ISO-Fortran-binding.cpp
21.1 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
#include "testing.h"
#include "../../include/flang/ISO_Fortran_binding.h"
#include "../../runtime/descriptor.h"
#include "llvm/Support/raw_ostream.h"
#include <type_traits>
using namespace Fortran::runtime;
using namespace Fortran::ISO;
// CFI_CDESC_T test helpers
template <int rank> class Test_CFI_CDESC_T {
public:
Test_CFI_CDESC_T() {}
~Test_CFI_CDESC_T() {}
void Check() {
// Test CFI_CDESC_T macro defined in section 18.5.4 of F2018 standard
// CFI_CDESC_T must give storage that is:
using type = decltype(dvStorage_);
// unqualified
MATCH(false, std::is_const<type>::value);
MATCH(false, std::is_volatile<type>::value);
// suitable in size
if (rank > 0) {
MATCH(sizeof(dvStorage_), Descriptor::SizeInBytes(rank_, false));
} else { // C++ implementation over-allocates for rank=0 by 24bytes.
MATCH(true, sizeof(dvStorage_) >= Descriptor::SizeInBytes(rank_, false));
}
// suitable in alignment
MATCH(0,
reinterpret_cast<std::uintptr_t>(&dvStorage_) &
(alignof(CFI_cdesc_t) - 1));
}
private:
static constexpr int rank_{rank};
CFI_CDESC_T(rank) dvStorage_;
};
template <int rank> static void TestCdescMacroForAllRanksSmallerThan() {
static_assert(rank > 0, "rank<0!");
Test_CFI_CDESC_T<rank> obj;
obj.Check();
TestCdescMacroForAllRanksSmallerThan<rank - 1>();
}
template <> void TestCdescMacroForAllRanksSmallerThan<0>() {
Test_CFI_CDESC_T<0> obj;
obj.Check();
}
// CFI_establish test helper
static void AddNoiseToCdesc(CFI_cdesc_t *dv, CFI_rank_t rank) {
static const int trap{0};
dv->rank = 16;
// This address is not supposed to be used. Any write attempt should trigger
// program termination
dv->base_addr = const_cast<int *>(&trap);
dv->elem_len = 320;
dv->type = CFI_type_struct;
dv->attribute = CFI_attribute_pointer;
for (int i{0}; i < rank; i++) {
dv->dim[i].extent = -42;
dv->dim[i].lower_bound = -42;
dv->dim[i].sm = -42;
}
}
#ifdef VERBOSE
static void DumpTestWorld(const void *bAddr, CFI_attribute_t attr,
CFI_type_t ty, std::size_t eLen, CFI_rank_t rank,
const CFI_index_t *eAddr) {
llvm::outs() << " base_addr: ";
llvm::outs().write_hex(reinterpret_cast<std::intptr_t>(bAddr))
<< " attribute: " << static_cast<int>(attr)
<< " type: " << static_cast<int>(ty) << " elem_len: " << eLen
<< " rank: " << static_cast<int>(rank) << " extent: ";
llvm::outs().write_hex(reinterpret_cast<std::intptr_t>(eAddr)) << '\n';
llvm::outs().flush();
}
#endif
static void check_CFI_establish(CFI_cdesc_t *dv, void *base_addr,
CFI_attribute_t attribute, CFI_type_t type, std::size_t elem_len,
CFI_rank_t rank, const CFI_index_t extents[]) {
#ifdef VERBOSE
DumpTestWorld(base_addr, attribute, type, elem_len, rank, extent);
#endif
// CFI_establish reqs from F2018 section 18.5.5
int retCode{
CFI_establish(dv, base_addr, attribute, type, elem_len, rank, extents)};
Descriptor *res{reinterpret_cast<Descriptor *>(dv)};
if (retCode == CFI_SUCCESS) {
res->Check();
MATCH((attribute == CFI_attribute_pointer), res->IsPointer());
MATCH((attribute == CFI_attribute_allocatable), res->IsAllocatable());
MATCH(rank, res->rank());
MATCH(reinterpret_cast<std::intptr_t>(dv->base_addr),
reinterpret_cast<std::intptr_t>(base_addr));
MATCH(true, dv->version == CFI_VERSION);
if (base_addr != nullptr) {
MATCH(true, res->IsContiguous());
for (int i{0}; i < rank; ++i) {
MATCH(extents[i], res->GetDimension(i).Extent());
}
}
if (attribute == CFI_attribute_allocatable) {
MATCH(res->IsAllocated(), false);
}
if (attribute == CFI_attribute_pointer) {
if (base_addr != nullptr) {
for (int i{0}; i < rank; ++i) {
MATCH(0, res->GetDimension(i).LowerBound());
}
}
}
if (type == CFI_type_struct || type == CFI_type_char ||
type == CFI_type_other) {
MATCH(elem_len, res->ElementBytes());
}
}
// Checking failure/success according to combination of args forbidden by the
// standard:
int numErr{0};
int expectedRetCode{CFI_SUCCESS};
if (base_addr != nullptr && attribute == CFI_attribute_allocatable) {
++numErr;
expectedRetCode = CFI_ERROR_BASE_ADDR_NOT_NULL;
}
if (rank > CFI_MAX_RANK) {
++numErr;
expectedRetCode = CFI_INVALID_RANK;
}
if (type < 0 || type > CFI_type_struct) {
++numErr;
expectedRetCode = CFI_INVALID_TYPE;
}
if ((type == CFI_type_struct || type == CFI_type_char ||
type == CFI_type_other) &&
elem_len <= 0) {
++numErr;
expectedRetCode = CFI_INVALID_ELEM_LEN;
}
if (rank > 0 && base_addr != nullptr && extents == nullptr) {
++numErr;
expectedRetCode = CFI_INVALID_EXTENT;
}
if (numErr > 1) {
MATCH(true, retCode != CFI_SUCCESS);
} else {
MATCH(retCode, expectedRetCode);
}
}
static void run_CFI_establish_tests() {
// Testing CFI_establish defined in section 18.5.5
CFI_index_t extents[CFI_MAX_RANK];
for (int i{0}; i < CFI_MAX_RANK; ++i) {
extents[i] = i + 66;
}
CFI_CDESC_T(CFI_MAX_RANK) dv_storage;
CFI_cdesc_t *dv{&dv_storage};
char base;
void *dummyAddr{&base};
// Define test space
CFI_attribute_t attrCases[]{
CFI_attribute_pointer, CFI_attribute_allocatable, CFI_attribute_other};
CFI_type_t typeCases[]{CFI_type_int, CFI_type_struct, CFI_type_double,
CFI_type_char, CFI_type_other, CFI_type_struct + 1};
CFI_index_t *extentCases[]{extents, nullptr};
void *baseAddrCases[]{dummyAddr, nullptr};
CFI_rank_t rankCases[]{0, 1, CFI_MAX_RANK, CFI_MAX_RANK + 1};
std::size_t lenCases[]{0, 42};
for (CFI_attribute_t attribute : attrCases) {
for (void *base_addr : baseAddrCases) {
for (CFI_index_t *extent : extentCases) {
for (CFI_rank_t rank : rankCases) {
for (CFI_type_t type : typeCases) {
for (size_t elem_len : lenCases) {
AddNoiseToCdesc(dv, CFI_MAX_RANK);
check_CFI_establish(
dv, base_addr, attribute, type, elem_len, rank, extent);
}
}
}
}
}
}
// If base_addr is null, extents shall be ignored even if rank !=0
const int rank3d{3};
CFI_CDESC_T(rank3d) dv3darrayStorage;
CFI_cdesc_t *dv_3darray{&dv3darrayStorage};
AddNoiseToCdesc(dv_3darray, rank3d); // => dv_3darray->dim[2].extent = -42
check_CFI_establish(dv_3darray, nullptr, CFI_attribute_other, CFI_type_int, 4,
rank3d, extents);
MATCH(false,
dv_3darray->dim[2].extent == 2 + 66); // extents was read
}
static void check_CFI_address(
const CFI_cdesc_t *dv, const CFI_index_t subscripts[]) {
// 18.5.5.2
void *addr{CFI_address(dv, subscripts)};
const Descriptor *desc{reinterpret_cast<const Descriptor *>(dv)};
void *addrCheck{desc->Element<void>(subscripts)};
MATCH(true, addr == addrCheck);
}
// Helper function to set lower bound of descriptor
static void EstablishLowerBounds(CFI_cdesc_t *dv, CFI_index_t *sub) {
for (int i{0}; i < dv->rank; ++i) {
dv->dim[i].lower_bound = sub[i];
}
}
// Helper to get size without making internal compiler functions accessible
static std::size_t ByteSize(CFI_type_t ty, std::size_t size) {
CFI_CDESC_T(0) storage;
CFI_cdesc_t *dv{&storage};
int retCode{
CFI_establish(dv, nullptr, CFI_attribute_other, ty, size, 0, nullptr)};
return retCode == CFI_SUCCESS ? dv->elem_len : 0;
}
static void run_CFI_address_tests() {
// Test CFI_address defined in 18.5.5.2
// Create test world
CFI_index_t extents[CFI_MAX_RANK];
CFI_CDESC_T(CFI_MAX_RANK) dv_storage;
CFI_cdesc_t *dv{&dv_storage};
char base;
void *dummyAddr{&base};
CFI_attribute_t attrCases[]{
CFI_attribute_pointer, CFI_attribute_allocatable, CFI_attribute_other};
CFI_type_t validTypeCases[]{
CFI_type_int, CFI_type_struct, CFI_type_double, CFI_type_char};
CFI_index_t subscripts[CFI_MAX_RANK];
CFI_index_t negativeLowerBounds[CFI_MAX_RANK];
CFI_index_t zeroLowerBounds[CFI_MAX_RANK];
CFI_index_t positiveLowerBounds[CFI_MAX_RANK];
CFI_index_t *lowerBoundCases[]{
negativeLowerBounds, zeroLowerBounds, positiveLowerBounds};
for (int i{0}; i < CFI_MAX_RANK; ++i) {
negativeLowerBounds[i] = -1;
zeroLowerBounds[i] = 0;
positiveLowerBounds[i] = 1;
extents[i] = i + 2;
subscripts[i] = i + 1;
}
// test for scalar
for (CFI_attribute_t attribute : attrCases) {
for (CFI_type_t type : validTypeCases) {
CFI_establish(dv, dummyAddr, attribute, type, 42, 0, nullptr);
check_CFI_address(dv, nullptr);
}
}
// test for arrays
CFI_establish(dv, dummyAddr, CFI_attribute_other, CFI_type_int, 0,
CFI_MAX_RANK, extents);
for (CFI_index_t *lowerBounds : lowerBoundCases) {
EstablishLowerBounds(dv, lowerBounds);
for (CFI_type_t type : validTypeCases) {
for (bool contiguous : {true, false}) {
std::size_t size{ByteSize(type, 12)};
dv->elem_len = size;
for (int i{0}; i < dv->rank; ++i) {
dv->dim[i].sm = size + (contiguous ? 0 : dv->elem_len);
size = dv->dim[i].sm * dv->dim[i].extent;
}
for (CFI_attribute_t attribute : attrCases) {
dv->attribute = attribute;
check_CFI_address(dv, subscripts);
}
}
}
}
// Test on an assumed size array.
CFI_establish(
dv, dummyAddr, CFI_attribute_other, CFI_type_int, 0, 3, extents);
dv->dim[2].extent = -1;
check_CFI_address(dv, subscripts);
}
static void check_CFI_allocate(CFI_cdesc_t *dv,
const CFI_index_t lower_bounds[], const CFI_index_t upper_bounds[],
std::size_t elem_len) {
// 18.5.5.3
// Backup descriptor data for future checks
const CFI_rank_t rank{dv->rank};
const std::size_t desc_elem_len{dv->elem_len};
const CFI_attribute_t attribute{dv->attribute};
const CFI_type_t type{dv->type};
const void *base_addr{dv->base_addr};
const int version{dv->version};
#ifdef VERBOSE
DumpTestWorld(base_addr, attribute, type, elem_len, rank, nullptr);
#endif
int retCode{CFI_allocate(dv, lower_bounds, upper_bounds, elem_len)};
Descriptor *desc = reinterpret_cast<Descriptor *>(dv);
if (retCode == CFI_SUCCESS) {
// check res properties from 18.5.5.3 par 3
MATCH(true, dv->base_addr != nullptr);
for (int i{0}; i < rank; ++i) {
MATCH(lower_bounds[i], dv->dim[i].lower_bound);
MATCH(upper_bounds[i], dv->dim[i].extent + dv->dim[i].lower_bound - 1);
}
if (type == CFI_type_char) {
MATCH(elem_len, dv->elem_len);
} else {
MATCH(true, desc_elem_len == dv->elem_len);
}
MATCH(true, desc->IsContiguous());
} else {
MATCH(true, base_addr == dv->base_addr);
}
// Below dv members shall not be altered by CFI_allocate regardless of
// success/failure
MATCH(true, attribute == dv->attribute);
MATCH(true, rank == dv->rank);
MATCH(true, type == dv->type);
MATCH(true, version == dv->version);
// Success/failure according to standard
int numErr{0};
int expectedRetCode{CFI_SUCCESS};
if (rank > CFI_MAX_RANK) {
++numErr;
expectedRetCode = CFI_INVALID_RANK;
}
if (type < 0 || type > CFI_type_struct) {
++numErr;
expectedRetCode = CFI_INVALID_TYPE;
}
if (base_addr != nullptr && attribute == CFI_attribute_allocatable) {
// This is less restrictive than 18.5.5.3 arg req for which pointers arg
// shall be unassociated. However, this match ALLOCATE behavior
// (9.7.3/9.7.4)
++numErr;
expectedRetCode = CFI_ERROR_BASE_ADDR_NOT_NULL;
}
if (attribute != CFI_attribute_pointer &&
attribute != CFI_attribute_allocatable) {
++numErr;
expectedRetCode = CFI_INVALID_ATTRIBUTE;
}
if (rank > 0 && (lower_bounds == nullptr || upper_bounds == nullptr)) {
++numErr;
expectedRetCode = CFI_INVALID_EXTENT;
}
// Memory allocation failures are unpredictable in this test.
if (numErr == 0 && retCode != CFI_SUCCESS) {
MATCH(true, retCode == CFI_ERROR_MEM_ALLOCATION);
} else if (numErr > 1) {
MATCH(true, retCode != CFI_SUCCESS);
} else {
MATCH(expectedRetCode, retCode);
}
// clean-up
if (retCode == CFI_SUCCESS) {
CFI_deallocate(dv);
}
}
static void run_CFI_allocate_tests() {
// 18.5.5.3
// create test world
CFI_CDESC_T(CFI_MAX_RANK) dv_storage;
CFI_cdesc_t *dv{&dv_storage};
char base;
void *dummyAddr{&base};
CFI_attribute_t attrCases[]{
CFI_attribute_pointer, CFI_attribute_allocatable, CFI_attribute_other};
CFI_type_t typeCases[]{CFI_type_int, CFI_type_struct, CFI_type_double,
CFI_type_char, CFI_type_other, CFI_type_struct + 1};
void *baseAddrCases[]{dummyAddr, nullptr};
CFI_rank_t rankCases[]{0, 1, CFI_MAX_RANK, CFI_MAX_RANK + 1};
std::size_t lenCases[]{0, 42};
CFI_index_t lb1[CFI_MAX_RANK];
CFI_index_t ub1[CFI_MAX_RANK];
for (int i{0}; i < CFI_MAX_RANK; ++i) {
lb1[i] = -1;
ub1[i] = 0;
}
check_CFI_establish(
dv, nullptr, CFI_attribute_other, CFI_type_int, 0, 0, nullptr);
for (CFI_type_t type : typeCases) {
std::size_t ty_len{ByteSize(type, 12)};
for (CFI_attribute_t attribute : attrCases) {
for (void *base_addr : baseAddrCases) {
for (CFI_rank_t rank : rankCases) {
for (size_t elem_len : lenCases) {
dv->base_addr = base_addr;
dv->rank = rank;
dv->attribute = attribute;
dv->type = type;
dv->elem_len = ty_len;
check_CFI_allocate(dv, lb1, ub1, elem_len);
}
}
}
}
}
}
static void run_CFI_section_tests() {
// simple tests
bool testPreConditions{true};
constexpr CFI_index_t m{5}, n{6}, o{7};
constexpr CFI_rank_t rank{3};
long long array[o][n][m]; // Fortran A(m,n,o)
long long counter{1};
for (CFI_index_t k{0}; k < o; ++k) {
for (CFI_index_t j{0}; j < n; ++j) {
for (CFI_index_t i{0}; i < m; ++i) {
array[k][j][i] = counter++; // Fortran A(i,j,k)
}
}
}
CFI_CDESC_T(rank) sourceStorage;
CFI_cdesc_t *source{&sourceStorage};
CFI_index_t extent[rank] = {m, n, o};
int retCode{CFI_establish(source, &array, CFI_attribute_other,
CFI_type_long_long, 0, rank, extent)};
testPreConditions &= (retCode == CFI_SUCCESS);
CFI_index_t lb[rank] = {2, 5, 4};
CFI_index_t ub[rank] = {4, 5, 6};
CFI_index_t strides[rank] = {2, 0, 2};
constexpr CFI_rank_t resultRank{rank - 1};
CFI_CDESC_T(resultRank) resultStorage;
CFI_cdesc_t *result{&resultStorage};
retCode = CFI_establish(result, nullptr, CFI_attribute_other,
CFI_type_long_long, 0, resultRank, nullptr);
testPreConditions &= (retCode == CFI_SUCCESS);
if (!testPreConditions) {
MATCH(true, testPreConditions);
return;
}
retCode = CFI_section(
result, source, lb, ub, strides); // Fortran B = A(2:4:2, 5:5:0, 4:6:2)
MATCH(true, retCode == CFI_SUCCESS);
const CFI_index_t lbs0{source->dim[0].lower_bound};
const CFI_index_t lbs1{source->dim[1].lower_bound};
const CFI_index_t lbs2{source->dim[2].lower_bound};
CFI_index_t resJ{result->dim[1].lower_bound};
for (CFI_index_t k{lb[2]}; k <= ub[2]; k += strides[2]) {
for (CFI_index_t j{lb[1]}; j <= ub[1]; j += strides[1] ? strides[1] : 1) {
CFI_index_t resI{result->dim[0].lower_bound};
for (CFI_index_t i{lb[0]}; i <= ub[0]; i += strides[0]) {
// check A(i,j,k) == B(resI, resJ) == array[k-1][j-1][i-1]
const CFI_index_t resSubcripts[]{resI, resJ};
const CFI_index_t srcSubcripts[]{i, j, k};
MATCH(true,
CFI_address(source, srcSubcripts) ==
CFI_address(result, resSubcripts));
MATCH(true,
CFI_address(source, srcSubcripts) ==
&array[k - lbs2][j - lbs1][i - lbs0]);
++resI;
}
}
++resJ;
}
strides[0] = -1;
lb[0] = 4;
ub[0] = 2;
retCode = CFI_section(
result, source, lb, ub, strides); // Fortran B = A(4:2:-1, 5:5:0, 4:6:2)
MATCH(true, retCode == CFI_SUCCESS);
resJ = result->dim[1].lower_bound;
for (CFI_index_t k{lb[2]}; k <= ub[2]; k += strides[2]) {
for (CFI_index_t j{lb[1]}; j <= ub[1]; j += 1) {
CFI_index_t resI{result->dim[1].lower_bound + result->dim[0].extent - 1};
for (CFI_index_t i{2}; i <= 4; ++i) {
// check A(i,j,k) == B(resI, resJ) == array[k-1][j-1][i-1]
const CFI_index_t resSubcripts[]{resI, resJ};
const CFI_index_t srcSubcripts[]{i, j, k};
MATCH(true,
CFI_address(source, srcSubcripts) ==
CFI_address(result, resSubcripts));
MATCH(true,
CFI_address(source, srcSubcripts) ==
&array[k - lbs2][j - lbs1][i - lbs0]);
--resI;
}
}
++resJ;
}
}
static void run_CFI_select_part_tests() {
constexpr std::size_t name_len{5};
typedef struct {
double distance;
int stars;
char name[name_len];
} Galaxy;
const CFI_rank_t rank{2};
constexpr CFI_index_t universeSize[]{2, 3};
Galaxy universe[universeSize[1]][universeSize[0]];
for (int i{0}; i < universeSize[1]; ++i) {
for (int j{0}; j < universeSize[0]; ++j) {
// Initializing Fortran var universe(j,i)
universe[i][j].distance = j + i * 32;
universe[i][j].stars = j * 2 + i * 64;
universe[i][j].name[2] = static_cast<char>(j);
universe[i][j].name[3] = static_cast<char>(i);
}
}
CFI_CDESC_T(rank) resStorage, srcStorage;
CFI_cdesc_t *result{&resStorage};
CFI_cdesc_t *source{&srcStorage};
bool testPreConditions{true};
int retCode{CFI_establish(result, nullptr, CFI_attribute_other, CFI_type_int,
sizeof(int), rank, nullptr)};
testPreConditions &= (retCode == CFI_SUCCESS);
retCode = CFI_establish(source, &universe, CFI_attribute_other,
CFI_type_struct, sizeof(Galaxy), rank, universeSize);
testPreConditions &= (retCode == CFI_SUCCESS);
if (!testPreConditions) {
MATCH(true, testPreConditions);
return;
}
std::size_t displacement{offsetof(Galaxy, stars)};
std::size_t elem_len{0}; // ignored
retCode = CFI_select_part(result, source, displacement, elem_len);
MATCH(CFI_SUCCESS, retCode);
bool baseAddrShiftedOk{
static_cast<char *>(source->base_addr) + displacement ==
result->base_addr};
MATCH(true, baseAddrShiftedOk);
if (!baseAddrShiftedOk) {
return;
}
MATCH(sizeof(int), result->elem_len);
for (CFI_index_t j{0}; j < universeSize[1]; ++j) {
for (CFI_index_t i{0}; i < universeSize[0]; ++i) {
CFI_index_t subscripts[]{
result->dim[0].lower_bound + i, result->dim[1].lower_bound + j};
MATCH(
i * 2 + j * 64, *static_cast<int *>(CFI_address(result, subscripts)));
}
}
// Test for Fortran character type
retCode = CFI_establish(
result, nullptr, CFI_attribute_other, CFI_type_char, 2, rank, nullptr);
testPreConditions &= (retCode == CFI_SUCCESS);
if (!testPreConditions) {
MATCH(true, testPreConditions);
return;
}
displacement = offsetof(Galaxy, name) + 2;
elem_len = 2; // not ignored this time
retCode = CFI_select_part(result, source, displacement, elem_len);
MATCH(CFI_SUCCESS, retCode);
baseAddrShiftedOk = static_cast<char *>(source->base_addr) + displacement ==
result->base_addr;
MATCH(true, baseAddrShiftedOk);
if (!baseAddrShiftedOk) {
return;
}
MATCH(elem_len, result->elem_len);
for (CFI_index_t j{0}; j < universeSize[1]; ++j) {
for (CFI_index_t i{0}; i < universeSize[0]; ++i) {
CFI_index_t subscripts[]{
result->dim[0].lower_bound + i, result->dim[1].lower_bound + j};
MATCH(static_cast<char>(i),
static_cast<char *>(CFI_address(result, subscripts))[0]);
MATCH(static_cast<char>(j),
static_cast<char *>(CFI_address(result, subscripts))[1]);
}
}
}
static void run_CFI_setpointer_tests() {
constexpr CFI_rank_t rank{3};
CFI_CDESC_T(rank) resStorage, srcStorage;
CFI_cdesc_t *result{&resStorage};
CFI_cdesc_t *source{&srcStorage};
CFI_index_t lower_bounds[rank];
CFI_index_t extents[rank];
for (int i{0}; i < rank; ++i) {
lower_bounds[i] = i;
extents[i] = 2;
}
char target;
char *dummyBaseAddress{&target};
bool testPreConditions{true};
CFI_type_t type{CFI_type_int};
std::size_t elem_len{ByteSize(type, 42)};
int retCode{CFI_establish(
result, nullptr, CFI_attribute_pointer, type, elem_len, rank, nullptr)};
testPreConditions &= (retCode == CFI_SUCCESS);
retCode = CFI_establish(source, dummyBaseAddress, CFI_attribute_other, type,
elem_len, rank, extents);
testPreConditions &= (retCode == CFI_SUCCESS);
if (!testPreConditions) {
MATCH(true, testPreConditions);
return;
}
retCode = CFI_setpointer(result, source, lower_bounds);
MATCH(CFI_SUCCESS, retCode);
// The following members must be invariant
MATCH(rank, result->rank);
MATCH(elem_len, result->elem_len);
MATCH(type, result->type);
// check pointer association
MATCH(true, result->base_addr == source->base_addr);
for (int j{0}; j < rank; ++j) {
MATCH(source->dim[j].extent, result->dim[j].extent);
MATCH(source->dim[j].sm, result->dim[j].sm);
MATCH(lower_bounds[j], result->dim[j].lower_bound);
}
}
int main() {
TestCdescMacroForAllRanksSmallerThan<CFI_MAX_RANK>();
run_CFI_establish_tests();
run_CFI_address_tests();
run_CFI_allocate_tests();
// TODO: test CFI_deallocate
// TODO: test CFI_is_contiguous
run_CFI_section_tests();
run_CFI_select_part_tests();
run_CFI_setpointer_tests();
return testing::Complete();
}