expr-parsers.cpp
21.3 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
//===-- lib/Parser/expr-parsers.cpp ---------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// Per-type parsers for expressions.
#include "expr-parsers.h"
#include "basic-parsers.h"
#include "debug-parser.h"
#include "misc-parsers.h"
#include "stmt-parser.h"
#include "token-parsers.h"
#include "type-parser-implementation.h"
#include "flang/Parser/characters.h"
#include "flang/Parser/parse-tree.h"
namespace Fortran::parser {
// R764 boz-literal-constant -> binary-constant | octal-constant | hex-constant
// R765 binary-constant -> B ' digit [digit]... ' | B " digit [digit]... "
// R766 octal-constant -> O ' digit [digit]... ' | O " digit [digit]... "
// R767 hex-constant ->
// Z ' hex-digit [hex-digit]... ' | Z " hex-digit [hex-digit]... "
// extension: X accepted for Z
// extension: BOZX suffix accepted
TYPE_PARSER(construct<BOZLiteralConstant>(BOZLiteral{}))
// R769 array-constructor -> (/ ac-spec /) | lbracket ac-spec rbracket
TYPE_CONTEXT_PARSER("array constructor"_en_US,
construct<ArrayConstructor>(
"(/" >> Parser<AcSpec>{} / "/)" || bracketed(Parser<AcSpec>{})))
// R770 ac-spec -> type-spec :: | [type-spec ::] ac-value-list
TYPE_PARSER(construct<AcSpec>(maybe(typeSpec / "::"),
nonemptyList("expected array constructor values"_err_en_US,
Parser<AcValue>{})) ||
construct<AcSpec>(typeSpec / "::"))
// R773 ac-value -> expr | ac-implied-do
TYPE_PARSER(
// PGI/Intel extension: accept triplets in array constructors
extension<LanguageFeature::TripletInArrayConstructor>(
construct<AcValue>(construct<AcValue::Triplet>(scalarIntExpr,
":" >> scalarIntExpr, maybe(":" >> scalarIntExpr)))) ||
construct<AcValue>(indirect(expr)) ||
construct<AcValue>(indirect(Parser<AcImpliedDo>{})))
// R774 ac-implied-do -> ( ac-value-list , ac-implied-do-control )
TYPE_PARSER(parenthesized(
construct<AcImpliedDo>(nonemptyList(Parser<AcValue>{} / lookAhead(","_tok)),
"," >> Parser<AcImpliedDoControl>{})))
// R775 ac-implied-do-control ->
// [integer-type-spec ::] ac-do-variable = scalar-int-expr ,
// scalar-int-expr [, scalar-int-expr]
// R776 ac-do-variable -> do-variable
TYPE_PARSER(construct<AcImpliedDoControl>(
maybe(integerTypeSpec / "::"), loopBounds(scalarIntExpr)))
// R1001 primary ->
// literal-constant | designator | array-constructor |
// structure-constructor | function-reference | type-param-inquiry |
// type-param-name | ( expr )
// N.B. type-param-inquiry is parsed as a structure component
constexpr auto primary{instrumented("primary"_en_US,
first(construct<Expr>(indirect(Parser<CharLiteralConstantSubstring>{})),
construct<Expr>(literalConstant),
construct<Expr>(construct<Expr::Parentheses>(parenthesized(expr))),
construct<Expr>(indirect(functionReference) / !"("_tok),
construct<Expr>(designator / !"("_tok),
construct<Expr>(Parser<StructureConstructor>{}),
construct<Expr>(Parser<ArrayConstructor>{}),
// PGI/XLF extension: COMPLEX constructor (x,y)
extension<LanguageFeature::ComplexConstructor>(
construct<Expr>(parenthesized(
construct<Expr::ComplexConstructor>(expr, "," >> expr)))),
extension<LanguageFeature::PercentLOC>(construct<Expr>("%LOC" >>
parenthesized(construct<Expr::PercentLoc>(indirect(variable)))))))};
// R1002 level-1-expr -> [defined-unary-op] primary
// TODO: Reasonable extension: permit multiple defined-unary-ops
constexpr auto level1Expr{sourced(
first(primary, // must come before define op to resolve .TRUE._8 ambiguity
construct<Expr>(construct<Expr::DefinedUnary>(definedOpName, primary)),
extension<LanguageFeature::SignedPrimary>(
construct<Expr>(construct<Expr::UnaryPlus>("+" >> primary))),
extension<LanguageFeature::SignedPrimary>(
construct<Expr>(construct<Expr::Negate>("-" >> primary)))))};
// R1004 mult-operand -> level-1-expr [power-op mult-operand]
// R1007 power-op -> **
// Exponentiation (**) is Fortran's only right-associative binary operation.
struct MultOperand {
using resultType = Expr;
constexpr MultOperand() {}
static inline std::optional<Expr> Parse(ParseState &);
};
static constexpr auto multOperand{sourced(MultOperand{})};
inline std::optional<Expr> MultOperand::Parse(ParseState &state) {
std::optional<Expr> result{level1Expr.Parse(state)};
if (result) {
static constexpr auto op{attempt("**"_tok)};
if (op.Parse(state)) {
std::function<Expr(Expr &&)> power{[&result](Expr &&right) {
return Expr{Expr::Power(std::move(result).value(), std::move(right))};
}};
return applyLambda(power, multOperand).Parse(state); // right-recursive
}
}
return result;
}
// R1005 add-operand -> [add-operand mult-op] mult-operand
// R1008 mult-op -> * | /
// The left recursion in the grammar is implemented iteratively.
struct AddOperand {
using resultType = Expr;
constexpr AddOperand() {}
static inline std::optional<Expr> Parse(ParseState &state) {
std::optional<Expr> result{multOperand.Parse(state)};
if (result) {
auto source{result->source};
std::function<Expr(Expr &&)> multiply{[&result](Expr &&right) {
return Expr{
Expr::Multiply(std::move(result).value(), std::move(right))};
}};
std::function<Expr(Expr &&)> divide{[&result](Expr &&right) {
return Expr{Expr::Divide(std::move(result).value(), std::move(right))};
}};
auto more{attempt(sourced("*" >> applyLambda(multiply, multOperand) ||
"/" >> applyLambda(divide, multOperand)))};
while (std::optional<Expr> next{more.Parse(state)}) {
result = std::move(next);
result->source.ExtendToCover(source);
}
}
return result;
}
};
constexpr AddOperand addOperand;
// R1006 level-2-expr -> [[level-2-expr] add-op] add-operand
// R1009 add-op -> + | -
// These are left-recursive productions, implemented iteratively.
// Note that standard Fortran admits a unary + or - to appear only here,
// by means of a missing first operand; e.g., 2*-3 is valid in C but not
// standard Fortran. We accept unary + and - to appear before any primary
// as an extension.
struct Level2Expr {
using resultType = Expr;
constexpr Level2Expr() {}
static inline std::optional<Expr> Parse(ParseState &state) {
static constexpr auto unary{
sourced(
construct<Expr>(construct<Expr::UnaryPlus>("+" >> addOperand)) ||
construct<Expr>(construct<Expr::Negate>("-" >> addOperand))) ||
addOperand};
std::optional<Expr> result{unary.Parse(state)};
if (result) {
auto source{result->source};
std::function<Expr(Expr &&)> add{[&result](Expr &&right) {
return Expr{Expr::Add(std::move(result).value(), std::move(right))};
}};
std::function<Expr(Expr &&)> subtract{[&result](Expr &&right) {
return Expr{
Expr::Subtract(std::move(result).value(), std::move(right))};
}};
auto more{attempt(sourced("+" >> applyLambda(add, addOperand) ||
"-" >> applyLambda(subtract, addOperand)))};
while (std::optional<Expr> next{more.Parse(state)}) {
result = std::move(next);
result->source.ExtendToCover(source);
}
}
return result;
}
};
constexpr Level2Expr level2Expr;
// R1010 level-3-expr -> [level-3-expr concat-op] level-2-expr
// R1011 concat-op -> //
// Concatenation (//) is left-associative for parsing performance, although
// one would never notice if it were right-associated.
struct Level3Expr {
using resultType = Expr;
constexpr Level3Expr() {}
static inline std::optional<Expr> Parse(ParseState &state) {
std::optional<Expr> result{level2Expr.Parse(state)};
if (result) {
auto source{result->source};
std::function<Expr(Expr &&)> concat{[&result](Expr &&right) {
return Expr{Expr::Concat(std::move(result).value(), std::move(right))};
}};
auto more{attempt(sourced("//" >> applyLambda(concat, level2Expr)))};
while (std::optional<Expr> next{more.Parse(state)}) {
result = std::move(next);
result->source.ExtendToCover(source);
}
}
return result;
}
};
constexpr Level3Expr level3Expr;
// R1012 level-4-expr -> [level-3-expr rel-op] level-3-expr
// R1013 rel-op ->
// .EQ. | .NE. | .LT. | .LE. | .GT. | .GE. |
// == | /= | < | <= | > | >= @ | <>
// N.B. relations are not recursive (i.e., LOGICAL is not ordered)
struct Level4Expr {
using resultType = Expr;
constexpr Level4Expr() {}
static inline std::optional<Expr> Parse(ParseState &state) {
std::optional<Expr> result{level3Expr.Parse(state)};
if (result) {
auto source{result->source};
std::function<Expr(Expr &&)> lt{[&result](Expr &&right) {
return Expr{Expr::LT(std::move(result).value(), std::move(right))};
}};
std::function<Expr(Expr &&)> le{[&result](Expr &&right) {
return Expr{Expr::LE(std::move(result).value(), std::move(right))};
}};
std::function<Expr(Expr &&)> eq{[&result](Expr &&right) {
return Expr{Expr::EQ(std::move(result).value(), std::move(right))};
}};
std::function<Expr(Expr &&)> ne{[&result](Expr &&right) {
return Expr{Expr::NE(std::move(result).value(), std::move(right))};
}};
std::function<Expr(Expr &&)> ge{[&result](Expr &&right) {
return Expr{Expr::GE(std::move(result).value(), std::move(right))};
}};
std::function<Expr(Expr &&)> gt{[&result](Expr &&right) {
return Expr{Expr::GT(std::move(result).value(), std::move(right))};
}};
auto more{attempt(
sourced((".LT."_tok || "<"_tok) >> applyLambda(lt, level3Expr) ||
(".LE."_tok || "<="_tok) >> applyLambda(le, level3Expr) ||
(".EQ."_tok || "=="_tok) >> applyLambda(eq, level3Expr) ||
(".NE."_tok || "/="_tok ||
extension<LanguageFeature::AlternativeNE>(
"<>"_tok /* PGI/Cray extension; Cray also has .LG. */)) >>
applyLambda(ne, level3Expr) ||
(".GE."_tok || ">="_tok) >> applyLambda(ge, level3Expr) ||
(".GT."_tok || ">"_tok) >> applyLambda(gt, level3Expr)))};
if (std::optional<Expr> next{more.Parse(state)}) {
next->source.ExtendToCover(source);
return next;
}
}
return result;
}
};
constexpr Level4Expr level4Expr;
// R1014 and-operand -> [not-op] level-4-expr
// R1018 not-op -> .NOT.
// N.B. Fortran's .NOT. binds less tightly than its comparison operators do.
// PGI/Intel extension: accept multiple .NOT. operators
struct AndOperand {
using resultType = Expr;
constexpr AndOperand() {}
static inline std::optional<Expr> Parse(ParseState &);
};
constexpr AndOperand andOperand;
// Match a logical operator or, optionally, its abbreviation.
inline constexpr auto logicalOp(const char *op, const char *abbrev) {
return TokenStringMatch{op} ||
extension<LanguageFeature::LogicalAbbreviations>(
TokenStringMatch{abbrev});
}
inline std::optional<Expr> AndOperand::Parse(ParseState &state) {
static constexpr auto notOp{attempt(logicalOp(".NOT.", ".N.") >> andOperand)};
if (std::optional<Expr> negation{notOp.Parse(state)}) {
return Expr{Expr::NOT{std::move(*negation)}};
} else {
return level4Expr.Parse(state);
}
}
// R1015 or-operand -> [or-operand and-op] and-operand
// R1019 and-op -> .AND.
// .AND. is left-associative
struct OrOperand {
using resultType = Expr;
constexpr OrOperand() {}
static inline std::optional<Expr> Parse(ParseState &state) {
static constexpr auto operand{sourced(andOperand)};
std::optional<Expr> result{operand.Parse(state)};
if (result) {
auto source{result->source};
std::function<Expr(Expr &&)> logicalAnd{[&result](Expr &&right) {
return Expr{Expr::AND(std::move(result).value(), std::move(right))};
}};
auto more{attempt(sourced(
logicalOp(".AND.", ".A.") >> applyLambda(logicalAnd, andOperand)))};
while (std::optional<Expr> next{more.Parse(state)}) {
result = std::move(next);
result->source.ExtendToCover(source);
}
}
return result;
}
};
constexpr OrOperand orOperand;
// R1016 equiv-operand -> [equiv-operand or-op] or-operand
// R1020 or-op -> .OR.
// .OR. is left-associative
struct EquivOperand {
using resultType = Expr;
constexpr EquivOperand() {}
static inline std::optional<Expr> Parse(ParseState &state) {
std::optional<Expr> result{orOperand.Parse(state)};
if (result) {
auto source{result->source};
std::function<Expr(Expr &&)> logicalOr{[&result](Expr &&right) {
return Expr{Expr::OR(std::move(result).value(), std::move(right))};
}};
auto more{attempt(sourced(
logicalOp(".OR.", ".O.") >> applyLambda(logicalOr, orOperand)))};
while (std::optional<Expr> next{more.Parse(state)}) {
result = std::move(next);
result->source.ExtendToCover(source);
}
}
return result;
}
};
constexpr EquivOperand equivOperand;
// R1017 level-5-expr -> [level-5-expr equiv-op] equiv-operand
// R1021 equiv-op -> .EQV. | .NEQV.
// Logical equivalence is left-associative.
// Extension: .XOR. as synonym for .NEQV.
struct Level5Expr {
using resultType = Expr;
constexpr Level5Expr() {}
static inline std::optional<Expr> Parse(ParseState &state) {
std::optional<Expr> result{equivOperand.Parse(state)};
if (result) {
auto source{result->source};
std::function<Expr(Expr &&)> eqv{[&result](Expr &&right) {
return Expr{Expr::EQV(std::move(result).value(), std::move(right))};
}};
std::function<Expr(Expr &&)> neqv{[&result](Expr &&right) {
return Expr{Expr::NEQV(std::move(result).value(), std::move(right))};
}};
auto more{attempt(sourced(".EQV." >> applyLambda(eqv, equivOperand) ||
(".NEQV."_tok ||
extension<LanguageFeature::XOROperator>(
logicalOp(".XOR.", ".X."))) >>
applyLambda(neqv, equivOperand)))};
while (std::optional<Expr> next{more.Parse(state)}) {
result = std::move(next);
result->source.ExtendToCover(source);
}
}
return result;
}
};
constexpr Level5Expr level5Expr;
// R1022 expr -> [expr defined-binary-op] level-5-expr
// Defined binary operators associate leftwards.
template <> std::optional<Expr> Parser<Expr>::Parse(ParseState &state) {
std::optional<Expr> result{level5Expr.Parse(state)};
if (result) {
auto source{result->source};
std::function<Expr(DefinedOpName &&, Expr &&)> defBinOp{
[&result](DefinedOpName &&op, Expr &&right) {
return Expr{Expr::DefinedBinary(
std::move(op), std::move(result).value(), std::move(right))};
}};
auto more{attempt(
sourced(applyLambda<Expr>(defBinOp, definedOpName, level5Expr)))};
while (std::optional<Expr> next{more.Parse(state)}) {
result = std::move(next);
result->source.ExtendToCover(source);
}
}
return result;
}
// R1003 defined-unary-op -> . letter [letter]... .
// R1023 defined-binary-op -> . letter [letter]... .
// R1414 local-defined-operator -> defined-unary-op | defined-binary-op
// R1415 use-defined-operator -> defined-unary-op | defined-binary-op
// C1003 A defined operator must be distinct from logical literal constants
// and intrinsic operator names; this is handled by attempting their parses
// first, and by name resolution on their definitions, for best errors.
// N.B. The name of the operator is captured with the dots around it.
constexpr auto definedOpNameChar{
letter || extension<LanguageFeature::PunctuationInNames>("$@"_ch)};
TYPE_PARSER(
space >> construct<DefinedOpName>(sourced("."_ch >>
some(definedOpNameChar) >> construct<Name>() / "."_ch)))
// R1028 specification-expr -> scalar-int-expr
TYPE_PARSER(construct<SpecificationExpr>(scalarIntExpr))
// R1032 assignment-stmt -> variable = expr
TYPE_CONTEXT_PARSER("assignment statement"_en_US,
construct<AssignmentStmt>(variable / "=", expr))
// R1033 pointer-assignment-stmt ->
// data-pointer-object [( bounds-spec-list )] => data-target |
// data-pointer-object ( bounds-remapping-list ) => data-target |
// proc-pointer-object => proc-target
// R1034 data-pointer-object ->
// variable-name | scalar-variable % data-pointer-component-name
// C1022 a scalar-variable shall be a data-ref
// C1024 a data-pointer-object shall not be a coindexed object
// R1038 proc-pointer-object -> proc-pointer-name | proc-component-ref
//
// A distinction can't be made at the time of the initial parse between
// data-pointer-object and proc-pointer-object, or between data-target
// and proc-target.
TYPE_CONTEXT_PARSER("pointer assignment statement"_en_US,
construct<PointerAssignmentStmt>(dataRef,
parenthesized(nonemptyList(Parser<BoundsRemapping>{})), "=>" >> expr) ||
construct<PointerAssignmentStmt>(dataRef,
defaulted(parenthesized(nonemptyList(Parser<BoundsSpec>{}))),
"=>" >> expr))
// R1035 bounds-spec -> lower-bound-expr :
TYPE_PARSER(construct<BoundsSpec>(boundExpr / ":"))
// R1036 bounds-remapping -> lower-bound-expr : upper-bound-expr
TYPE_PARSER(construct<BoundsRemapping>(boundExpr / ":", boundExpr))
// R1039 proc-component-ref -> scalar-variable % procedure-component-name
// C1027 the scalar-variable must be a data-ref without coindices.
TYPE_PARSER(construct<ProcComponentRef>(structureComponent))
// R1041 where-stmt -> WHERE ( mask-expr ) where-assignment-stmt
// R1045 where-assignment-stmt -> assignment-stmt
// R1046 mask-expr -> logical-expr
TYPE_CONTEXT_PARSER("WHERE statement"_en_US,
construct<WhereStmt>("WHERE" >> parenthesized(logicalExpr), assignmentStmt))
// R1042 where-construct ->
// where-construct-stmt [where-body-construct]...
// [masked-elsewhere-stmt [where-body-construct]...]...
// [elsewhere-stmt [where-body-construct]...] end-where-stmt
TYPE_CONTEXT_PARSER("WHERE construct"_en_US,
construct<WhereConstruct>(statement(Parser<WhereConstructStmt>{}),
many(whereBodyConstruct),
many(construct<WhereConstruct::MaskedElsewhere>(
statement(Parser<MaskedElsewhereStmt>{}),
many(whereBodyConstruct))),
maybe(construct<WhereConstruct::Elsewhere>(
statement(Parser<ElsewhereStmt>{}), many(whereBodyConstruct))),
statement(Parser<EndWhereStmt>{})))
// R1043 where-construct-stmt -> [where-construct-name :] WHERE ( mask-expr )
TYPE_CONTEXT_PARSER("WHERE construct statement"_en_US,
construct<WhereConstructStmt>(
maybe(name / ":"), "WHERE" >> parenthesized(logicalExpr)))
// R1044 where-body-construct ->
// where-assignment-stmt | where-stmt | where-construct
TYPE_PARSER(construct<WhereBodyConstruct>(statement(assignmentStmt)) ||
construct<WhereBodyConstruct>(statement(whereStmt)) ||
construct<WhereBodyConstruct>(indirect(whereConstruct)))
// R1047 masked-elsewhere-stmt ->
// ELSEWHERE ( mask-expr ) [where-construct-name]
TYPE_CONTEXT_PARSER("masked ELSEWHERE statement"_en_US,
construct<MaskedElsewhereStmt>(
"ELSE WHERE" >> parenthesized(logicalExpr), maybe(name)))
// R1048 elsewhere-stmt -> ELSEWHERE [where-construct-name]
TYPE_CONTEXT_PARSER("ELSEWHERE statement"_en_US,
construct<ElsewhereStmt>("ELSE WHERE" >> maybe(name)))
// R1049 end-where-stmt -> ENDWHERE [where-construct-name]
TYPE_CONTEXT_PARSER("END WHERE statement"_en_US,
construct<EndWhereStmt>(
recovery("END WHERE" >> maybe(name), endStmtErrorRecovery)))
// R1050 forall-construct ->
// forall-construct-stmt [forall-body-construct]... end-forall-stmt
TYPE_CONTEXT_PARSER("FORALL construct"_en_US,
construct<ForallConstruct>(statement(Parser<ForallConstructStmt>{}),
many(Parser<ForallBodyConstruct>{}),
statement(Parser<EndForallStmt>{})))
// R1051 forall-construct-stmt ->
// [forall-construct-name :] FORALL concurrent-header
TYPE_CONTEXT_PARSER("FORALL construct statement"_en_US,
construct<ForallConstructStmt>(
maybe(name / ":"), "FORALL" >> indirect(concurrentHeader)))
// R1052 forall-body-construct ->
// forall-assignment-stmt | where-stmt | where-construct |
// forall-construct | forall-stmt
TYPE_PARSER(construct<ForallBodyConstruct>(statement(forallAssignmentStmt)) ||
construct<ForallBodyConstruct>(statement(whereStmt)) ||
construct<ForallBodyConstruct>(whereConstruct) ||
construct<ForallBodyConstruct>(indirect(forallConstruct)) ||
construct<ForallBodyConstruct>(statement(forallStmt)))
// R1053 forall-assignment-stmt -> assignment-stmt | pointer-assignment-stmt
TYPE_PARSER(construct<ForallAssignmentStmt>(assignmentStmt) ||
construct<ForallAssignmentStmt>(pointerAssignmentStmt))
// R1054 end-forall-stmt -> END FORALL [forall-construct-name]
TYPE_CONTEXT_PARSER("END FORALL statement"_en_US,
construct<EndForallStmt>(
recovery("END FORALL" >> maybe(name), endStmtErrorRecovery)))
// R1055 forall-stmt -> FORALL concurrent-header forall-assignment-stmt
TYPE_CONTEXT_PARSER("FORALL statement"_en_US,
construct<ForallStmt>("FORALL" >> indirect(concurrentHeader),
unlabeledStatement(forallAssignmentStmt)))
} // namespace Fortran::parser