lgamma_r.cl 19.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
/*
 * Copyright (c) 2014 Advanced Micro Devices, Inc.
 * Copyright (c) 2016 Aaron Watry <awatry@gmail.com>
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

#include <clc/clc.h>

#include "../clcmacro.h"
#include "math.h"

/*
 * ====================================================
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 *
 * Developed at SunPro, a Sun Microsystems, Inc. business.
 * Permission to use, copy, modify, and distribute this
 * software is freely granted, provided that this notice
 * is preserved.
 * ====================================================
 */

#define pi_f   3.1415927410e+00f        /* 0x40490fdb */

#define a0_f   7.7215664089e-02f        /* 0x3d9e233f */
#define a1_f   3.2246702909e-01f        /* 0x3ea51a66 */
#define a2_f   6.7352302372e-02f        /* 0x3d89f001 */
#define a3_f   2.0580807701e-02f        /* 0x3ca89915 */
#define a4_f   7.3855509982e-03f        /* 0x3bf2027e */
#define a5_f   2.8905137442e-03f        /* 0x3b3d6ec6 */
#define a6_f   1.1927076848e-03f        /* 0x3a9c54a1 */
#define a7_f   5.1006977446e-04f        /* 0x3a05b634 */
#define a8_f   2.2086278477e-04f        /* 0x39679767 */
#define a9_f   1.0801156895e-04f        /* 0x38e28445 */
#define a10_f  2.5214456400e-05f        /* 0x37d383a2 */
#define a11_f  4.4864096708e-05f        /* 0x383c2c75 */

#define tc_f   1.4616321325e+00f        /* 0x3fbb16c3 */

#define tf_f  -1.2148628384e-01f        /* 0xbdf8cdcd */
/* tt -(tail of tf) */
#define tt_f   6.6971006518e-09f        /* 0x31e61c52 */

#define t0_f   4.8383611441e-01f        /* 0x3ef7b95e */
#define t1_f  -1.4758771658e-01f        /* 0xbe17213c */
#define t2_f   6.4624942839e-02f        /* 0x3d845a15 */
#define t3_f  -3.2788541168e-02f        /* 0xbd064d47 */
#define t4_f   1.7970675603e-02f        /* 0x3c93373d */
#define t5_f  -1.0314224288e-02f        /* 0xbc28fcfe */
#define t6_f   6.1005386524e-03f        /* 0x3bc7e707 */
#define t7_f  -3.6845202558e-03f        /* 0xbb7177fe */
#define t8_f   2.2596477065e-03f        /* 0x3b141699 */
#define t9_f  -1.4034647029e-03f        /* 0xbab7f476 */
#define t10_f  8.8108185446e-04f        /* 0x3a66f867 */
#define t11_f -5.3859531181e-04f        /* 0xba0d3085 */
#define t12_f  3.1563205994e-04f        /* 0x39a57b6b */
#define t13_f -3.1275415677e-04f        /* 0xb9a3f927 */
#define t14_f  3.3552918467e-04f        /* 0x39afe9f7 */

#define u0_f  -7.7215664089e-02f        /* 0xbd9e233f */
#define u1_f   6.3282704353e-01f        /* 0x3f2200f4 */
#define u2_f   1.4549225569e+00f        /* 0x3fba3ae7 */
#define u3_f   9.7771751881e-01f        /* 0x3f7a4bb2 */
#define u4_f   2.2896373272e-01f        /* 0x3e6a7578 */
#define u5_f   1.3381091878e-02f        /* 0x3c5b3c5e */

#define v1_f   2.4559779167e+00f        /* 0x401d2ebe */
#define v2_f   2.1284897327e+00f        /* 0x4008392d */
#define v3_f   7.6928514242e-01f        /* 0x3f44efdf */
#define v4_f   1.0422264785e-01f        /* 0x3dd572af */
#define v5_f   3.2170924824e-03f        /* 0x3b52d5db */

#define s0_f  -7.7215664089e-02f        /* 0xbd9e233f */
#define s1_f   2.1498242021e-01f        /* 0x3e5c245a */
#define s2_f   3.2577878237e-01f        /* 0x3ea6cc7a */
#define s3_f   1.4635047317e-01f        /* 0x3e15dce6 */
#define s4_f   2.6642270386e-02f        /* 0x3cda40e4 */
#define s5_f   1.8402845599e-03f        /* 0x3af135b4 */
#define s6_f   3.1947532989e-05f        /* 0x3805ff67 */

#define r1_f   1.3920053244e+00f        /* 0x3fb22d3b */
#define r2_f   7.2193557024e-01f        /* 0x3f38d0c5 */
#define r3_f   1.7193385959e-01f        /* 0x3e300f6e */
#define r4_f   1.8645919859e-02f        /* 0x3c98bf54 */
#define r5_f   7.7794247773e-04f        /* 0x3a4beed6 */
#define r6_f   7.3266842264e-06f        /* 0x36f5d7bd */

#define w0_f   4.1893854737e-01f        /* 0x3ed67f1d */
#define w1_f   8.3333335817e-02f        /* 0x3daaaaab */
#define w2_f  -2.7777778450e-03f        /* 0xbb360b61 */
#define w3_f   7.9365057172e-04f        /* 0x3a500cfd */
#define w4_f  -5.9518753551e-04f        /* 0xba1c065c */
#define w5_f   8.3633989561e-04f        /* 0x3a5b3dd2 */
#define w6_f  -1.6309292987e-03f        /* 0xbad5c4e8 */

_CLC_OVERLOAD _CLC_DEF float lgamma_r(float x, private int *signp) {
    int hx = as_int(x);
    int ix = hx & 0x7fffffff;
    float absx = as_float(ix);

    if (ix >= 0x7f800000) {
        *signp = 1;
        return x;
    }

    if (absx < 0x1.0p-70f) {
        *signp = hx < 0 ? -1 : 1;
        return -log(absx);
    }

    float r;

    if (absx == 1.0f | absx == 2.0f)
        r = 0.0f;

    else if (absx < 2.0f) {
        float y = 2.0f - absx;
        int i = 0;

        int c = absx < 0x1.bb4c30p+0f;
        float yt = absx - tc_f;
        y = c ? yt : y;
        i = c ? 1 : i;

        c = absx < 0x1.3b4c40p+0f;
        yt = absx - 1.0f;
        y = c ? yt : y;
        i = c ? 2 : i;

        r = -log(absx);
        yt = 1.0f - absx;
        c = absx <= 0x1.ccccccp-1f;
        r = c ? r : 0.0f;
        y = c ? yt : y;
        i = c ? 0 : i;

        c = absx < 0x1.769440p-1f;
        yt = absx - (tc_f - 1.0f);
        y = c ? yt : y;
        i = c ? 1 : i;

        c = absx < 0x1.da6610p-3f;
        y = c ? absx : y;
        i = c ? 2 : i;

        float z, w, p1, p2, p3, p;
        switch (i) {
            case 0:
                z = y * y;
                p1 = mad(z, mad(z, mad(z, mad(z, mad(z, a10_f, a8_f), a6_f), a4_f), a2_f), a0_f);
                p2 = z * mad(z, mad(z, mad(z, mad(z, mad(z, a11_f, a9_f), a7_f), a5_f), a3_f), a1_f);
                p = mad(y, p1, p2);
                r += mad(y, -0.5f, p);
                break;
            case 1:
                z = y * y;
                w = z * y;
                p1 = mad(w, mad(w, mad(w, mad(w, t12_f, t9_f), t6_f), t3_f), t0_f);
                p2 = mad(w, mad(w, mad(w, mad(w, t13_f, t10_f), t7_f), t4_f), t1_f);
                p3 = mad(w, mad(w, mad(w, mad(w, t14_f, t11_f), t8_f), t5_f), t2_f);
                p = mad(z, p1, -mad(w, -mad(y, p3, p2), tt_f));
                r += tf_f + p;
                break;
            case 2:
                p1 = y * mad(y, mad(y, mad(y, mad(y, mad(y, u5_f, u4_f), u3_f), u2_f), u1_f), u0_f);
                p2 = mad(y, mad(y, mad(y, mad(y, mad(y, v5_f, v4_f), v3_f), v2_f), v1_f), 1.0f);
                r += mad(y, -0.5f, MATH_DIVIDE(p1, p2));
                break;
        }
    } else if (absx < 8.0f) {
        int i = (int) absx;
        float y = absx - (float) i;
        float p = y * mad(y, mad(y, mad(y, mad(y, mad(y, mad(y, s6_f, s5_f), s4_f), s3_f), s2_f), s1_f), s0_f);
        float q = mad(y, mad(y, mad(y, mad(y, mad(y, mad(y, r6_f, r5_f), r4_f), r3_f), r2_f), r1_f), 1.0f);
        r = mad(y, 0.5f, MATH_DIVIDE(p, q));

        float y6 = y + 6.0f;
        float y5 = y + 5.0f;
        float y4 = y + 4.0f;
        float y3 = y + 3.0f;
        float y2 = y + 2.0f;

        float z = 1.0f;
        z *= i > 6 ? y6 : 1.0f;
        z *= i > 5 ? y5 : 1.0f;
        z *= i > 4 ? y4 : 1.0f;
        z *= i > 3 ? y3 : 1.0f;
        z *= i > 2 ? y2 : 1.0f;

        r += log(z);
    } else if (absx < 0x1.0p+58f) {
        float z = 1.0f / absx;
        float y = z * z;
        float w = mad(z, mad(y, mad(y, mad(y, mad(y, mad(y, w6_f, w5_f), w4_f), w3_f), w2_f), w1_f), w0_f);
        r = mad(absx - 0.5f, log(absx) - 1.0f, w);
    } else
        // 2**58 <= x <= Inf
        r = absx * (log(absx) - 1.0f);

    int s = 1;

    if (x < 0.0f) {
        float t = sinpi(x);
        r = log(pi_f / fabs(t * x)) - r;
        r = t == 0.0f ? as_float(PINFBITPATT_SP32) : r;
        s = t < 0.0f ? -1 : s;
    }

    *signp = s;
    return r;
}

_CLC_V_V_VP_VECTORIZE(_CLC_OVERLOAD _CLC_DEF, float, lgamma_r, float, private, int)

#ifdef cl_khr_fp64
#pragma OPENCL EXTENSION cl_khr_fp64 : enable
// ====================================================
// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
//
// Developed at SunPro, a Sun Microsystems, Inc. business.
// Permission to use, copy, modify, and distribute this
// software is freely granted, provided that this notice
// is preserved.
// ====================================================

// lgamma_r(x, i)
// Reentrant version of the logarithm of the Gamma function
// with user provide pointer for the sign of Gamma(x).
//
// Method:
//   1. Argument Reduction for 0 < x <= 8
//      Since gamma(1+s)=s*gamma(s), for x in [0,8], we may
//      reduce x to a number in [1.5,2.5] by
//              lgamma(1+s) = log(s) + lgamma(s)
//      for example,
//              lgamma(7.3) = log(6.3) + lgamma(6.3)
//                          = log(6.3*5.3) + lgamma(5.3)
//                          = log(6.3*5.3*4.3*3.3*2.3) + lgamma(2.3)
//   2. Polynomial approximation of lgamma around its
//      minimun ymin=1.461632144968362245 to maintain monotonicity.
//      On [ymin-0.23, ymin+0.27] (i.e., [1.23164,1.73163]), use
//              Let z = x-ymin;
//              lgamma(x) = -1.214862905358496078218 + z^2*poly(z)
//      where
//              poly(z) is a 14 degree polynomial.
//   2. Rational approximation in the primary interval [2,3]
//      We use the following approximation:
//              s = x-2.0;
//              lgamma(x) = 0.5*s + s*P(s)/Q(s)
//      with accuracy
//              |P/Q - (lgamma(x)-0.5s)| < 2**-61.71
//      Our algorithms are based on the following observation
//
//                             zeta(2)-1    2    zeta(3)-1    3
// lgamma(2+s) = s*(1-Euler) + --------- * s  -  --------- * s  + ...
//                                 2                 3
//
//      where Euler = 0.5771... is the Euler constant, which is very
//      close to 0.5.
//
//   3. For x>=8, we have
//      lgamma(x)~(x-0.5)log(x)-x+0.5*log(2pi)+1/(12x)-1/(360x**3)+....
//      (better formula:
//         lgamma(x)~(x-0.5)*(log(x)-1)-.5*(log(2pi)-1) + ...)
//      Let z = 1/x, then we approximation
//              f(z) = lgamma(x) - (x-0.5)(log(x)-1)
//      by
//                                  3       5             11
//              w = w0 + w1*z + w2*z  + w3*z  + ... + w6*z
//      where
//              |w - f(z)| < 2**-58.74
//
//   4. For negative x, since (G is gamma function)
//              -x*G(-x)*G(x) = pi/sin(pi*x),
//      we have
//              G(x) = pi/(sin(pi*x)*(-x)*G(-x))
//      since G(-x) is positive, sign(G(x)) = sign(sin(pi*x)) for x<0
//      Hence, for x<0, signgam = sign(sin(pi*x)) and
//              lgamma(x) = log(|Gamma(x)|)
//                        = log(pi/(|x*sin(pi*x)|)) - lgamma(-x);
//      Note: one should avoid compute pi*(-x) directly in the
//            computation of sin(pi*(-x)).
//
//   5. Special Cases
//              lgamma(2+s) ~ s*(1-Euler) for tiny s
//              lgamma(1)=lgamma(2)=0
//              lgamma(x) ~ -log(x) for tiny x
//              lgamma(0) = lgamma(inf) = inf
//              lgamma(-integer) = +-inf
//
#define pi 3.14159265358979311600e+00	/* 0x400921FB, 0x54442D18 */

#define a0 7.72156649015328655494e-02	/* 0x3FB3C467, 0xE37DB0C8 */
#define a1 3.22467033424113591611e-01	/* 0x3FD4A34C, 0xC4A60FAD */
#define a2 6.73523010531292681824e-02	/* 0x3FB13E00, 0x1A5562A7 */
#define a3 2.05808084325167332806e-02	/* 0x3F951322, 0xAC92547B */
#define a4 7.38555086081402883957e-03	/* 0x3F7E404F, 0xB68FEFE8 */
#define a5 2.89051383673415629091e-03	/* 0x3F67ADD8, 0xCCB7926B */
#define a6 1.19270763183362067845e-03	/* 0x3F538A94, 0x116F3F5D */
#define a7 5.10069792153511336608e-04	/* 0x3F40B6C6, 0x89B99C00 */
#define a8 2.20862790713908385557e-04	/* 0x3F2CF2EC, 0xED10E54D */
#define a9 1.08011567247583939954e-04	/* 0x3F1C5088, 0x987DFB07 */
#define a10 2.52144565451257326939e-05	/* 0x3EFA7074, 0x428CFA52 */
#define a11 4.48640949618915160150e-05	/* 0x3F07858E, 0x90A45837 */

#define tc 1.46163214496836224576e+00	/* 0x3FF762D8, 0x6356BE3F */
#define tf -1.21486290535849611461e-01	/* 0xBFBF19B9, 0xBCC38A42 */
#define tt -3.63867699703950536541e-18	/* 0xBC50C7CA, 0xA48A971F */

#define t0 4.83836122723810047042e-01	/* 0x3FDEF72B, 0xC8EE38A2 */
#define t1 -1.47587722994593911752e-01	/* 0xBFC2E427, 0x8DC6C509 */
#define t2 6.46249402391333854778e-02	/* 0x3FB08B42, 0x94D5419B */
#define t3 -3.27885410759859649565e-02	/* 0xBFA0C9A8, 0xDF35B713 */
#define t4 1.79706750811820387126e-02	/* 0x3F9266E7, 0x970AF9EC */
#define t5 -1.03142241298341437450e-02	/* 0xBF851F9F, 0xBA91EC6A */
#define t6 6.10053870246291332635e-03	/* 0x3F78FCE0, 0xE370E344 */
#define t7 -3.68452016781138256760e-03	/* 0xBF6E2EFF, 0xB3E914D7 */
#define t8 2.25964780900612472250e-03	/* 0x3F6282D3, 0x2E15C915 */
#define t9 -1.40346469989232843813e-03	/* 0xBF56FE8E, 0xBF2D1AF1 */
#define t10 8.81081882437654011382e-04	/* 0x3F4CDF0C, 0xEF61A8E9 */
#define t11 -5.38595305356740546715e-04	/* 0xBF41A610, 0x9C73E0EC */
#define t12 3.15632070903625950361e-04	/* 0x3F34AF6D, 0x6C0EBBF7 */
#define t13 -3.12754168375120860518e-04	/* 0xBF347F24, 0xECC38C38 */
#define t14 3.35529192635519073543e-04	/* 0x3F35FD3E, 0xE8C2D3F4 */

#define u0 -7.72156649015328655494e-02	/* 0xBFB3C467, 0xE37DB0C8 */
#define u1 6.32827064025093366517e-01	/* 0x3FE4401E, 0x8B005DFF */
#define u2 1.45492250137234768737e+00	/* 0x3FF7475C, 0xD119BD6F */
#define u3 9.77717527963372745603e-01	/* 0x3FEF4976, 0x44EA8450 */
#define u4 2.28963728064692451092e-01	/* 0x3FCD4EAE, 0xF6010924 */
#define u5 1.33810918536787660377e-02	/* 0x3F8B678B, 0xBF2BAB09 */

#define v1 2.45597793713041134822e+00	/* 0x4003A5D7, 0xC2BD619C */
#define v2 2.12848976379893395361e+00	/* 0x40010725, 0xA42B18F5 */
#define v3 7.69285150456672783825e-01	/* 0x3FE89DFB, 0xE45050AF */
#define v4 1.04222645593369134254e-01	/* 0x3FBAAE55, 0xD6537C88 */
#define v5 3.21709242282423911810e-03	/* 0x3F6A5ABB, 0x57D0CF61 */

#define s0 -7.72156649015328655494e-02	/* 0xBFB3C467, 0xE37DB0C8 */
#define s1 2.14982415960608852501e-01	/* 0x3FCB848B, 0x36E20878 */
#define s2 3.25778796408930981787e-01	/* 0x3FD4D98F, 0x4F139F59 */
#define s3 1.46350472652464452805e-01	/* 0x3FC2BB9C, 0xBEE5F2F7 */
#define s4 2.66422703033638609560e-02	/* 0x3F9B481C, 0x7E939961 */
#define s5 1.84028451407337715652e-03	/* 0x3F5E26B6, 0x7368F239 */
#define s6 3.19475326584100867617e-05	/* 0x3F00BFEC, 0xDD17E945 */

#define r1 1.39200533467621045958e+00	/* 0x3FF645A7, 0x62C4AB74 */
#define r2 7.21935547567138069525e-01	/* 0x3FE71A18, 0x93D3DCDC */
#define r3 1.71933865632803078993e-01	/* 0x3FC601ED, 0xCCFBDF27 */
#define r4 1.86459191715652901344e-02	/* 0x3F9317EA, 0x742ED475 */
#define r5 7.77942496381893596434e-04	/* 0x3F497DDA, 0xCA41A95B */
#define r6 7.32668430744625636189e-06	/* 0x3EDEBAF7, 0xA5B38140 */

#define w0 4.18938533204672725052e-01	/* 0x3FDACFE3, 0x90C97D69 */
#define w1 8.33333333333329678849e-02	/* 0x3FB55555, 0x5555553B */
#define w2 -2.77777777728775536470e-03	/* 0xBF66C16C, 0x16B02E5C */
#define w3 7.93650558643019558500e-04	/* 0x3F4A019F, 0x98CF38B6 */
#define w4 -5.95187557450339963135e-04	/* 0xBF4380CB, 0x8C0FE741 */
#define w5 8.36339918996282139126e-04	/* 0x3F4B67BA, 0x4CDAD5D1 */
#define w6 -1.63092934096575273989e-03	/* 0xBF5AB89D, 0x0B9E43E4 */

_CLC_OVERLOAD _CLC_DEF double lgamma_r(double x, private int *ip) {
    ulong ux = as_ulong(x);
    ulong ax = ux & EXSIGNBIT_DP64;
    double absx = as_double(ax);

    if (ax >= 0x7ff0000000000000UL) {
        // +-Inf, NaN
        *ip = 1;
        return absx;
    }

    if (absx < 0x1.0p-70) {
        *ip = ax == ux ? 1 : -1;
        return -log(absx);
    }

    // Handle rest of range
    double r;

    if (absx < 2.0) {
        int i = 0;
        double y = 2.0 - absx;

        int c = absx < 0x1.bb4c3p+0;
        double t = absx - tc;
        i = c ? 1 : i;
        y = c ? t : y;

        c = absx < 0x1.3b4c4p+0;
        t = absx - 1.0;
        i = c ? 2 : i;
        y = c ? t : y;

        c = absx <= 0x1.cccccp-1;
        t = -log(absx);
        r = c ? t : 0.0;
        t = 1.0 - absx;
        i = c ? 0 : i;
        y = c ? t : y;

        c = absx < 0x1.76944p-1;
        t = absx - (tc - 1.0);
        i = c ? 1 : i;
        y = c ? t : y;

        c = absx < 0x1.da661p-3;
        i = c ? 2 : i;
        y = c ? absx : y;

        double p, q;

        switch (i) {
            case 0:
                p = fma(y, fma(y, fma(y, fma(y, a11, a10), a9), a8), a7);
                p = fma(y, fma(y, fma(y, fma(y, p, a6), a5), a4), a3);
                p = fma(y, fma(y, fma(y, p, a2), a1), a0);
                r = fma(y, p - 0.5, r);
                break;
            case 1:
                p = fma(y, fma(y, fma(y, fma(y, t14, t13), t12), t11), t10);
                p = fma(y, fma(y, fma(y, fma(y, fma(y, p, t9), t8), t7), t6), t5);
                p = fma(y, fma(y, fma(y, fma(y, fma(y, p, t4), t3), t2), t1), t0);
                p = fma(y*y, p, -tt);
                r += (tf + p);
                break;
            case 2:
                p = y * fma(y, fma(y, fma(y, fma(y, fma(y, u5, u4), u3), u2), u1), u0);
                q = fma(y, fma(y, fma(y, fma(y, fma(y, v5, v4), v3), v2), v1), 1.0);
                r += fma(-0.5, y, p / q);
        }
    } else if (absx < 8.0) {
        int i = absx;
        double y = absx - (double) i;
        double p = y * fma(y, fma(y, fma(y, fma(y, fma(y, fma(y, s6, s5), s4), s3), s2), s1), s0);
        double q = fma(y, fma(y, fma(y, fma(y, fma(y, fma(y, r6, r5), r4), r3), r2), r1), 1.0);
        r = fma(0.5, y, p / q);
        double z = 1.0;
        // lgamma(1+s) = log(s) + lgamma(s)
        double y6 = y + 6.0;
        double y5 = y + 5.0;
        double y4 = y + 4.0;
        double y3 = y + 3.0;
        double y2 = y + 2.0;
        z *= i > 6 ? y6 : 1.0;
        z *= i > 5 ? y5 : 1.0;
        z *= i > 4 ? y4 : 1.0;
        z *= i > 3 ? y3 : 1.0;
        z *= i > 2 ? y2 : 1.0;
        r += log(z);
    } else {
        double z = 1.0 / absx;
        double z2 = z * z;
        double w = fma(z, fma(z2, fma(z2, fma(z2, fma(z2, fma(z2, w6, w5), w4), w3), w2), w1), w0);
        r = (absx - 0.5) * (log(absx) - 1.0) + w;
    }

    if (x < 0.0) {
        double t = sinpi(x);
        r = log(pi / fabs(t * x)) - r;
        r = t == 0.0 ? as_double(PINFBITPATT_DP64) : r;
        *ip = t < 0.0 ? -1 : 1;
    } else
        *ip = 1;

    return r;
}

_CLC_V_V_VP_VECTORIZE(_CLC_OVERLOAD _CLC_DEF, double, lgamma_r, double, private, int)
#endif


#define __CLC_ADDRSPACE global
#define __CLC_BODY <lgamma_r.inc>
#include <clc/math/gentype.inc>
#undef __CLC_ADDRSPACE

#define __CLC_ADDRSPACE local
#define __CLC_BODY <lgamma_r.inc>
#include <clc/math/gentype.inc>
#undef __CLC_ADDRSPACE