data-to-inits.cpp 21.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
//===-- lib/Semantics/data-to-inits.cpp -----------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

// DATA statement object/value checking and conversion to static
// initializers
// - Applies specific checks to each scalar element initialization with a
//   constant value or pointer target with class DataInitializationCompiler;
// - Collects the elemental initializations for each symbol and converts them
//   into a single init() expression with member function
//   DataChecker::ConstructInitializer().

#include "data-to-inits.h"
#include "pointer-assignment.h"
#include "flang/Evaluate/fold-designator.h"
#include "flang/Semantics/tools.h"

namespace Fortran::semantics {

// Steps through a list of values in a DATA statement set; implements
// repetition.
class ValueListIterator {
public:
  explicit ValueListIterator(const parser::DataStmtSet &set)
      : end_{std::get<std::list<parser::DataStmtValue>>(set.t).end()},
        at_{std::get<std::list<parser::DataStmtValue>>(set.t).begin()} {
    SetRepetitionCount();
  }
  bool hasFatalError() const { return hasFatalError_; }
  bool IsAtEnd() const { return at_ == end_; }
  const SomeExpr *operator*() const { return GetExpr(GetConstant()); }
  parser::CharBlock LocateSource() const { return GetConstant().source; }
  ValueListIterator &operator++() {
    if (repetitionsRemaining_ > 0) {
      --repetitionsRemaining_;
    } else if (at_ != end_) {
      ++at_;
      SetRepetitionCount();
    }
    return *this;
  }

private:
  using listIterator = std::list<parser::DataStmtValue>::const_iterator;
  void SetRepetitionCount();
  const parser::DataStmtConstant &GetConstant() const {
    return std::get<parser::DataStmtConstant>(at_->t);
  }

  listIterator end_;
  listIterator at_;
  ConstantSubscript repetitionsRemaining_{0};
  bool hasFatalError_{false};
};

void ValueListIterator::SetRepetitionCount() {
  for (repetitionsRemaining_ = 1; at_ != end_; ++at_) {
    if (at_->repetitions < 0) {
      hasFatalError_ = true;
    }
    if (at_->repetitions > 0) {
      repetitionsRemaining_ = at_->repetitions - 1;
      return;
    }
  }
  repetitionsRemaining_ = 0;
}

// Collects all of the elemental initializations from DATA statements
// into a single image for each symbol that appears in any DATA.
// Expands the implied DO loops and array references.
// Applies checks that validate each distinct elemental initialization
// of the variables in a data-stmt-set, as well as those that apply
// to the corresponding values being use to initialize each element.
class DataInitializationCompiler {
public:
  DataInitializationCompiler(DataInitializations &inits,
      evaluate::ExpressionAnalyzer &a, const parser::DataStmtSet &set)
      : inits_{inits}, exprAnalyzer_{a}, values_{set} {}
  const DataInitializations &inits() const { return inits_; }
  bool HasSurplusValues() const { return !values_.IsAtEnd(); }
  bool Scan(const parser::DataStmtObject &);

private:
  bool Scan(const parser::Variable &);
  bool Scan(const parser::Designator &);
  bool Scan(const parser::DataImpliedDo &);
  bool Scan(const parser::DataIDoObject &);

  // Initializes all elements of a designator, which can be an array or section.
  bool InitDesignator(const SomeExpr &);
  // Initializes a single object.
  bool InitElement(const evaluate::OffsetSymbol &, const SomeExpr &designator);
  // If the returned flag is true, emit a warning about CHARACTER misusage.
  std::optional<std::pair<SomeExpr, bool>> ConvertElement(
      const SomeExpr &, const evaluate::DynamicType &);

  DataInitializations &inits_;
  evaluate::ExpressionAnalyzer &exprAnalyzer_;
  ValueListIterator values_;
};

bool DataInitializationCompiler::Scan(const parser::DataStmtObject &object) {
  return std::visit(
      common::visitors{
          [&](const common::Indirection<parser::Variable> &var) {
            return Scan(var.value());
          },
          [&](const parser::DataImpliedDo &ido) { return Scan(ido); },
      },
      object.u);
}

bool DataInitializationCompiler::Scan(const parser::Variable &var) {
  if (const auto *expr{GetExpr(var)}) {
    exprAnalyzer_.GetFoldingContext().messages().SetLocation(var.GetSource());
    if (InitDesignator(*expr)) {
      return true;
    }
  }
  return false;
}

bool DataInitializationCompiler::Scan(const parser::Designator &designator) {
  if (auto expr{exprAnalyzer_.Analyze(designator)}) {
    exprAnalyzer_.GetFoldingContext().messages().SetLocation(
        parser::FindSourceLocation(designator));
    if (InitDesignator(*expr)) {
      return true;
    }
  }
  return false;
}

bool DataInitializationCompiler::Scan(const parser::DataImpliedDo &ido) {
  const auto &bounds{std::get<parser::DataImpliedDo::Bounds>(ido.t)};
  auto name{bounds.name.thing.thing};
  const auto *lowerExpr{GetExpr(bounds.lower.thing.thing)};
  const auto *upperExpr{GetExpr(bounds.upper.thing.thing)};
  const auto *stepExpr{
      bounds.step ? GetExpr(bounds.step->thing.thing) : nullptr};
  if (lowerExpr && upperExpr) {
    auto lower{ToInt64(*lowerExpr)};
    auto upper{ToInt64(*upperExpr)};
    auto step{stepExpr ? ToInt64(*stepExpr) : std::nullopt};
    auto stepVal{step.value_or(1)};
    if (stepVal == 0) {
      exprAnalyzer_.Say(name.source,
          "DATA statement implied DO loop has a step value of zero"_err_en_US);
    } else if (lower && upper) {
      int kind{evaluate::ResultType<evaluate::ImpliedDoIndex>::kind};
      if (const auto dynamicType{evaluate::DynamicType::From(*name.symbol)}) {
        if (dynamicType->category() == TypeCategory::Integer) {
          kind = dynamicType->kind();
        }
      }
      if (exprAnalyzer_.AddImpliedDo(name.source, kind)) {
        auto &value{exprAnalyzer_.GetFoldingContext().StartImpliedDo(
            name.source, *lower)};
        bool result{true};
        for (auto n{(*upper - value + stepVal) / stepVal}; n > 0;
             --n, value += stepVal) {
          for (const auto &object :
              std::get<std::list<parser::DataIDoObject>>(ido.t)) {
            if (!Scan(object)) {
              result = false;
              break;
            }
          }
        }
        exprAnalyzer_.GetFoldingContext().EndImpliedDo(name.source);
        exprAnalyzer_.RemoveImpliedDo(name.source);
        return result;
      }
    }
  }
  return false;
}

bool DataInitializationCompiler::Scan(const parser::DataIDoObject &object) {
  return std::visit(
      common::visitors{
          [&](const parser::Scalar<common::Indirection<parser::Designator>>
                  &var) { return Scan(var.thing.value()); },
          [&](const common::Indirection<parser::DataImpliedDo> &ido) {
            return Scan(ido.value());
          },
      },
      object.u);
}

bool DataInitializationCompiler::InitDesignator(const SomeExpr &designator) {
  evaluate::FoldingContext &context{exprAnalyzer_.GetFoldingContext()};
  evaluate::DesignatorFolder folder{context};
  while (auto offsetSymbol{folder.FoldDesignator(designator)}) {
    if (folder.isOutOfRange()) {
      if (auto bad{evaluate::OffsetToDesignator(context, *offsetSymbol)}) {
        exprAnalyzer_.context().Say(
            "DATA statement designator '%s' is out of range"_err_en_US,
            bad->AsFortran());
      } else {
        exprAnalyzer_.context().Say(
            "DATA statement designator '%s' is out of range"_err_en_US,
            designator.AsFortran());
      }
      return false;
    } else if (!InitElement(*offsetSymbol, designator)) {
      return false;
    } else {
      ++values_;
    }
  }
  return folder.isEmpty();
}

std::optional<std::pair<SomeExpr, bool>>
DataInitializationCompiler::ConvertElement(
    const SomeExpr &expr, const evaluate::DynamicType &type) {
  if (auto converted{evaluate::ConvertToType(type, SomeExpr{expr})}) {
    return {std::make_pair(std::move(*converted), false)};
  }
  if (std::optional<std::string> chValue{evaluate::GetScalarConstantValue<
          evaluate::Type<TypeCategory::Character, 1>>(expr)}) {
    // Allow DATA initialization with Hollerith and kind=1 CHARACTER like
    // (most) other Fortran compilers do.  Pad on the right with spaces
    // when short, truncate the right if long.
    // TODO: big-endian targets
    std::size_t bytes{static_cast<std::size_t>(evaluate::ToInt64(
        type.MeasureSizeInBytes(&exprAnalyzer_.GetFoldingContext()))
                                                   .value())};
    evaluate::BOZLiteralConstant bits{0};
    for (std::size_t j{0}; j < bytes; ++j) {
      char ch{j >= chValue->size() ? ' ' : chValue->at(j)};
      evaluate::BOZLiteralConstant chBOZ{static_cast<unsigned char>(ch)};
      bits = bits.IOR(chBOZ.SHIFTL(8 * j));
    }
    if (auto converted{evaluate::ConvertToType(type, SomeExpr{bits})}) {
      return {std::make_pair(std::move(*converted), true)};
    }
  }
  return std::nullopt;
}

bool DataInitializationCompiler::InitElement(
    const evaluate::OffsetSymbol &offsetSymbol, const SomeExpr &designator) {
  const Symbol &symbol{offsetSymbol.symbol()};
  const Symbol *lastSymbol{GetLastSymbol(designator)};
  bool isPointer{lastSymbol && IsPointer(*lastSymbol)};
  bool isProcPointer{lastSymbol && IsProcedurePointer(*lastSymbol)};
  evaluate::FoldingContext &context{exprAnalyzer_.GetFoldingContext()};

  const auto DescribeElement{[&]() {
    if (auto badDesignator{
            evaluate::OffsetToDesignator(context, offsetSymbol)}) {
      return badDesignator->AsFortran();
    } else {
      // Error recovery
      std::string buf;
      llvm::raw_string_ostream ss{buf};
      ss << offsetSymbol.symbol().name() << " offset " << offsetSymbol.offset()
         << " bytes for " << offsetSymbol.size() << " bytes";
      return ss.str();
    }
  }};
  const auto GetImage{[&]() -> evaluate::InitialImage & {
    auto &symbolInit{inits_.emplace(&symbol, symbol.size()).first->second};
    symbolInit.inits.emplace_back(offsetSymbol.offset(), offsetSymbol.size());
    return symbolInit.image;
  }};
  const auto OutOfRangeError{[&]() {
    evaluate::AttachDeclaration(
        exprAnalyzer_.context().Say(
            "DATA statement designator '%s' is out of range for its variable '%s'"_err_en_US,
            DescribeElement(), symbol.name()),
        symbol);
  }};

  if (values_.hasFatalError()) {
    return false;
  } else if (values_.IsAtEnd()) {
    exprAnalyzer_.context().Say(
        "DATA statement set has no value for '%s'"_err_en_US,
        DescribeElement());
    return false;
  } else if (static_cast<std::size_t>(
                 offsetSymbol.offset() + offsetSymbol.size()) > symbol.size()) {
    OutOfRangeError();
    return false;
  }

  const SomeExpr *expr{*values_};
  if (!expr) {
    CHECK(exprAnalyzer_.context().AnyFatalError());
  } else if (isPointer) {
    if (static_cast<std::size_t>(offsetSymbol.offset() + offsetSymbol.size()) >
        symbol.size()) {
      OutOfRangeError();
    } else if (evaluate::IsNullPointer(*expr)) {
      // nothing to do; rely on zero initialization
      return true;
    } else if (evaluate::IsProcedure(*expr)) {
      if (isProcPointer) {
        if (CheckPointerAssignment(context, designator, *expr)) {
          GetImage().AddPointer(offsetSymbol.offset(), *expr);
          return true;
        }
      } else {
        exprAnalyzer_.Say(values_.LocateSource(),
            "Procedure '%s' may not be used to initialize '%s', which is not a procedure pointer"_err_en_US,
            expr->AsFortran(), DescribeElement());
      }
    } else if (isProcPointer) {
      exprAnalyzer_.Say(values_.LocateSource(),
          "Data object '%s' may not be used to initialize '%s', which is a procedure pointer"_err_en_US,
          expr->AsFortran(), DescribeElement());
    } else if (CheckInitialTarget(context, designator, *expr)) {
      GetImage().AddPointer(offsetSymbol.offset(), *expr);
      return true;
    }
  } else if (evaluate::IsNullPointer(*expr)) {
    exprAnalyzer_.Say(values_.LocateSource(),
        "Initializer for '%s' must not be a pointer"_err_en_US,
        DescribeElement());
  } else if (evaluate::IsProcedure(*expr)) {
    exprAnalyzer_.Say(values_.LocateSource(),
        "Initializer for '%s' must not be a procedure"_err_en_US,
        DescribeElement());
  } else if (auto designatorType{designator.GetType()}) {
    if (auto converted{ConvertElement(*expr, *designatorType)}) {
      // value non-pointer initialization
      if (std::holds_alternative<evaluate::BOZLiteralConstant>(expr->u) &&
          designatorType->category() != TypeCategory::Integer) { // 8.6.7(11)
        exprAnalyzer_.Say(values_.LocateSource(),
            "BOZ literal should appear in a DATA statement only as a value for an integer object, but '%s' is '%s'"_en_US,
            DescribeElement(), designatorType->AsFortran());
      } else if (converted->second) {
        exprAnalyzer_.context().Say(
            "DATA statement value initializes '%s' of type '%s' with CHARACTER"_en_US,
            DescribeElement(), designatorType->AsFortran());
      }
      auto folded{evaluate::Fold(context, std::move(converted->first))};
      switch (
          GetImage().Add(offsetSymbol.offset(), offsetSymbol.size(), folded)) {
      case evaluate::InitialImage::Ok:
        return true;
      case evaluate::InitialImage::NotAConstant:
        exprAnalyzer_.Say(values_.LocateSource(),
            "DATA statement value '%s' for '%s' is not a constant"_err_en_US,
            folded.AsFortran(), DescribeElement());
        break;
      case evaluate::InitialImage::OutOfRange:
        OutOfRangeError();
        break;
      default:
        CHECK(exprAnalyzer_.context().AnyFatalError());
        break;
      }
    } else {
      exprAnalyzer_.context().Say(
          "DATA statement value could not be converted to the type '%s' of the object '%s'"_err_en_US,
          designatorType->AsFortran(), DescribeElement());
    }
  } else {
    CHECK(exprAnalyzer_.context().AnyFatalError());
  }
  return false;
}

void AccumulateDataInitializations(DataInitializations &inits,
    evaluate::ExpressionAnalyzer &exprAnalyzer,
    const parser::DataStmtSet &set) {
  DataInitializationCompiler scanner{inits, exprAnalyzer, set};
  for (const auto &object :
      std::get<std::list<parser::DataStmtObject>>(set.t)) {
    if (!scanner.Scan(object)) {
      return;
    }
  }
  if (scanner.HasSurplusValues()) {
    exprAnalyzer.context().Say(
        "DATA statement set has more values than objects"_err_en_US);
  }
}

static bool CombineSomeEquivalencedInits(
    DataInitializations &inits, evaluate::ExpressionAnalyzer &exprAnalyzer) {
  auto end{inits.end()};
  for (auto iter{inits.begin()}; iter != end; ++iter) {
    const Symbol &symbol{*iter->first};
    Scope &scope{const_cast<Scope &>(symbol.owner())};
    if (scope.equivalenceSets().empty()) {
      continue; // no problem to solve here
    }
    const auto *commonBlock{FindCommonBlockContaining(symbol)};
    // Sweep following DATA initializations in search of overlapping
    // objects, accumulating into a vector; iterate to a fixed point.
    std::vector<const Symbol *> conflicts;
    auto minStart{symbol.offset()};
    auto maxEnd{symbol.offset() + symbol.size()};
    std::size_t minElementBytes{1};
    while (true) {
      auto prevCount{conflicts.size()};
      conflicts.clear();
      for (auto scan{iter}; ++scan != end;) {
        const Symbol &other{*scan->first};
        const Scope &otherScope{other.owner()};
        if (&otherScope == &scope &&
            FindCommonBlockContaining(other) == commonBlock &&
            maxEnd > other.offset() &&
            other.offset() + other.size() > minStart) {
          // "other" conflicts with "symbol" or another conflict
          conflicts.push_back(&other);
          minStart = std::min(minStart, other.offset());
          maxEnd = std::max(maxEnd, other.offset() + other.size());
        }
      }
      if (conflicts.size() == prevCount) {
        break;
      }
    }
    if (conflicts.empty()) {
      continue;
    }
    // Compute the minimum common granularity
    if (auto dyType{evaluate::DynamicType::From(symbol)}) {
      minElementBytes = evaluate::ToInt64(
          dyType->MeasureSizeInBytes(&exprAnalyzer.GetFoldingContext()))
                            .value_or(1);
    }
    for (const Symbol *s : conflicts) {
      if (auto dyType{evaluate::DynamicType::From(*s)}) {
        minElementBytes = std::min(minElementBytes,
            static_cast<std::size_t>(evaluate::ToInt64(
                dyType->MeasureSizeInBytes(&exprAnalyzer.GetFoldingContext()))
                                         .value_or(1)));
      } else {
        minElementBytes = 1;
      }
    }
    CHECK(minElementBytes > 0);
    CHECK((minElementBytes & (minElementBytes - 1)) == 0);
    auto bytes{static_cast<common::ConstantSubscript>(maxEnd - minStart)};
    CHECK(bytes % minElementBytes == 0);
    const DeclTypeSpec &typeSpec{scope.MakeNumericType(
        TypeCategory::Integer, KindExpr{minElementBytes})};
    // Combine "symbol" and "conflicts[]" into a compiler array temp
    // that overlaps all of them, and merge their initial values into
    // the temp's initializer.
    SourceName name{exprAnalyzer.context().GetTempName(scope)};
    auto emplaced{
        scope.try_emplace(name, Attrs{Attr::SAVE}, ObjectEntityDetails{})};
    CHECK(emplaced.second);
    Symbol &combinedSymbol{*emplaced.first->second};
    auto &details{combinedSymbol.get<ObjectEntityDetails>()};
    combinedSymbol.set_offset(minStart);
    combinedSymbol.set_size(bytes);
    details.set_type(typeSpec);
    ArraySpec arraySpec;
    arraySpec.emplace_back(ShapeSpec::MakeExplicit(Bound{
        bytes / static_cast<common::ConstantSubscript>(minElementBytes)}));
    details.set_shape(arraySpec);
    if (commonBlock) {
      details.set_commonBlock(*commonBlock);
    }
    // Merge these EQUIVALENCE'd DATA initializations, and remove the
    // original initializations from the map.
    auto combinedInit{
        inits.emplace(&combinedSymbol, static_cast<std::size_t>(bytes))};
    evaluate::InitialImage &combined{combinedInit.first->second.image};
    combined.Incorporate(symbol.offset() - minStart, iter->second.image);
    inits.erase(iter);
    for (const Symbol *s : conflicts) {
      auto sIter{inits.find(s)};
      CHECK(sIter != inits.end());
      combined.Incorporate(s->offset() - minStart, sIter->second.image);
      inits.erase(sIter);
    }
    return true; // got one
  }
  return false; // no remaining EQUIVALENCE'd DATA initializations
}

// Converts the initialization image for all the DATA statement appearances of
// a single symbol into an init() expression in the symbol table entry.
void ConstructInitializer(const Symbol &symbol,
    SymbolDataInitialization &initialization,
    evaluate::ExpressionAnalyzer &exprAnalyzer) {
  auto &context{exprAnalyzer.GetFoldingContext()};
  initialization.inits.sort();
  ConstantSubscript next{0};
  for (const auto &init : initialization.inits) {
    if (init.start() < next) {
      auto badDesignator{evaluate::OffsetToDesignator(
          context, symbol, init.start(), init.size())};
      CHECK(badDesignator);
      exprAnalyzer.Say(symbol.name(),
          "DATA statement initializations affect '%s' more than once"_err_en_US,
          badDesignator->AsFortran());
    }
    next = init.start() + init.size();
    CHECK(next <= static_cast<ConstantSubscript>(initialization.image.size()));
  }
  if (const auto *proc{symbol.detailsIf<ProcEntityDetails>()}) {
    CHECK(IsProcedurePointer(symbol));
    const auto &procDesignator{initialization.image.AsConstantProcPointer()};
    CHECK(!procDesignator.GetComponent());
    auto &mutableProc{const_cast<ProcEntityDetails &>(*proc)};
    mutableProc.set_init(DEREF(procDesignator.GetSymbol()));
  } else if (const auto *object{symbol.detailsIf<ObjectEntityDetails>()}) {
    if (auto symbolType{evaluate::DynamicType::From(symbol)}) {
      auto &mutableObject{const_cast<ObjectEntityDetails &>(*object)};
      if (IsPointer(symbol)) {
        mutableObject.set_init(
            initialization.image.AsConstantDataPointer(*symbolType));
        mutableObject.set_initWasValidated();
      } else {
        if (auto extents{evaluate::GetConstantExtents(context, symbol)}) {
          mutableObject.set_init(
              initialization.image.AsConstant(context, *symbolType, *extents));
          mutableObject.set_initWasValidated();
        } else {
          exprAnalyzer.Say(symbol.name(),
              "internal: unknown shape for '%s' while constructing initializer from DATA"_err_en_US,
              symbol.name());
          return;
        }
      }
    } else {
      exprAnalyzer.Say(symbol.name(),
          "internal: no type for '%s' while constructing initializer from DATA"_err_en_US,
          symbol.name());
      return;
    }
    if (!object->init()) {
      exprAnalyzer.Say(symbol.name(),
          "internal: could not construct an initializer from DATA statements for '%s'"_err_en_US,
          symbol.name());
    }
  } else {
    CHECK(exprAnalyzer.context().AnyFatalError());
  }
}

void ConvertToInitializers(
    DataInitializations &inits, evaluate::ExpressionAnalyzer &exprAnalyzer) {
  while (CombineSomeEquivalencedInits(inits, exprAnalyzer)) {
  }
  for (auto &[symbolPtr, initialization] : inits) {
    ConstructInitializer(*symbolPtr, initialization, exprAnalyzer);
  }
}
} // namespace Fortran::semantics