lgamma_r.cl
19.1 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
/*
* Copyright (c) 2014 Advanced Micro Devices, Inc.
* Copyright (c) 2016 Aaron Watry <awatry@gmail.com>
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <clc/clc.h>
#include "../clcmacro.h"
#include "math.h"
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#define pi_f 3.1415927410e+00f /* 0x40490fdb */
#define a0_f 7.7215664089e-02f /* 0x3d9e233f */
#define a1_f 3.2246702909e-01f /* 0x3ea51a66 */
#define a2_f 6.7352302372e-02f /* 0x3d89f001 */
#define a3_f 2.0580807701e-02f /* 0x3ca89915 */
#define a4_f 7.3855509982e-03f /* 0x3bf2027e */
#define a5_f 2.8905137442e-03f /* 0x3b3d6ec6 */
#define a6_f 1.1927076848e-03f /* 0x3a9c54a1 */
#define a7_f 5.1006977446e-04f /* 0x3a05b634 */
#define a8_f 2.2086278477e-04f /* 0x39679767 */
#define a9_f 1.0801156895e-04f /* 0x38e28445 */
#define a10_f 2.5214456400e-05f /* 0x37d383a2 */
#define a11_f 4.4864096708e-05f /* 0x383c2c75 */
#define tc_f 1.4616321325e+00f /* 0x3fbb16c3 */
#define tf_f -1.2148628384e-01f /* 0xbdf8cdcd */
/* tt -(tail of tf) */
#define tt_f 6.6971006518e-09f /* 0x31e61c52 */
#define t0_f 4.8383611441e-01f /* 0x3ef7b95e */
#define t1_f -1.4758771658e-01f /* 0xbe17213c */
#define t2_f 6.4624942839e-02f /* 0x3d845a15 */
#define t3_f -3.2788541168e-02f /* 0xbd064d47 */
#define t4_f 1.7970675603e-02f /* 0x3c93373d */
#define t5_f -1.0314224288e-02f /* 0xbc28fcfe */
#define t6_f 6.1005386524e-03f /* 0x3bc7e707 */
#define t7_f -3.6845202558e-03f /* 0xbb7177fe */
#define t8_f 2.2596477065e-03f /* 0x3b141699 */
#define t9_f -1.4034647029e-03f /* 0xbab7f476 */
#define t10_f 8.8108185446e-04f /* 0x3a66f867 */
#define t11_f -5.3859531181e-04f /* 0xba0d3085 */
#define t12_f 3.1563205994e-04f /* 0x39a57b6b */
#define t13_f -3.1275415677e-04f /* 0xb9a3f927 */
#define t14_f 3.3552918467e-04f /* 0x39afe9f7 */
#define u0_f -7.7215664089e-02f /* 0xbd9e233f */
#define u1_f 6.3282704353e-01f /* 0x3f2200f4 */
#define u2_f 1.4549225569e+00f /* 0x3fba3ae7 */
#define u3_f 9.7771751881e-01f /* 0x3f7a4bb2 */
#define u4_f 2.2896373272e-01f /* 0x3e6a7578 */
#define u5_f 1.3381091878e-02f /* 0x3c5b3c5e */
#define v1_f 2.4559779167e+00f /* 0x401d2ebe */
#define v2_f 2.1284897327e+00f /* 0x4008392d */
#define v3_f 7.6928514242e-01f /* 0x3f44efdf */
#define v4_f 1.0422264785e-01f /* 0x3dd572af */
#define v5_f 3.2170924824e-03f /* 0x3b52d5db */
#define s0_f -7.7215664089e-02f /* 0xbd9e233f */
#define s1_f 2.1498242021e-01f /* 0x3e5c245a */
#define s2_f 3.2577878237e-01f /* 0x3ea6cc7a */
#define s3_f 1.4635047317e-01f /* 0x3e15dce6 */
#define s4_f 2.6642270386e-02f /* 0x3cda40e4 */
#define s5_f 1.8402845599e-03f /* 0x3af135b4 */
#define s6_f 3.1947532989e-05f /* 0x3805ff67 */
#define r1_f 1.3920053244e+00f /* 0x3fb22d3b */
#define r2_f 7.2193557024e-01f /* 0x3f38d0c5 */
#define r3_f 1.7193385959e-01f /* 0x3e300f6e */
#define r4_f 1.8645919859e-02f /* 0x3c98bf54 */
#define r5_f 7.7794247773e-04f /* 0x3a4beed6 */
#define r6_f 7.3266842264e-06f /* 0x36f5d7bd */
#define w0_f 4.1893854737e-01f /* 0x3ed67f1d */
#define w1_f 8.3333335817e-02f /* 0x3daaaaab */
#define w2_f -2.7777778450e-03f /* 0xbb360b61 */
#define w3_f 7.9365057172e-04f /* 0x3a500cfd */
#define w4_f -5.9518753551e-04f /* 0xba1c065c */
#define w5_f 8.3633989561e-04f /* 0x3a5b3dd2 */
#define w6_f -1.6309292987e-03f /* 0xbad5c4e8 */
_CLC_OVERLOAD _CLC_DEF float lgamma_r(float x, private int *signp) {
int hx = as_int(x);
int ix = hx & 0x7fffffff;
float absx = as_float(ix);
if (ix >= 0x7f800000) {
*signp = 1;
return x;
}
if (absx < 0x1.0p-70f) {
*signp = hx < 0 ? -1 : 1;
return -log(absx);
}
float r;
if (absx == 1.0f | absx == 2.0f)
r = 0.0f;
else if (absx < 2.0f) {
float y = 2.0f - absx;
int i = 0;
int c = absx < 0x1.bb4c30p+0f;
float yt = absx - tc_f;
y = c ? yt : y;
i = c ? 1 : i;
c = absx < 0x1.3b4c40p+0f;
yt = absx - 1.0f;
y = c ? yt : y;
i = c ? 2 : i;
r = -log(absx);
yt = 1.0f - absx;
c = absx <= 0x1.ccccccp-1f;
r = c ? r : 0.0f;
y = c ? yt : y;
i = c ? 0 : i;
c = absx < 0x1.769440p-1f;
yt = absx - (tc_f - 1.0f);
y = c ? yt : y;
i = c ? 1 : i;
c = absx < 0x1.da6610p-3f;
y = c ? absx : y;
i = c ? 2 : i;
float z, w, p1, p2, p3, p;
switch (i) {
case 0:
z = y * y;
p1 = mad(z, mad(z, mad(z, mad(z, mad(z, a10_f, a8_f), a6_f), a4_f), a2_f), a0_f);
p2 = z * mad(z, mad(z, mad(z, mad(z, mad(z, a11_f, a9_f), a7_f), a5_f), a3_f), a1_f);
p = mad(y, p1, p2);
r += mad(y, -0.5f, p);
break;
case 1:
z = y * y;
w = z * y;
p1 = mad(w, mad(w, mad(w, mad(w, t12_f, t9_f), t6_f), t3_f), t0_f);
p2 = mad(w, mad(w, mad(w, mad(w, t13_f, t10_f), t7_f), t4_f), t1_f);
p3 = mad(w, mad(w, mad(w, mad(w, t14_f, t11_f), t8_f), t5_f), t2_f);
p = mad(z, p1, -mad(w, -mad(y, p3, p2), tt_f));
r += tf_f + p;
break;
case 2:
p1 = y * mad(y, mad(y, mad(y, mad(y, mad(y, u5_f, u4_f), u3_f), u2_f), u1_f), u0_f);
p2 = mad(y, mad(y, mad(y, mad(y, mad(y, v5_f, v4_f), v3_f), v2_f), v1_f), 1.0f);
r += mad(y, -0.5f, MATH_DIVIDE(p1, p2));
break;
}
} else if (absx < 8.0f) {
int i = (int) absx;
float y = absx - (float) i;
float p = y * mad(y, mad(y, mad(y, mad(y, mad(y, mad(y, s6_f, s5_f), s4_f), s3_f), s2_f), s1_f), s0_f);
float q = mad(y, mad(y, mad(y, mad(y, mad(y, mad(y, r6_f, r5_f), r4_f), r3_f), r2_f), r1_f), 1.0f);
r = mad(y, 0.5f, MATH_DIVIDE(p, q));
float y6 = y + 6.0f;
float y5 = y + 5.0f;
float y4 = y + 4.0f;
float y3 = y + 3.0f;
float y2 = y + 2.0f;
float z = 1.0f;
z *= i > 6 ? y6 : 1.0f;
z *= i > 5 ? y5 : 1.0f;
z *= i > 4 ? y4 : 1.0f;
z *= i > 3 ? y3 : 1.0f;
z *= i > 2 ? y2 : 1.0f;
r += log(z);
} else if (absx < 0x1.0p+58f) {
float z = 1.0f / absx;
float y = z * z;
float w = mad(z, mad(y, mad(y, mad(y, mad(y, mad(y, w6_f, w5_f), w4_f), w3_f), w2_f), w1_f), w0_f);
r = mad(absx - 0.5f, log(absx) - 1.0f, w);
} else
// 2**58 <= x <= Inf
r = absx * (log(absx) - 1.0f);
int s = 1;
if (x < 0.0f) {
float t = sinpi(x);
r = log(pi_f / fabs(t * x)) - r;
r = t == 0.0f ? as_float(PINFBITPATT_SP32) : r;
s = t < 0.0f ? -1 : s;
}
*signp = s;
return r;
}
_CLC_V_V_VP_VECTORIZE(_CLC_OVERLOAD _CLC_DEF, float, lgamma_r, float, private, int)
#ifdef cl_khr_fp64
#pragma OPENCL EXTENSION cl_khr_fp64 : enable
// ====================================================
// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
//
// Developed at SunPro, a Sun Microsystems, Inc. business.
// Permission to use, copy, modify, and distribute this
// software is freely granted, provided that this notice
// is preserved.
// ====================================================
// lgamma_r(x, i)
// Reentrant version of the logarithm of the Gamma function
// with user provide pointer for the sign of Gamma(x).
//
// Method:
// 1. Argument Reduction for 0 < x <= 8
// Since gamma(1+s)=s*gamma(s), for x in [0,8], we may
// reduce x to a number in [1.5,2.5] by
// lgamma(1+s) = log(s) + lgamma(s)
// for example,
// lgamma(7.3) = log(6.3) + lgamma(6.3)
// = log(6.3*5.3) + lgamma(5.3)
// = log(6.3*5.3*4.3*3.3*2.3) + lgamma(2.3)
// 2. Polynomial approximation of lgamma around its
// minimun ymin=1.461632144968362245 to maintain monotonicity.
// On [ymin-0.23, ymin+0.27] (i.e., [1.23164,1.73163]), use
// Let z = x-ymin;
// lgamma(x) = -1.214862905358496078218 + z^2*poly(z)
// where
// poly(z) is a 14 degree polynomial.
// 2. Rational approximation in the primary interval [2,3]
// We use the following approximation:
// s = x-2.0;
// lgamma(x) = 0.5*s + s*P(s)/Q(s)
// with accuracy
// |P/Q - (lgamma(x)-0.5s)| < 2**-61.71
// Our algorithms are based on the following observation
//
// zeta(2)-1 2 zeta(3)-1 3
// lgamma(2+s) = s*(1-Euler) + --------- * s - --------- * s + ...
// 2 3
//
// where Euler = 0.5771... is the Euler constant, which is very
// close to 0.5.
//
// 3. For x>=8, we have
// lgamma(x)~(x-0.5)log(x)-x+0.5*log(2pi)+1/(12x)-1/(360x**3)+....
// (better formula:
// lgamma(x)~(x-0.5)*(log(x)-1)-.5*(log(2pi)-1) + ...)
// Let z = 1/x, then we approximation
// f(z) = lgamma(x) - (x-0.5)(log(x)-1)
// by
// 3 5 11
// w = w0 + w1*z + w2*z + w3*z + ... + w6*z
// where
// |w - f(z)| < 2**-58.74
//
// 4. For negative x, since (G is gamma function)
// -x*G(-x)*G(x) = pi/sin(pi*x),
// we have
// G(x) = pi/(sin(pi*x)*(-x)*G(-x))
// since G(-x) is positive, sign(G(x)) = sign(sin(pi*x)) for x<0
// Hence, for x<0, signgam = sign(sin(pi*x)) and
// lgamma(x) = log(|Gamma(x)|)
// = log(pi/(|x*sin(pi*x)|)) - lgamma(-x);
// Note: one should avoid compute pi*(-x) directly in the
// computation of sin(pi*(-x)).
//
// 5. Special Cases
// lgamma(2+s) ~ s*(1-Euler) for tiny s
// lgamma(1)=lgamma(2)=0
// lgamma(x) ~ -log(x) for tiny x
// lgamma(0) = lgamma(inf) = inf
// lgamma(-integer) = +-inf
//
#define pi 3.14159265358979311600e+00 /* 0x400921FB, 0x54442D18 */
#define a0 7.72156649015328655494e-02 /* 0x3FB3C467, 0xE37DB0C8 */
#define a1 3.22467033424113591611e-01 /* 0x3FD4A34C, 0xC4A60FAD */
#define a2 6.73523010531292681824e-02 /* 0x3FB13E00, 0x1A5562A7 */
#define a3 2.05808084325167332806e-02 /* 0x3F951322, 0xAC92547B */
#define a4 7.38555086081402883957e-03 /* 0x3F7E404F, 0xB68FEFE8 */
#define a5 2.89051383673415629091e-03 /* 0x3F67ADD8, 0xCCB7926B */
#define a6 1.19270763183362067845e-03 /* 0x3F538A94, 0x116F3F5D */
#define a7 5.10069792153511336608e-04 /* 0x3F40B6C6, 0x89B99C00 */
#define a8 2.20862790713908385557e-04 /* 0x3F2CF2EC, 0xED10E54D */
#define a9 1.08011567247583939954e-04 /* 0x3F1C5088, 0x987DFB07 */
#define a10 2.52144565451257326939e-05 /* 0x3EFA7074, 0x428CFA52 */
#define a11 4.48640949618915160150e-05 /* 0x3F07858E, 0x90A45837 */
#define tc 1.46163214496836224576e+00 /* 0x3FF762D8, 0x6356BE3F */
#define tf -1.21486290535849611461e-01 /* 0xBFBF19B9, 0xBCC38A42 */
#define tt -3.63867699703950536541e-18 /* 0xBC50C7CA, 0xA48A971F */
#define t0 4.83836122723810047042e-01 /* 0x3FDEF72B, 0xC8EE38A2 */
#define t1 -1.47587722994593911752e-01 /* 0xBFC2E427, 0x8DC6C509 */
#define t2 6.46249402391333854778e-02 /* 0x3FB08B42, 0x94D5419B */
#define t3 -3.27885410759859649565e-02 /* 0xBFA0C9A8, 0xDF35B713 */
#define t4 1.79706750811820387126e-02 /* 0x3F9266E7, 0x970AF9EC */
#define t5 -1.03142241298341437450e-02 /* 0xBF851F9F, 0xBA91EC6A */
#define t6 6.10053870246291332635e-03 /* 0x3F78FCE0, 0xE370E344 */
#define t7 -3.68452016781138256760e-03 /* 0xBF6E2EFF, 0xB3E914D7 */
#define t8 2.25964780900612472250e-03 /* 0x3F6282D3, 0x2E15C915 */
#define t9 -1.40346469989232843813e-03 /* 0xBF56FE8E, 0xBF2D1AF1 */
#define t10 8.81081882437654011382e-04 /* 0x3F4CDF0C, 0xEF61A8E9 */
#define t11 -5.38595305356740546715e-04 /* 0xBF41A610, 0x9C73E0EC */
#define t12 3.15632070903625950361e-04 /* 0x3F34AF6D, 0x6C0EBBF7 */
#define t13 -3.12754168375120860518e-04 /* 0xBF347F24, 0xECC38C38 */
#define t14 3.35529192635519073543e-04 /* 0x3F35FD3E, 0xE8C2D3F4 */
#define u0 -7.72156649015328655494e-02 /* 0xBFB3C467, 0xE37DB0C8 */
#define u1 6.32827064025093366517e-01 /* 0x3FE4401E, 0x8B005DFF */
#define u2 1.45492250137234768737e+00 /* 0x3FF7475C, 0xD119BD6F */
#define u3 9.77717527963372745603e-01 /* 0x3FEF4976, 0x44EA8450 */
#define u4 2.28963728064692451092e-01 /* 0x3FCD4EAE, 0xF6010924 */
#define u5 1.33810918536787660377e-02 /* 0x3F8B678B, 0xBF2BAB09 */
#define v1 2.45597793713041134822e+00 /* 0x4003A5D7, 0xC2BD619C */
#define v2 2.12848976379893395361e+00 /* 0x40010725, 0xA42B18F5 */
#define v3 7.69285150456672783825e-01 /* 0x3FE89DFB, 0xE45050AF */
#define v4 1.04222645593369134254e-01 /* 0x3FBAAE55, 0xD6537C88 */
#define v5 3.21709242282423911810e-03 /* 0x3F6A5ABB, 0x57D0CF61 */
#define s0 -7.72156649015328655494e-02 /* 0xBFB3C467, 0xE37DB0C8 */
#define s1 2.14982415960608852501e-01 /* 0x3FCB848B, 0x36E20878 */
#define s2 3.25778796408930981787e-01 /* 0x3FD4D98F, 0x4F139F59 */
#define s3 1.46350472652464452805e-01 /* 0x3FC2BB9C, 0xBEE5F2F7 */
#define s4 2.66422703033638609560e-02 /* 0x3F9B481C, 0x7E939961 */
#define s5 1.84028451407337715652e-03 /* 0x3F5E26B6, 0x7368F239 */
#define s6 3.19475326584100867617e-05 /* 0x3F00BFEC, 0xDD17E945 */
#define r1 1.39200533467621045958e+00 /* 0x3FF645A7, 0x62C4AB74 */
#define r2 7.21935547567138069525e-01 /* 0x3FE71A18, 0x93D3DCDC */
#define r3 1.71933865632803078993e-01 /* 0x3FC601ED, 0xCCFBDF27 */
#define r4 1.86459191715652901344e-02 /* 0x3F9317EA, 0x742ED475 */
#define r5 7.77942496381893596434e-04 /* 0x3F497DDA, 0xCA41A95B */
#define r6 7.32668430744625636189e-06 /* 0x3EDEBAF7, 0xA5B38140 */
#define w0 4.18938533204672725052e-01 /* 0x3FDACFE3, 0x90C97D69 */
#define w1 8.33333333333329678849e-02 /* 0x3FB55555, 0x5555553B */
#define w2 -2.77777777728775536470e-03 /* 0xBF66C16C, 0x16B02E5C */
#define w3 7.93650558643019558500e-04 /* 0x3F4A019F, 0x98CF38B6 */
#define w4 -5.95187557450339963135e-04 /* 0xBF4380CB, 0x8C0FE741 */
#define w5 8.36339918996282139126e-04 /* 0x3F4B67BA, 0x4CDAD5D1 */
#define w6 -1.63092934096575273989e-03 /* 0xBF5AB89D, 0x0B9E43E4 */
_CLC_OVERLOAD _CLC_DEF double lgamma_r(double x, private int *ip) {
ulong ux = as_ulong(x);
ulong ax = ux & EXSIGNBIT_DP64;
double absx = as_double(ax);
if (ax >= 0x7ff0000000000000UL) {
// +-Inf, NaN
*ip = 1;
return absx;
}
if (absx < 0x1.0p-70) {
*ip = ax == ux ? 1 : -1;
return -log(absx);
}
// Handle rest of range
double r;
if (absx < 2.0) {
int i = 0;
double y = 2.0 - absx;
int c = absx < 0x1.bb4c3p+0;
double t = absx - tc;
i = c ? 1 : i;
y = c ? t : y;
c = absx < 0x1.3b4c4p+0;
t = absx - 1.0;
i = c ? 2 : i;
y = c ? t : y;
c = absx <= 0x1.cccccp-1;
t = -log(absx);
r = c ? t : 0.0;
t = 1.0 - absx;
i = c ? 0 : i;
y = c ? t : y;
c = absx < 0x1.76944p-1;
t = absx - (tc - 1.0);
i = c ? 1 : i;
y = c ? t : y;
c = absx < 0x1.da661p-3;
i = c ? 2 : i;
y = c ? absx : y;
double p, q;
switch (i) {
case 0:
p = fma(y, fma(y, fma(y, fma(y, a11, a10), a9), a8), a7);
p = fma(y, fma(y, fma(y, fma(y, p, a6), a5), a4), a3);
p = fma(y, fma(y, fma(y, p, a2), a1), a0);
r = fma(y, p - 0.5, r);
break;
case 1:
p = fma(y, fma(y, fma(y, fma(y, t14, t13), t12), t11), t10);
p = fma(y, fma(y, fma(y, fma(y, fma(y, p, t9), t8), t7), t6), t5);
p = fma(y, fma(y, fma(y, fma(y, fma(y, p, t4), t3), t2), t1), t0);
p = fma(y*y, p, -tt);
r += (tf + p);
break;
case 2:
p = y * fma(y, fma(y, fma(y, fma(y, fma(y, u5, u4), u3), u2), u1), u0);
q = fma(y, fma(y, fma(y, fma(y, fma(y, v5, v4), v3), v2), v1), 1.0);
r += fma(-0.5, y, p / q);
}
} else if (absx < 8.0) {
int i = absx;
double y = absx - (double) i;
double p = y * fma(y, fma(y, fma(y, fma(y, fma(y, fma(y, s6, s5), s4), s3), s2), s1), s0);
double q = fma(y, fma(y, fma(y, fma(y, fma(y, fma(y, r6, r5), r4), r3), r2), r1), 1.0);
r = fma(0.5, y, p / q);
double z = 1.0;
// lgamma(1+s) = log(s) + lgamma(s)
double y6 = y + 6.0;
double y5 = y + 5.0;
double y4 = y + 4.0;
double y3 = y + 3.0;
double y2 = y + 2.0;
z *= i > 6 ? y6 : 1.0;
z *= i > 5 ? y5 : 1.0;
z *= i > 4 ? y4 : 1.0;
z *= i > 3 ? y3 : 1.0;
z *= i > 2 ? y2 : 1.0;
r += log(z);
} else {
double z = 1.0 / absx;
double z2 = z * z;
double w = fma(z, fma(z2, fma(z2, fma(z2, fma(z2, fma(z2, w6, w5), w4), w3), w2), w1), w0);
r = (absx - 0.5) * (log(absx) - 1.0) + w;
}
if (x < 0.0) {
double t = sinpi(x);
r = log(pi / fabs(t * x)) - r;
r = t == 0.0 ? as_double(PINFBITPATT_DP64) : r;
*ip = t < 0.0 ? -1 : 1;
} else
*ip = 1;
return r;
}
_CLC_V_V_VP_VECTORIZE(_CLC_OVERLOAD _CLC_DEF, double, lgamma_r, double, private, int)
#endif
#define __CLC_ADDRSPACE global
#define __CLC_BODY <lgamma_r.inc>
#include <clc/math/gentype.inc>
#undef __CLC_ADDRSPACE
#define __CLC_ADDRSPACE local
#define __CLC_BODY <lgamma_r.inc>
#include <clc/math/gentype.inc>
#undef __CLC_ADDRSPACE