atan2.cl
7.74 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
/*
* Copyright (c) 2014 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <clc/clc.h>
#include "math.h"
#include "tables.h"
#include "../clcmacro.h"
_CLC_OVERLOAD _CLC_DEF float atan2(float y, float x)
{
const float pi = 0x1.921fb6p+1f;
const float piby2 = 0x1.921fb6p+0f;
const float piby4 = 0x1.921fb6p-1f;
const float threepiby4 = 0x1.2d97c8p+1f;
float ax = fabs(x);
float ay = fabs(y);
float v = min(ax, ay);
float u = max(ax, ay);
// Scale since u could be large, as in "regular" divide
float s = u > 0x1.0p+96f ? 0x1.0p-32f : 1.0f;
float vbyu = s * MATH_DIVIDE(v, s*u);
float vbyu2 = vbyu * vbyu;
#define USE_2_2_APPROXIMATION
#if defined USE_2_2_APPROXIMATION
float p = mad(vbyu2, mad(vbyu2, -0x1.7e1f78p-9f, -0x1.7d1b98p-3f), -0x1.5554d0p-2f) * vbyu2 * vbyu;
float q = mad(vbyu2, mad(vbyu2, 0x1.1a714cp-2f, 0x1.287c56p+0f), 1.0f);
#else
float p = mad(vbyu2, mad(vbyu2, -0x1.55cd22p-5f, -0x1.26cf76p-2f), -0x1.55554ep-2f) * vbyu2 * vbyu;
float q = mad(vbyu2, mad(vbyu2, mad(vbyu2, 0x1.9f1304p-5f, 0x1.2656fap-1f), 0x1.76b4b8p+0f), 1.0f);
#endif
// Octant 0 result
float a = mad(p, MATH_RECIP(q), vbyu);
// Fix up 3 other octants
float at = piby2 - a;
a = ay > ax ? at : a;
at = pi - a;
a = x < 0.0F ? at : a;
// y == 0 => 0 for x >= 0, pi for x < 0
at = as_int(x) < 0 ? pi : 0.0f;
a = y == 0.0f ? at : a;
// if (!FINITE_ONLY()) {
// x and y are +- Inf
at = x > 0.0f ? piby4 : threepiby4;
a = ax == INFINITY & ay == INFINITY ? at : a;
// x or y is NaN
a = isnan(x) | isnan(y) ? as_float(QNANBITPATT_SP32) : a;
// }
// Fixup sign and return
return copysign(a, y);
}
_CLC_BINARY_VECTORIZE(_CLC_OVERLOAD _CLC_DEF, float, atan2, float, float);
#ifdef cl_khr_fp64
#pragma OPENCL EXTENSION cl_khr_fp64 : enable
_CLC_OVERLOAD _CLC_DEF double atan2(double y, double x)
{
const double pi = 3.1415926535897932e+00; /* 0x400921fb54442d18 */
const double piby2 = 1.5707963267948966e+00; /* 0x3ff921fb54442d18 */
const double piby4 = 7.8539816339744831e-01; /* 0x3fe921fb54442d18 */
const double three_piby4 = 2.3561944901923449e+00; /* 0x4002d97c7f3321d2 */
const double pi_head = 3.1415926218032836e+00; /* 0x400921fb50000000 */
const double pi_tail = 3.1786509547056392e-08; /* 0x3e6110b4611a6263 */
const double piby2_head = 1.5707963267948965e+00; /* 0x3ff921fb54442d18 */
const double piby2_tail = 6.1232339957367660e-17; /* 0x3c91a62633145c07 */
double x2 = x;
int xneg = as_int2(x).hi < 0;
int xexp = (as_int2(x).hi >> 20) & 0x7ff;
double y2 = y;
int yneg = as_int2(y).hi < 0;
int yexp = (as_int2(y).hi >> 20) & 0x7ff;
int cond2 = (xexp < 1021) & (yexp < 1021);
int diffexp = yexp - xexp;
// Scale up both x and y if they are both below 1/4
double x1 = ldexp(x, 1024);
int xexp1 = (as_int2(x1).hi >> 20) & 0x7ff;
double y1 = ldexp(y, 1024);
int yexp1 = (as_int2(y1).hi >> 20) & 0x7ff;
int diffexp1 = yexp1 - xexp1;
diffexp = cond2 ? diffexp1 : diffexp;
x = cond2 ? x1 : x;
y = cond2 ? y1 : y;
// General case: take absolute values of arguments
double u = fabs(x);
double v = fabs(y);
// Swap u and v if necessary to obtain 0 < v < u. Compute v/u.
int swap_vu = u < v;
double uu = u;
u = swap_vu ? v : u;
v = swap_vu ? uu : v;
double vbyu = v / u;
double q1, q2;
// General values of v/u. Use a look-up table and series expansion.
{
double val = vbyu > 0.0625 ? vbyu : 0.063;
int index = convert_int(fma(256.0, val, 0.5));
double2 tv = USE_TABLE(atan_jby256_tbl, index - 16);
q1 = tv.s0;
q2 = tv.s1;
double c = (double)index * 0x1.0p-8;
// We're going to scale u and v by 2^(-u_exponent) to bring them close to 1
// u_exponent could be EMAX so we have to do it in 2 steps
int m = -((int)(as_ulong(u) >> EXPSHIFTBITS_DP64) - EXPBIAS_DP64);
//double um = __amdil_ldexp_f64(u, m);
//double vm = __amdil_ldexp_f64(v, m);
double um = ldexp(u, m);
double vm = ldexp(v, m);
// 26 leading bits of u
double u1 = as_double(as_ulong(um) & 0xfffffffff8000000UL);
double u2 = um - u1;
double r = MATH_DIVIDE(fma(-c, u2, fma(-c, u1, vm)), fma(c, vm, um));
// Polynomial approximation to atan(r)
double s = r * r;
q2 = q2 + fma((s * fma(-s, 0.19999918038989143496, 0.33333333333224095522)), -r, r);
}
double q3, q4;
{
q3 = 0.0;
q4 = vbyu;
}
double q5, q6;
{
double u1 = as_double(as_ulong(u) & 0xffffffff00000000UL);
double u2 = u - u1;
double vu1 = as_double(as_ulong(vbyu) & 0xffffffff00000000UL);
double vu2 = vbyu - vu1;
q5 = 0.0;
double s = vbyu * vbyu;
q6 = vbyu + fma(-vbyu * s,
fma(-s,
fma(-s,
fma(-s,
fma(-s, 0.90029810285449784439E-01,
0.11110736283514525407),
0.14285713561807169030),
0.19999999999393223405),
0.33333333333333170500),
MATH_DIVIDE(fma(-u, vu2, fma(-u2, vu1, fma(-u1, vu1, v))), u));
}
q3 = vbyu < 0x1.d12ed0af1a27fp-27 ? q3 : q5;
q4 = vbyu < 0x1.d12ed0af1a27fp-27 ? q4 : q6;
q1 = vbyu > 0.0625 ? q1 : q3;
q2 = vbyu > 0.0625 ? q2 : q4;
// Tidy-up according to which quadrant the arguments lie in
double res1, res2, res3, res4;
q1 = swap_vu ? piby2_head - q1 : q1;
q2 = swap_vu ? piby2_tail - q2 : q2;
q1 = xneg ? pi_head - q1 : q1;
q2 = xneg ? pi_tail - q2 : q2;
q1 = q1 + q2;
res4 = yneg ? -q1 : q1;
res1 = yneg ? -three_piby4 : three_piby4;
res2 = yneg ? -piby4 : piby4;
res3 = xneg ? res1 : res2;
res3 = isinf(x2) & isinf(y2) ? res3 : res4;
res1 = yneg ? -pi : pi;
// abs(x)/abs(y) > 2^56 and x < 0
res3 = (diffexp < -56 && xneg) ? res1 : res3;
res4 = MATH_DIVIDE(y, x);
// x positive and dominant over y by a factor of 2^28
res3 = diffexp < -28 & xneg == 0 ? res4 : res3;
// abs(y)/abs(x) > 2^56
res4 = yneg ? -piby2 : piby2; // atan(y/x) is insignificant compared to piby2
res3 = diffexp > 56 ? res4 : res3;
res3 = x2 == 0.0 ? res4 : res3; // Zero x gives +- pi/2 depending on sign of y
res4 = xneg ? res1 : y2;
res3 = y2 == 0.0 ? res4 : res3; // Zero y gives +-0 for positive x and +-pi for negative x
res3 = isnan(y2) ? y2 : res3;
res3 = isnan(x2) ? x2 : res3;
return res3;
}
_CLC_BINARY_VECTORIZE(_CLC_OVERLOAD _CLC_DEF, double, atan2, double, double);
#endif