001d556\U0001d557\""));
  std::u32string test2 = U"\U00004f60\U0000597d";
  ComparePrettyPrintToChars(test2, ("U\"\U00004f60\U0000597d\""));
  std::u32string test3 = U"mehmet bizim dostumuz agzi kirik testimiz";
  ComparePrettyPrintToChars(test3, ("U\"mehmet bizim dostumuz agzi kirik testimiz\""));
}

void tuple_test() {
  std::tuple<int, int, int> test0(2, 3, 4);
  ComparePrettyPrintToChars(
      test0,
      "std::tuple containing = {[1] = 2, [2] = 3, [3] = 4}");

  std::tuple<> test1;
  ComparePrettyPrintToChars(
      test1,
      "empty std::tuple");
}

void unique_ptr_test() {
  std::unique_ptr<std::string> matilda(new std::string("Matilda"));
  ComparePrettyPrintToRegex(
      std::move(matilda),
      R"(std::unique_ptr<std::string> containing = {__ptr_ = 0x[a-f0-9]+})");
  std::unique_ptr<int> forty_two(new int(42));
  ComparePrettyPrintToRegex(std::move(forty_two),
      R"(std::unique_ptr<int> containing = {__ptr_ = 0x[a-f0-9]+})");

  std::unique_ptr<int> this_is_null;
  ComparePrettyPrintToChars(std::move(this_is_null),
      R"(std::unique_ptr is nullptr)");
}

void bitset_test() {
  std::bitset<258> i_am_empty(0);
  ComparePrettyPrintToChars(i_am_empty, "std::bitset<258>");

  std::bitset<0> very_empty;
  ComparePrettyPrintToChars(very_empty, "std::bitset<0>");

  std::bitset<15> b_000001111111100(1020);
  ComparePrettyPrintToChars(b_000001111111100,
      "std::bitset<15> = {[2] = 1, [3] = 1, [4] = 1, [5] = 1, [6] = 1, "
      "[7] = 1, [8] = 1, [9] = 1}");

  std::bitset<258> b_0_129_132(0);
  b_0_129_132[0] = true;
  b_0_129_132[129] = true;
  b_0_129_132[132] = true;
  ComparePrettyPrintToChars(b_0_129_132,
      "std::bitset<258> = {[0] = 1, [129] = 1, [132] = 1}");
}

void list_test() {
  std::list<int> i_am_empty{};
  ComparePrettyPrintToChars(i_am_empty, "std::list is empty");

  std::list<int> one_two_three {1, 2, 3};
  ComparePrettyPrintToChars(one_two_three,
      "std::list with 3 elements = {1, 2, 3}");

  std::list<std::string> colors {"red", "blue", "green"};
  ComparePrettyPrintToChars(colors,
      R"(std::list with 3 elements = {"red", "blue", "green"})");
}

void deque_test() {
  std::deque<int> i_am_empty{};
  ComparePrettyPrintToChars(i_am_empty, "std::deque is empty");

  std::deque<int> one_two_three {1, 2, 3};
  ComparePrettyPrintToChars(one_two_three,
      "std::deque with 3 elements = {1, 2, 3}");

  std::deque<example::example_struct> bfg;
  for (int i = 0; i < 10; ++i) {
    example::example_struct current;
    current.a = i;
    bfg.push_back(current);
  }
  for (int i = 0; i < 3; ++i) {
    bfg.pop_front();
  }
  for (int i = 0; i < 3; ++i) {
    bfg.pop_back();
  }
  ComparePrettyPrintToRegex(bfg,
      "std::deque with 4 elements = {"
      "{a = 3, arr = {[^}]+}}, "
      "{a = 4, arr = {[^}]+}}, "
      "{a = 5, arr = {[^}]+}}, "
      "{a = 6, arr = {[^}]+}}}");
}

void map_test() {
  std::map<int, int> i_am_empty{};
  ComparePrettyPrintToChars(i_am_empty, "std::map is empty");

  std::map<int, std::string> one_two_three;
  one_two_three.insert({1, "one"});
  one_two_three.insert({2, "two"});
  one_two_three.insert({3, "three"});
  ComparePrettyPrintToChars(one_two_three,
      "std::map with 3 elements = "
      R"({[1] = "one", [2] = "two", [3] = "three"})");

  std::map<int, example::example_struct> bfg;
  for (int i = 0; i < 4; ++i) {
    example::example_struct current;
    current.a = 17 * i;
    bfg.insert({i, current});
  }
  ComparePrettyPrintToRegex(bfg,
      R"(std::map with 4 elements = {)"
      R"(\[0\] = {a = 0, arr = {[^}]+}}, )"
      R"(\[1\] = {a = 17, arr = {[^}]+}}, )"
      R"(\[2\] = {a = 34, arr = {[^}]+}}, )"
      R"(\[3\] = {a = 51, arr = {[^}]+}}})");
}

void multimap_test() {
  std::multimap<int, int> i_am_empty{};
  ComparePrettyPrintToChars(i_am_empty, "std::multimap is empty");

  std::multimap<int, std::string> one_two_three;
  one_two_three.insert({1, "one"});
  one_two_three.insert({3, "three"});
  one_two_three.insert({1, "ein"});
  one_two_three.insert({2, "two"});
  one_two_three.insert({2, "zwei"});
  one_two_three.insert({1, "bir"});

  ComparePrettyPrintToChars(one_two_three,
      "std::multimap with 6 elements = "
      R"({[1] = "one", [1] = "ein", [1] = "bir", )"
      R"([2] = "two", [2] = "zwei", [3] = "three"})");
}

void queue_test() {
  std::queue<int> i_am_empty;
  ComparePrettyPrintToChars(i_am_empty,
      "std::queue wrapping = {std::deque is empty}");

  std::queue<int> one_two_three(std::deque<int>{1, 2, 3});
    ComparePrettyPrintToChars(one_two_three,
        "std::queue wrapping = {"
        "std::deque with 3 elements = {1, 2, 3}}");
}

void priority_queue_test() {
  std::priority_queue<int> i_am_empty;
  ComparePrettyPrintToChars(i_am_empty,
      "std::priority_queue wrapping = {std::vector of length 0, capacity 0}");

  std::priority_queue<int> one_two_three;
  one_two_three.push(11111);
  one_two_three.push(22222);
  one_two_three.push(33333);

  ComparePrettyPrintToRegex(one_two_three,
      R"(std::priority_queue wrapping = )"
      R"({std::vector of length 3, capacity 3 = {33333)");

  ComparePrettyPrintToRegex(one_two_three, ".*11111.*");
  ComparePrettyPrintToRegex(one_two_three, ".*22222.*");
}

void set_test() {
  std::set<int> i_am_empty;
  ComparePrettyPrintToChars(i_am_empty, "std::set is empty");

  std::set<int> one_two_three {3, 1, 2};
  ComparePrettyPrintToChars(one_two_three,
      "std::set with 3 elements = {1, 2, 3}");

  std::set<std::pair<int, int>> prime_pairs {
      std::make_pair(3, 5), std::make_pair(5, 7), std::make_pair(3, 5)};

  ComparePrettyPrintToChars(prime_pairs,
      "std::set with 2 elements = {"
      "{first = 3, second = 5}, {first = 5, second = 7}}");

  using using_set = std::set<int>;
  using_set other{1, 2, 3};
  ComparePrettyPrintToChars(other, "std::set with 3 elements = {1, 2, 3}");
}

void stack_test() {
  std::stack<int> test0;
  ComparePrettyPrintToChars(test0,
                            "std::stack wrapping = {std::deque is empty}");
  test0.push(5);
  test0.push(6);
  ComparePrettyPrintToChars(
      test0, "std::stack wrapping = {std::deque with 2 elements = {5, 6}}");
  std::stack<bool> test1;
  test1.push(true);
  test1.push(false);
  ComparePrettyPrintToChars(
      test1,
      "std::stack wrapping = {std::deque with 2 elements = {true, false}}");

  std::stack<std::string> test2;
  test2.push("Hello");
  test2.push("World");
  ComparePrettyPrintToChars(test2,
                            "std::stack wrapping = {std::deque with 2 elements "
                            "= {\"Hello\", \"World\"}}");
}

void multiset_test() {
  std::multiset<int> i_am_empty;
  ComparePrettyPrintToChars(i_am_empty, "std::multiset is empty");

  std::multiset<std::string> one_two_three {"1:one", "2:two", "3:three", "1:one"};
  ComparePrettyPrintToChars(one_two_three,
      "std::multiset with 4 elements = {"
      R"("1:one", "1:one", "2:two", "3:three"})");
}

void vector_test() {
  std::vector<bool> test0 = {true, false};
  ComparePrettyPrintToChars(test0,
                            "std::vector<bool> of "
                            "length 2, capacity 64 = {1, 0}");
  for (int i = 0; i < 31; ++i) {
    test0.push_back(true);
    test0.push_back(false);
  }
  ComparePrettyPrintToRegex(
      test0,
      "std::vector<bool> of length 64, "
      "capacity 64 = {1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, "
      "0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, "
      "0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0}");
  test0.push_back(true);
  ComparePrettyPrintToRegex(
      test0,
      "std::vector<bool> of length 65, "
      "capacity 128 = {1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, "
      "1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, "
      "1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1}");

  std::vector<int> test1;
  ComparePrettyPrintToChars(test1, "std::vector of length 0, capacity 0");

  std::vector<int> test2 = {5, 6, 7};
  ComparePrettyPrintToChars(test2,
                            "std::vector of length "
                            "3, capacity 3 = {5, 6, 7}");

  std::vector<int, UncompressibleAllocator<int>> test3({7, 8});
  ComparePrettyPrintToChars(std::move(test3),
                            "std::vector of length "
                            "2, capacity 2 = {7, 8}");
}

void set_iterator_test() {
  std::set<int> one_two_three {1111, 2222, 3333};
  auto it = one_two_three.find(2222);
  MarkAsLive(it);
  CompareExpressionPrettyPrintToRegex("it",
      R"(std::__tree_const_iterator  = {\[0x[a-f0-9]+\] = 2222})");

  auto not_found = one_two_three.find(1234);
  MarkAsLive(not_found);
  // Because the end_node is not easily detected, just be sure it doesn't crash.
  CompareExpressionPrettyPrintToRegex("not_found",
      R"(std::__tree_const_iterator ( = {\[0x[a-f0-9]+\] = .*}|<error reading variable:.*>))");
}

void map_iterator_test() {
  std::map<int, std::string> one_two_three;
  one_two_three.insert({1, "one"});
  one_two_three.insert({2, "two"});
  one_two_three.insert({3, "three"});
  auto it = one_two_three.begin();
  MarkAsLive(it);
  CompareExpressionPrettyPrintToRegex("it",
      R"(std::__map_iterator  = )"
      R"({\[0x[a-f0-9]+\] = {first = 1, second = "one"}})");

  auto not_found = one_two_three.find(7);
  MarkAsLive(not_found);
  CompareExpressionPrettyPrintToRegex("not_found",
      R"(std::__map_iterator  = {\[0x[a-f0-9]+\] =  end\(\)})");
}

void unordered_set_test() {
  std::unordered_set<int> i_am_empty;
  ComparePrettyPrintToChars(i_am_empty, "std::unordered_set is empty");

  std::unordered_set<int> numbers {12345, 67890, 222333, 12345};
  numbers.erase(numbers.find(222333));
  ComparePrettyPrintToRegex(numbers, "std::unordered_set with 2 elements = ");
  ComparePrettyPrintToRegex(numbers, ".*12345.*");
  ComparePrettyPrintToRegex(numbers, ".*67890.*");

  std::unordered_set<std::string> colors {"red", "blue", "green"};
  ComparePrettyPrintToRegex(colors, "std::unordered_set with 3 elements = ");
  ComparePrettyPrintToRegex(colors, R"(.*"red".*)");
  ComparePrettyPrintToRegex(colors, R"(.*"blue".*)");
  ComparePrettyPrintToRegex(colors, R"(.*"green".*)");
}

void unordered_multiset_test() {
  std::unordered_multiset<int> i_am_empty;
  ComparePrettyPrintToChars(i_am_empty, "std::unordered_multiset is empty");

  std::unordered_multiset<int> numbers {12345, 67890, 222333, 12345};
  ComparePrettyPrintToRegex(numbers,
                            "std::unordered_multiset with 4 elements = ");
  ComparePrettyPrintToRegex(numbers, ".*12345.*12345.*");
  ComparePrettyPrintToRegex(numbers, ".*67890.*");
  ComparePrettyPrintToRegex(numbers, ".*222333.*");

  std::unordered_multiset<std::string> colors {"red", "blue", "green", "red"};
  ComparePrettyPrintToRegex(colors,
                            "std::unordered_multiset with 4 elements = ");
  ComparePrettyPrintToRegex(colors, R"(.*"red".*"red".*)");
  ComparePrettyPrintToRegex(colors, R"(.*"blue".*)");
  ComparePrettyPrintToRegex(colors, R"(.*"green".*)");
}

void unordered_map_test() {
  std::unordered_map<int, int> i_am_empty;
  ComparePrettyPrintToChars(i_am_empty, "std::unordered_map is empty");

  std::unordered_map<int, std::string> one_two_three;
  one_two_three.insert({1, "one"});
  one_two_three.insert({2, "two"});
  one_two_three.insert({3, "three"});
  ComparePrettyPrintToRegex(one_two_three,
                            "std::unordered_map with 3 elements = ");
  ComparePrettyPrintToRegex(one_two_three, R"(.*\[1\] = "one".*)");
  ComparePrettyPrintToRegex(one_two_three, R"(.*\[2\] = "two".*)");
  ComparePrettyPrintToRegex(one_two_three, R"(.*\[3\] = "three".*)");
}

void unordered_multimap_test() {
  std::unordered_multimap<int, int> i_am_empty;
  ComparePrettyPrintToChars(i_am_empty, "std::unordered_multimap is empty");

  std::unordered_multimap<int, std::string> one_two_three;
  one_two_three.insert({1, "one"});
  one_two_three.insert({2, "two"});
  one_two_three.insert({3, "three"});
  one_two_three.insert({2, "two"});
  ComparePrettyPrintToRegex(one_two_three,
                            "std::unordered_multimap with 4 elements = ");
  ComparePrettyPrintToRegex(one_two_three, R"(.*\[1\] = "one".*)");
  ComparePrettyPrintToRegex(one_two_three, R"(.*\[2\] = "two".*\[2\] = "two")");
  ComparePrettyPrintToRegex(one_two_three, R"(.*\[3\] = "three".*)");
}

void unordered_map_iterator_test() {
  std::unordered_map<int, int> ones_to_eights;
  ones_to_eights.insert({1, 8});
  ones_to_eights.insert({11, 88});
  ones_to_eights.insert({111, 888});

  auto ones_to_eights_begin = ones_to_eights.begin();
  MarkAsLive(ones_to_eights_begin);
  CompareExpressionPrettyPrintToRegex("ones_to_eights_begin",
      R"(std::__hash_map_iterator  = {\[1+\] = 8+})");

  auto not_found = ones_to_eights.find(5);
  MarkAsLive(not_found);
  CompareExpressionPrettyPrintToRegex("not_found",
      R"(std::__hash_map_iterator = end\(\))");
}

void unordered_set_iterator_test() {
  std::unordered_set<int> ones;
  ones.insert(111);
  ones.insert(1111);
  ones.insert(11111);

  auto ones_begin = ones.begin();
  MarkAsLive(ones_begin);
  CompareExpressionPrettyPrintToRegex("ones_begin",
      R"(std::__hash_const_iterator  = {1+})");

  auto not_found = ones.find(5);
  MarkAsLive(not_found);
  CompareExpressionPrettyPrintToRegex("not_found",
      R"(std::__hash_const_iterator = end\(\))");
}

// Check that libc++ pretty printers do not handle pointers.
void pointer_negative_test() {
  int abc = 123;
  int *int_ptr = &abc;
  // Check that the result is equivalent to "p/r int_ptr" command.
  ComparePrettyPrintToRegex(int_ptr, R"(\(int \*\) 0x[a-f0-9]+)");
}

void shared_ptr_test() {
  // Shared ptr tests while using test framework call another function
  // due to which there is one more count for the pointer. Hence, all the
  // following tests are testing with expected count plus 1.
  std::shared_ptr<const int> test0 = std::make_shared<const int>(5);
  ComparePrettyPrintToRegex(
      test0,
      R"(std::shared_ptr<int> count 2, weak 0 containing = {__ptr_ = 0x[a-f0-9]+})");

  std::shared_ptr<const int> test1(test0);
  ComparePrettyPrintToRegex(
      test1,
      R"(std::shared_ptr<int> count 3, weak 0 containing = {__ptr_ = 0x[a-f0-9]+})");

  {
    std::weak_ptr<const int> test2 = test1;
    ComparePrettyPrintToRegex(
        test0,
        R"(std::shared_ptr<int> count 3, weak 1 containing = {__ptr_ = 0x[a-f0-9]+})");
  }

  ComparePrettyPrintToRegex(
      test0,
      R"(std::shared_ptr<int> count 3, weak 0 containing = {__ptr_ = 0x[a-f0-9]+})");

  std::shared_ptr<const int> test3;
  ComparePrettyPrintToChars(test3, "std::shared_ptr is nullptr");
}

void streampos_test() {
  std::streampos test0 = 67;
  ComparePrettyPrintToChars(
      test0, "std::fpos with stream offset:67 with state: {count:0 value:0}");
  std::istringstream input("testing the input stream here");
  std::streampos test1 = input.tellg();
  ComparePrettyPrintToChars(
      test1, "std::fpos with stream offset:0 with state: {count:0 value:0}");
  std::unique_ptr<char[]> buffer(new char[5]);
  input.read(buffer.get(), 5);
  test1 = input.tellg();
  ComparePrettyPrintToChars(
      test1, "std::fpos with stream offset:5 with state: {count:0 value:0}");
}

int main(int argc, char* argv[]) {
  framework_self_test();

  string_test();
  a_namespace::string_view_test();

  u32string_test();
  tuple_test();
  unique_ptr_test();
  shared_ptr_test();
  bitset_test();
  list_test();
  deque_test();
  map_test();
  multimap_test();
  queue_test();
  priority_queue_test();
  stack_test();
  set_test();
  multiset_test();
  vector_test();
  set_iterator_test();
  map_iterator_test();
  unordered_set_test();
  unordered_multiset_test();
  unordered_map_test();
  unordered_multimap_test();
  unordered_map_iterator_test();
  unordered_set_iterator_test();
  pointer_negative_test();
  streampos_test();
  return 0;
}