real.cpp 17.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
//===-- lib/Evaluate/real.cpp ---------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "flang/Evaluate/real.h"
#include "int-power.h"
#include "flang/Common/idioms.h"
#include "flang/Decimal/decimal.h"
#include "flang/Parser/characters.h"
#include "llvm/Support/raw_ostream.h"
#include <limits>

namespace Fortran::evaluate::value {

template <typename W, int P> Relation Real<W, P>::Compare(const Real &y) const {
  if (IsNotANumber() || y.IsNotANumber()) { // NaN vs x, x vs NaN
    return Relation::Unordered;
  } else if (IsInfinite()) {
    if (y.IsInfinite()) {
      if (IsNegative()) { // -Inf vs +/-Inf
        return y.IsNegative() ? Relation::Equal : Relation::Less;
      } else { // +Inf vs +/-Inf
        return y.IsNegative() ? Relation::Greater : Relation::Equal;
      }
    } else { // +/-Inf vs finite
      return IsNegative() ? Relation::Less : Relation::Greater;
    }
  } else if (y.IsInfinite()) { // finite vs +/-Inf
    return y.IsNegative() ? Relation::Greater : Relation::Less;
  } else { // two finite numbers
    bool isNegative{IsNegative()};
    if (isNegative != y.IsNegative()) {
      if (word_.IOR(y.word_).IBCLR(bits - 1).IsZero()) {
        return Relation::Equal; // +/-0.0 == -/+0.0
      } else {
        return isNegative ? Relation::Less : Relation::Greater;
      }
    } else {
      // same sign
      Ordering order{evaluate::Compare(Exponent(), y.Exponent())};
      if (order == Ordering::Equal) {
        order = GetSignificand().CompareUnsigned(y.GetSignificand());
      }
      if (isNegative) {
        order = Reverse(order);
      }
      return RelationFromOrdering(order);
    }
  }
}

template <typename W, int P>
ValueWithRealFlags<Real<W, P>> Real<W, P>::Add(
    const Real &y, Rounding rounding) const {
  ValueWithRealFlags<Real> result;
  if (IsNotANumber() || y.IsNotANumber()) {
    result.value = NotANumber(); // NaN + x -> NaN
    if (IsSignalingNaN() || y.IsSignalingNaN()) {
      result.flags.set(RealFlag::InvalidArgument);
    }
    return result;
  }
  bool isNegative{IsNegative()};
  bool yIsNegative{y.IsNegative()};
  if (IsInfinite()) {
    if (y.IsInfinite()) {
      if (isNegative == yIsNegative) {
        result.value = *this; // +/-Inf + +/-Inf -> +/-Inf
      } else {
        result.value = NotANumber(); // +/-Inf + -/+Inf -> NaN
        result.flags.set(RealFlag::InvalidArgument);
      }
    } else {
      result.value = *this; // +/-Inf + x -> +/-Inf
    }
    return result;
  }
  if (y.IsInfinite()) {
    result.value = y; // x + +/-Inf -> +/-Inf
    return result;
  }
  int exponent{Exponent()};
  int yExponent{y.Exponent()};
  if (exponent < yExponent) {
    // y is larger in magnitude; simplify by reversing operands
    return y.Add(*this, rounding);
  }
  if (exponent == yExponent && isNegative != yIsNegative) {
    Ordering order{GetSignificand().CompareUnsigned(y.GetSignificand())};
    if (order == Ordering::Less) {
      // Same exponent, opposite signs, and y is larger in magnitude
      return y.Add(*this, rounding);
    }
    if (order == Ordering::Equal) {
      // x + (-x) -> +0.0 unless rounding is directed downwards
      if (rounding.mode == common::RoundingMode::Down) {
        result.value.word_ = result.value.word_.IBSET(bits - 1); // -0.0
      }
      return result;
    }
  }
  // Our exponent is greater than y's, or the exponents match and y is not
  // of the opposite sign and greater magnitude.  So (x+y) will have the
  // same sign as x.
  Fraction fraction{GetFraction()};
  Fraction yFraction{y.GetFraction()};
  int rshift = exponent - yExponent;
  if (exponent > 0 && yExponent == 0) {
    --rshift; // correct overshift when only y is subnormal
  }
  RoundingBits roundingBits{yFraction, rshift};
  yFraction = yFraction.SHIFTR(rshift);
  bool carry{false};
  if (isNegative != yIsNegative) {
    // Opposite signs: subtract via addition of two's complement of y and
    // the rounding bits.
    yFraction = yFraction.NOT();
    carry = roundingBits.Negate();
  }
  auto sum{fraction.AddUnsigned(yFraction, carry)};
  fraction = sum.value;
  if (isNegative == yIsNegative && sum.carry) {
    roundingBits.ShiftRight(sum.value.BTEST(0));
    fraction = fraction.SHIFTR(1).IBSET(fraction.bits - 1);
    ++exponent;
  }
  NormalizeAndRound(
      result, isNegative, exponent, fraction, rounding, roundingBits);
  return result;
}

template <typename W, int P>
ValueWithRealFlags<Real<W, P>> Real<W, P>::Multiply(
    const Real &y, Rounding rounding) const {
  ValueWithRealFlags<Real> result;
  if (IsNotANumber() || y.IsNotANumber()) {
    result.value = NotANumber(); // NaN * x -> NaN
    if (IsSignalingNaN() || y.IsSignalingNaN()) {
      result.flags.set(RealFlag::InvalidArgument);
    }
  } else {
    bool isNegative{IsNegative() != y.IsNegative()};
    if (IsInfinite() || y.IsInfinite()) {
      if (IsZero() || y.IsZero()) {
        result.value = NotANumber(); // 0 * Inf -> NaN
        result.flags.set(RealFlag::InvalidArgument);
      } else {
        result.value = Infinity(isNegative);
      }
    } else {
      auto product{GetFraction().MultiplyUnsigned(y.GetFraction())};
      std::int64_t exponent{CombineExponents(y, false)};
      if (exponent < 1) {
        int rshift = 1 - exponent;
        exponent = 1;
        bool sticky{false};
        if (rshift >= product.upper.bits + product.lower.bits) {
          sticky = !product.lower.IsZero() || !product.upper.IsZero();
        } else if (rshift >= product.lower.bits) {
          sticky = !product.lower.IsZero() ||
              !product.upper
                   .IAND(product.upper.MASKR(rshift - product.lower.bits))
                   .IsZero();
        } else {
          sticky = !product.lower.IAND(product.lower.MASKR(rshift)).IsZero();
        }
        product.lower = product.lower.SHIFTRWithFill(product.upper, rshift);
        product.upper = product.upper.SHIFTR(rshift);
        if (sticky) {
          product.lower = product.lower.IBSET(0);
        }
      }
      int leadz{product.upper.LEADZ()};
      if (leadz >= product.upper.bits) {
        leadz += product.lower.LEADZ();
      }
      int lshift{leadz};
      if (lshift > exponent - 1) {
        lshift = exponent - 1;
      }
      exponent -= lshift;
      product.upper = product.upper.SHIFTLWithFill(product.lower, lshift);
      product.lower = product.lower.SHIFTL(lshift);
      RoundingBits roundingBits{product.lower, product.lower.bits};
      NormalizeAndRound(result, isNegative, exponent, product.upper, rounding,
          roundingBits, true /*multiply*/);
    }
  }
  return result;
}

template <typename W, int P>
ValueWithRealFlags<Real<W, P>> Real<W, P>::Divide(
    const Real &y, Rounding rounding) const {
  ValueWithRealFlags<Real> result;
  if (IsNotANumber() || y.IsNotANumber()) {
    result.value = NotANumber(); // NaN / x -> NaN, x / NaN -> NaN
    if (IsSignalingNaN() || y.IsSignalingNaN()) {
      result.flags.set(RealFlag::InvalidArgument);
    }
  } else {
    bool isNegative{IsNegative() != y.IsNegative()};
    if (IsInfinite()) {
      if (y.IsInfinite()) {
        result.value = NotANumber(); // Inf/Inf -> NaN
        result.flags.set(RealFlag::InvalidArgument);
      } else { // Inf/x -> Inf,  Inf/0 -> Inf
        result.value = Infinity(isNegative);
      }
    } else if (y.IsZero()) {
      if (IsZero()) { // 0/0 -> NaN
        result.value = NotANumber();
        result.flags.set(RealFlag::InvalidArgument);
      } else { // x/0 -> Inf, Inf/0 -> Inf
        result.value = Infinity(isNegative);
        result.flags.set(RealFlag::DivideByZero);
      }
    } else if (IsZero() || y.IsInfinite()) { // 0/x, x/Inf -> 0
      if (isNegative) {
        result.value.word_ = result.value.word_.IBSET(bits - 1);
      }
    } else {
      // dividend and divisor are both finite and nonzero numbers
      Fraction top{GetFraction()}, divisor{y.GetFraction()};
      std::int64_t exponent{CombineExponents(y, true)};
      Fraction quotient;
      bool msb{false};
      if (!top.BTEST(top.bits - 1) || !divisor.BTEST(divisor.bits - 1)) {
        // One or two subnormals
        int topLshift{top.LEADZ()};
        top = top.SHIFTL(topLshift);
        int divisorLshift{divisor.LEADZ()};
        divisor = divisor.SHIFTL(divisorLshift);
        exponent += divisorLshift - topLshift;
      }
      for (int j{1}; j <= quotient.bits; ++j) {
        if (NextQuotientBit(top, msb, divisor)) {
          quotient = quotient.IBSET(quotient.bits - j);
        }
      }
      bool guard{NextQuotientBit(top, msb, divisor)};
      bool round{NextQuotientBit(top, msb, divisor)};
      bool sticky{msb || !top.IsZero()};
      RoundingBits roundingBits{guard, round, sticky};
      if (exponent < 1) {
        std::int64_t rshift{1 - exponent};
        for (; rshift > 0; --rshift) {
          roundingBits.ShiftRight(quotient.BTEST(0));
          quotient = quotient.SHIFTR(1);
        }
        exponent = 1;
      }
      NormalizeAndRound(
          result, isNegative, exponent, quotient, rounding, roundingBits);
    }
  }
  return result;
}

template <typename W, int P>
ValueWithRealFlags<Real<W, P>> Real<W, P>::ToWholeNumber(
    common::RoundingMode mode) const {
  ValueWithRealFlags<Real> result{*this};
  if (IsNotANumber()) {
    result.flags.set(RealFlag::InvalidArgument);
    result.value = NotANumber();
  } else if (IsInfinite()) {
    result.flags.set(RealFlag::Overflow);
  } else {
    constexpr int noClipExponent{exponentBias + binaryPrecision - 1};
    if (Exponent() < noClipExponent) {
      Real adjust; // ABS(EPSILON(adjust)) == 0.5
      adjust.Normalize(IsSignBitSet(), noClipExponent, Fraction::MASKL(1));
      // Compute ival=(*this + adjust), losing any fractional bits; keep flags
      result = Add(adjust, Rounding{mode});
      result.flags.reset(RealFlag::Inexact); // result *is* exact
      // Return (ival-adjust) with original sign in case we've generated a zero.
      result.value =
          result.value.Subtract(adjust, Rounding{common::RoundingMode::ToZero})
              .value.SIGN(*this);
    }
  }
  return result;
}

template <typename W, int P>
RealFlags Real<W, P>::Normalize(bool negative, int exponent,
    const Fraction &fraction, Rounding rounding, RoundingBits *roundingBits) {
  int lshift{fraction.LEADZ()};
  if (lshift == fraction.bits /* fraction is zero */ &&
      (!roundingBits || roundingBits->empty())) {
    // No fraction, no rounding bits -> +/-0.0
    exponent = lshift = 0;
  } else if (lshift < exponent) {
    exponent -= lshift;
  } else if (exponent > 0) {
    lshift = exponent - 1;
    exponent = 0;
  } else if (lshift == 0) {
    exponent = 1;
  } else {
    lshift = 0;
  }
  if (exponent >= maxExponent) {
    // Infinity or overflow
    if (rounding.mode == common::RoundingMode::TiesToEven ||
        rounding.mode == common::RoundingMode::TiesAwayFromZero ||
        (rounding.mode == common::RoundingMode::Up && !negative) ||
        (rounding.mode == common::RoundingMode::Down && negative)) {
      word_ = Word{maxExponent}.SHIFTL(significandBits); // Inf
    } else {
      // directed rounding: round to largest finite value rather than infinity
      // (x86 does this, not sure whether it's standard behavior)
      word_ = Word{word_.MASKR(word_.bits - 1)}.IBCLR(significandBits);
    }
    if (negative) {
      word_ = word_.IBSET(bits - 1);
    }
    RealFlags flags{RealFlag::Overflow};
    if (!fraction.IsZero()) {
      flags.set(RealFlag::Inexact);
    }
    return flags;
  }
  word_ = Word::ConvertUnsigned(fraction).value;
  if (lshift > 0) {
    word_ = word_.SHIFTL(lshift);
    if (roundingBits) {
      for (; lshift > 0; --lshift) {
        if (roundingBits->ShiftLeft()) {
          word_ = word_.IBSET(lshift - 1);
        }
      }
    }
  }
  if constexpr (isImplicitMSB) {
    word_ = word_.IBCLR(significandBits);
  }
  word_ = word_.IOR(Word{exponent}.SHIFTL(significandBits));
  if (negative) {
    word_ = word_.IBSET(bits - 1);
  }
  return {};
}

template <typename W, int P>
RealFlags Real<W, P>::Round(
    Rounding rounding, const RoundingBits &bits, bool multiply) {
  int origExponent{Exponent()};
  RealFlags flags;
  bool inexact{!bits.empty()};
  if (inexact) {
    flags.set(RealFlag::Inexact);
  }
  if (origExponent < maxExponent &&
      bits.MustRound(rounding, IsNegative(), word_.BTEST(0) /* is odd */)) {
    typename Fraction::ValueWithCarry sum{
        GetFraction().AddUnsigned(Fraction{}, true)};
    int newExponent{origExponent};
    if (sum.carry) {
      // The fraction was all ones before rounding; sum.value is now zero
      sum.value = sum.value.IBSET(binaryPrecision - 1);
      if (++newExponent >= maxExponent) {
        flags.set(RealFlag::Overflow); // rounded away to an infinity
      }
    }
    flags |= Normalize(IsNegative(), newExponent, sum.value);
  }
  if (inexact && origExponent == 0) {
    // inexact subnormal input: signal Underflow unless in an x86-specific
    // edge case
    if (rounding.x86CompatibleBehavior && Exponent() != 0 && multiply &&
        bits.sticky() &&
        (bits.guard() ||
            (rounding.mode != common::RoundingMode::Up &&
                rounding.mode != common::RoundingMode::Down))) {
      // x86 edge case in which Underflow fails to signal when a subnormal
      // inexact multiplication product rounds to a normal result when
      // the guard bit is set or we're not using directed rounding
    } else {
      flags.set(RealFlag::Underflow);
    }
  }
  return flags;
}

template <typename W, int P>
void Real<W, P>::NormalizeAndRound(ValueWithRealFlags<Real> &result,
    bool isNegative, int exponent, const Fraction &fraction, Rounding rounding,
    RoundingBits roundingBits, bool multiply) {
  result.flags |= result.value.Normalize(
      isNegative, exponent, fraction, rounding, &roundingBits);
  result.flags |= result.value.Round(rounding, roundingBits, multiply);
}

inline enum decimal::FortranRounding MapRoundingMode(
    common::RoundingMode rounding) {
  switch (rounding) {
  case common::RoundingMode::TiesToEven:
    break;
  case common::RoundingMode::ToZero:
    return decimal::RoundToZero;
  case common::RoundingMode::Down:
    return decimal::RoundDown;
  case common::RoundingMode::Up:
    return decimal::RoundUp;
  case common::RoundingMode::TiesAwayFromZero:
    return decimal::RoundCompatible;
  }
  return decimal::RoundNearest; // dodge gcc warning about lack of result
}

inline RealFlags MapFlags(decimal::ConversionResultFlags flags) {
  RealFlags result;
  if (flags & decimal::Overflow) {
    result.set(RealFlag::Overflow);
  }
  if (flags & decimal::Inexact) {
    result.set(RealFlag::Inexact);
  }
  if (flags & decimal::Invalid) {
    result.set(RealFlag::InvalidArgument);
  }
  return result;
}

template <typename W, int P>
ValueWithRealFlags<Real<W, P>> Real<W, P>::Read(
    const char *&p, Rounding rounding) {
  auto converted{
      decimal::ConvertToBinary<P>(p, MapRoundingMode(rounding.mode))};
  const auto *value{reinterpret_cast<Real<W, P> *>(&converted.binary)};
  return {*value, MapFlags(converted.flags)};
}

template <typename W, int P> std::string Real<W, P>::DumpHexadecimal() const {
  if (IsNotANumber()) {
    return "NaN 0x"s + word_.Hexadecimal();
  } else if (IsNegative()) {
    return "-"s + Negate().DumpHexadecimal();
  } else if (IsInfinite()) {
    return "Inf"s;
  } else if (IsZero()) {
    return "0.0"s;
  } else {
    Fraction frac{GetFraction()};
    std::string result{"0x"};
    char intPart = '0' + frac.BTEST(frac.bits - 1);
    result += intPart;
    result += '.';
    int trailz{frac.TRAILZ()};
    if (trailz >= frac.bits - 1) {
      result += '0';
    } else {
      int remainingBits{frac.bits - 1 - trailz};
      int wholeNybbles{remainingBits / 4};
      int lostBits{remainingBits - 4 * wholeNybbles};
      if (wholeNybbles > 0) {
        std::string fracHex{frac.SHIFTR(trailz + lostBits)
                                .IAND(frac.MASKR(4 * wholeNybbles))
                                .Hexadecimal()};
        std::size_t field = wholeNybbles;
        if (fracHex.size() < field) {
          result += std::string(field - fracHex.size(), '0');
        }
        result += fracHex;
      }
      if (lostBits > 0) {
        result += frac.SHIFTR(trailz)
                      .IAND(frac.MASKR(lostBits))
                      .SHIFTL(4 - lostBits)
                      .Hexadecimal();
      }
    }
    result += 'p';
    int exponent = Exponent() - exponentBias;
    result += Integer<32>{exponent}.SignedDecimal();
    return result;
  }
}

template <typename W, int P>
llvm::raw_ostream &Real<W, P>::AsFortran(
    llvm::raw_ostream &o, int kind, bool minimal) const {
  if (IsNotANumber()) {
    o << "(0._" << kind << "/0.)";
  } else if (IsInfinite()) {
    if (IsNegative()) {
      o << "(-1._" << kind << "/0.)";
    } else {
      o << "(1._" << kind << "/0.)";
    }
  } else {
    using B = decimal::BinaryFloatingPointNumber<P>;
    const auto *value{reinterpret_cast<const B *>(this)};
    char buffer[24000]; // accommodate real*16
    decimal::DecimalConversionFlags flags{}; // default: exact representation
    if (minimal) {
      flags = decimal::Minimize;
    }
    auto result{decimal::ConvertToDecimal<P>(buffer, sizeof buffer, flags,
        static_cast<int>(sizeof buffer), decimal::RoundNearest, *value)};
    const char *p{result.str};
    if (DEREF(p) == '-' || *p == '+') {
      o << *p++;
    }
    int expo{result.decimalExponent};
    if (*p != '0') {
      --expo;
    }
    o << *p << '.' << (p + 1);
    if (expo != 0) {
      o << 'e' << expo;
    }
    o << '_' << kind;
  }
  return o;
}

template class Real<Integer<16>, 11>;
template class Real<Integer<16>, 8>;
template class Real<Integer<32>, 24>;
template class Real<Integer<64>, 53>;
template class Real<Integer<80>, 64>;
template class Real<Integer<128>, 113>;
} // namespace Fortran::evaluate::value