asinh.cl
9.48 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
/*
* Copyright (c) 2014,2015 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <clc/clc.h>
#include "math.h"
#include "ep_log.h"
#include "../clcmacro.h"
_CLC_OVERLOAD _CLC_DEF float asinh(float x) {
uint ux = as_uint(x);
uint ax = ux & EXSIGNBIT_SP32;
uint xsgn = ax ^ ux;
// |x| <= 2
float t = x * x;
float a = mad(t,
mad(t,
mad(t,
mad(t, -1.177198915954942694e-4f, -4.162727710583425360e-2f),
-5.063201055468483248e-1f),
-1.480204186473758321f),
-1.152965835871758072f);
float b = mad(t,
mad(t,
mad(t,
mad(t, 6.284381367285534560e-2f, 1.260024978680227945f),
6.582362487198468066f),
11.99423176003939087f),
6.917795026025976739f);
float q = MATH_DIVIDE(a, b);
float z1 = mad(x*t, q, x);
// |x| > 2
// Arguments greater than 1/sqrt(epsilon) in magnitude are
// approximated by asinh(x) = ln(2) + ln(abs(x)), with sign of x
// Arguments such that 4.0 <= abs(x) <= 1/sqrt(epsilon) are
// approximated by asinhf(x) = ln(abs(x) + sqrt(x*x+1))
// with the sign of x (see Abramowitz and Stegun 4.6.20)
float absx = as_float(ax);
int hi = ax > 0x46000000U;
float y = MATH_SQRT(absx * absx + 1.0f) + absx;
y = hi ? absx : y;
float r = log(y) + (hi ? 0x1.62e430p-1f : 0.0f);
float z2 = as_float(xsgn | as_uint(r));
float z = ax <= 0x40000000 ? z1 : z2;
z = ax < 0x39800000U | ax >= PINFBITPATT_SP32 ? x : z;
return z;
}
_CLC_UNARY_VECTORIZE(_CLC_OVERLOAD _CLC_DEF, float, asinh, float)
#ifdef cl_khr_fp64
#pragma OPENCL EXTENSION cl_khr_fp64 : enable
#define NA0 -0.12845379283524906084997e0
#define NA1 -0.21060688498409799700819e0
#define NA2 -0.10188951822578188309186e0
#define NA3 -0.13891765817243625541799e-1
#define NA4 -0.10324604871728082428024e-3
#define DA0 0.77072275701149440164511e0
#define DA1 0.16104665505597338100747e1
#define DA2 0.11296034614816689554875e1
#define DA3 0.30079351943799465092429e0
#define DA4 0.235224464765951442265117e-1
#define NB0 -0.12186605129448852495563e0
#define NB1 -0.19777978436593069928318e0
#define NB2 -0.94379072395062374824320e-1
#define NB3 -0.12620141363821680162036e-1
#define NB4 -0.903396794842691998748349e-4
#define DB0 0.73119630776696495279434e0
#define DB1 0.15157170446881616648338e1
#define DB2 0.10524909506981282725413e1
#define DB3 0.27663713103600182193817e0
#define DB4 0.21263492900663656707646e-1
#define NC0 -0.81210026327726247622500e-1
#define NC1 -0.12327355080668808750232e0
#define NC2 -0.53704925162784720405664e-1
#define NC3 -0.63106739048128554465450e-2
#define NC4 -0.35326896180771371053534e-4
#define DC0 0.48726015805581794231182e0
#define DC1 0.95890837357081041150936e0
#define DC2 0.62322223426940387752480e0
#define DC3 0.15028684818508081155141e0
#define DC4 0.10302171620320141529445e-1
#define ND0 -0.4638179204422665073e-1
#define ND1 -0.7162729496035415183e-1
#define ND2 -0.3247795155696775148e-1
#define ND3 -0.4225785421291932164e-2
#define ND4 -0.3808984717603160127e-4
#define ND5 0.8023464184964125826e-6
#define DD0 0.2782907534642231184e0
#define DD1 0.5549945896829343308e0
#define DD2 0.3700732511330698879e0
#define DD3 0.9395783438240780722e-1
#define DD4 0.7200057974217143034e-2
#define NE0 -0.121224194072430701e-4
#define NE1 -0.273145455834305218e-3
#define NE2 -0.152866982560895737e-2
#define NE3 -0.292231744584913045e-2
#define NE4 -0.174670900236060220e-2
#define NE5 -0.891754209521081538e-12
#define DE0 0.499426632161317606e-4
#define DE1 0.139591210395547054e-2
#define DE2 0.107665231109108629e-1
#define DE3 0.325809818749873406e-1
#define DE4 0.415222526655158363e-1
#define DE5 0.186315628774716763e-1
#define NF0 -0.195436610112717345e-4
#define NF1 -0.233315515113382977e-3
#define NF2 -0.645380957611087587e-3
#define NF3 -0.478948863920281252e-3
#define NF4 -0.805234112224091742e-12
#define NF5 0.246428598194879283e-13
#define DF0 0.822166621698664729e-4
#define DF1 0.135346265620413852e-2
#define DF2 0.602739242861830658e-2
#define DF3 0.972227795510722956e-2
#define DF4 0.510878800983771167e-2
#define NG0 -0.209689451648100728e-6
#define NG1 -0.219252358028695992e-5
#define NG2 -0.551641756327550939e-5
#define NG3 -0.382300259826830258e-5
#define NG4 -0.421182121910667329e-17
#define NG5 0.492236019998237684e-19
#define DG0 0.889178444424237735e-6
#define DG1 0.131152171690011152e-4
#define DG2 0.537955850185616847e-4
#define DG3 0.814966175170941864e-4
#define DG4 0.407786943832260752e-4
#define NH0 -0.178284193496441400e-6
#define NH1 -0.928734186616614974e-6
#define NH2 -0.923318925566302615e-6
#define NH3 -0.776417026702577552e-19
#define NH4 0.290845644810826014e-21
#define DH0 0.786694697277890964e-6
#define DH1 0.685435665630965488e-5
#define DH2 0.153780175436788329e-4
#define DH3 0.984873520613417917e-5
#define NI0 -0.538003743384069117e-10
#define NI1 -0.273698654196756169e-9
#define NI2 -0.268129826956403568e-9
#define NI3 -0.804163374628432850e-29
#define DI0 0.238083376363471960e-9
#define DI1 0.203579344621125934e-8
#define DI2 0.450836980450693209e-8
#define DI3 0.286005148753497156e-8
_CLC_OVERLOAD _CLC_DEF double asinh(double x) {
const double rteps = 0x1.6a09e667f3bcdp-27;
const double recrteps = 0x1.6a09e667f3bcdp+26;
// log2_lead and log2_tail sum to an extra-precise version of log(2)
const double log2_lead = 0x1.62e42ep-1;
const double log2_tail = 0x1.efa39ef35793cp-25;
ulong ux = as_ulong(x);
ulong ax = ux & ~SIGNBIT_DP64;
double absx = as_double(ax);
double t = x * x;
double pn, tn, pd, td;
// XXX we are betting here that we can evaluate 8 pairs of
// polys faster than we can grab 12 coefficients from a table
// This also uses fewer registers
// |x| >= 8
pn = fma(t, fma(t, fma(t, NI3, NI2), NI1), NI0);
pd = fma(t, fma(t, fma(t, DI3, DI2), DI1), DI0);
tn = fma(t, fma(t, fma(t, fma(t, NH4, NH3), NH2), NH1), NH0);
td = fma(t, fma(t, fma(t, DH3, DH2), DH1), DH0);
pn = absx < 8.0 ? tn : pn;
pd = absx < 8.0 ? td : pd;
tn = fma(t, fma(t, fma(t, fma(t, fma(t, NG5, NG4), NG3), NG2), NG1), NG0);
td = fma(t, fma(t, fma(t, fma(t, DG4, DG3), DG2), DG1), DG0);
pn = absx < 4.0 ? tn : pn;
pd = absx < 4.0 ? td : pd;
tn = fma(t, fma(t, fma(t, fma(t, fma(t, NF5, NF4), NF3), NF2), NF1), NF0);
td = fma(t, fma(t, fma(t, fma(t, DF4, DF3), DF2), DF1), DF0);
pn = absx < 2.0 ? tn : pn;
pd = absx < 2.0 ? td : pd;
tn = fma(t, fma(t, fma(t, fma(t, fma(t, NE5, NE4), NE3), NE2), NE1), NE0);
td = fma(t, fma(t, fma(t, fma(t, fma(t, DE5, DE4), DE3), DE2), DE1), DE0);
pn = absx < 1.5 ? tn : pn;
pd = absx < 1.5 ? td : pd;
tn = fma(t, fma(t, fma(t, fma(t, fma(t, ND5, ND4), ND3), ND2), ND1), ND0);
td = fma(t, fma(t, fma(t, fma(t, DD4, DD3), DD2), DD1), DD0);
pn = absx <= 1.0 ? tn : pn;
pd = absx <= 1.0 ? td : pd;
tn = fma(t, fma(t, fma(t, fma(t, NC4, NC3), NC2), NC1), NC0);
td = fma(t, fma(t, fma(t, fma(t, DC4, DC3), DC2), DC1), DC0);
pn = absx < 0.75 ? tn : pn;
pd = absx < 0.75 ? td : pd;
tn = fma(t, fma(t, fma(t, fma(t, NB4, NB3), NB2), NB1), NB0);
td = fma(t, fma(t, fma(t, fma(t, DB4, DB3), DB2), DB1), DB0);
pn = absx < 0.5 ? tn : pn;
pd = absx < 0.5 ? td : pd;
tn = fma(t, fma(t, fma(t, fma(t, NA4, NA3), NA2), NA1), NA0);
td = fma(t, fma(t, fma(t, fma(t, DA4, DA3), DA2), DA1), DA0);
pn = absx < 0.25 ? tn : pn;
pd = absx < 0.25 ? td : pd;
double pq = MATH_DIVIDE(pn, pd);
// |x| <= 1
double result1 = fma(absx*t, pq, absx);
// Other ranges
int xout = absx <= 32.0 | absx > recrteps;
double y = absx + sqrt(fma(absx, absx, 1.0));
y = xout ? absx : y;
double r1, r2;
int xexp;
__clc_ep_log(y, &xexp, &r1, &r2);
double dxexp = (double)(xexp + xout);
r1 = fma(dxexp, log2_lead, r1);
r2 = fma(dxexp, log2_tail, r2);
// 1 < x <= 32
double v2 = (pq + 0.25) / t;
double r = v2 + r1;
double s = ((r1 - r) + v2) + r2;
double v1 = r + s;
v2 = (r - v1) + s;
double result2 = v1 + v2;
// x > 32
double result3 = r1 + r2;
double ret = absx > 1.0 ? result2 : result1;
ret = absx > 32.0 ? result3 : ret;
ret = x < 0.0 ? -ret : ret;
// NaN, +-Inf, or x small enough that asinh(x) = x
ret = ax >= PINFBITPATT_DP64 | absx < rteps ? x : ret;
return ret;
}
_CLC_UNARY_VECTORIZE(_CLC_OVERLOAD _CLC_DEF, double, asinh, double)
#endif