big-radix-floating-point.h
11.4 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
//===-- lib/Decimal/big-radix-floating-point.h ------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef FORTRAN_DECIMAL_BIG_RADIX_FLOATING_POINT_H_
#define FORTRAN_DECIMAL_BIG_RADIX_FLOATING_POINT_H_
// This is a helper class for use in floating-point conversions
// between binary decimal representations. It holds a multiple-precision
// integer value using digits of a radix that is a large even power of ten
// (10,000,000,000,000,000 by default, 10**16). These digits are accompanied
// by a signed exponent that denotes multiplication by a power of ten.
// The effective radix point is to the right of the digits (i.e., they do
// not represent a fraction).
//
// The operations supported by this class are limited to those required
// for conversions between binary and decimal representations; it is not
// a general-purpose facility.
#include "flang/Common/bit-population-count.h"
#include "flang/Common/leading-zero-bit-count.h"
#include "flang/Common/uint128.h"
#include "flang/Decimal/binary-floating-point.h"
#include "flang/Decimal/decimal.h"
#include <cinttypes>
#include <limits>
#include <type_traits>
namespace Fortran::decimal {
static constexpr std::uint64_t TenToThe(int power) {
return power <= 0 ? 1 : 10 * TenToThe(power - 1);
}
// 10**(LOG10RADIX + 3) must be < 2**wordbits, and LOG10RADIX must be
// even, so that pairs of decimal digits do not straddle Digits.
// So LOG10RADIX must be 16 or 6.
template <int PREC, int LOG10RADIX = 16> class BigRadixFloatingPointNumber {
public:
using Real = BinaryFloatingPointNumber<PREC>;
static constexpr int log10Radix{LOG10RADIX};
private:
static constexpr std::uint64_t uint64Radix{TenToThe(log10Radix)};
static constexpr int minDigitBits{
64 - common::LeadingZeroBitCount(uint64Radix)};
using Digit = common::HostUnsignedIntType<minDigitBits>;
static constexpr Digit radix{uint64Radix};
static_assert(radix < std::numeric_limits<Digit>::max() / 1000,
"radix is somehow too big");
static_assert(radix > std::numeric_limits<Digit>::max() / 10000,
"radix is somehow too small");
// The base-2 logarithm of the least significant bit that can arise
// in a subnormal IEEE floating-point number.
static constexpr int minLog2AnyBit{
-Real::exponentBias - Real::binaryPrecision};
// The number of Digits needed to represent the smallest subnormal.
static constexpr int maxDigits{3 - minLog2AnyBit / log10Radix};
public:
explicit BigRadixFloatingPointNumber(
enum FortranRounding rounding = RoundNearest)
: rounding_{rounding} {}
// Converts a binary floating point value.
explicit BigRadixFloatingPointNumber(
Real, enum FortranRounding = RoundNearest);
BigRadixFloatingPointNumber &SetToZero() {
isNegative_ = false;
digits_ = 0;
exponent_ = 0;
return *this;
}
// Converts decimal floating-point to binary.
ConversionToBinaryResult<PREC> ConvertToBinary();
// Parses and converts to binary. Handles leading spaces,
// "NaN", & optionally-signed "Inf". Does not skip internal
// spaces.
// The argument is a reference to a pointer that is left
// pointing to the first character that wasn't parsed.
ConversionToBinaryResult<PREC> ConvertToBinary(const char *&);
// Formats a decimal floating-point number to a user buffer.
// May emit "NaN" or "Inf", or an possibly-signed integer.
// No decimal point is written, but if it were, it would be
// after the last digit; the effective decimal exponent is
// returned as part of the result structure so that it can be
// formatted by the client.
ConversionToDecimalResult ConvertToDecimal(
char *, std::size_t, enum DecimalConversionFlags, int digits) const;
// Discard decimal digits not needed to distinguish this value
// from the decimal encodings of two others (viz., the nearest binary
// floating-point numbers immediately below and above this one).
// The last decimal digit may not be uniquely determined in all
// cases, and will be the mean value when that is so (e.g., if
// last decimal digit values 6-8 would all work, it'll be a 7).
// This minimization necessarily assumes that the value will be
// emitted and read back into the same (or less precise) format
// with default rounding to the nearest value.
void Minimize(
BigRadixFloatingPointNumber &&less, BigRadixFloatingPointNumber &&more);
template <typename STREAM> STREAM &Dump(STREAM &) const;
private:
BigRadixFloatingPointNumber(const BigRadixFloatingPointNumber &that)
: digits_{that.digits_}, exponent_{that.exponent_},
isNegative_{that.isNegative_}, rounding_{that.rounding_} {
for (int j{0}; j < digits_; ++j) {
digit_[j] = that.digit_[j];
}
}
bool IsZero() const {
// Don't assume normalization.
for (int j{0}; j < digits_; ++j) {
if (digit_[j] != 0) {
return false;
}
}
return true;
}
// Predicate: true when 10*value would cause a carry.
// (When this happens during decimal-to-binary conversion,
// there are more digits in the input string than can be
// represented precisely.)
bool IsFull() const {
return digits_ == digitLimit_ && digit_[digits_ - 1] >= radix / 10;
}
// Sets *this to an unsigned integer value.
// Returns any remainder.
template <typename UINT> UINT SetTo(UINT n) {
static_assert(
std::is_same_v<UINT, common::uint128_t> || std::is_unsigned_v<UINT>);
SetToZero();
while (n != 0) {
auto q{n / 10u};
if (n != q * 10) {
break;
}
++exponent_;
n = q;
}
if constexpr (sizeof n < sizeof(Digit)) {
if (n != 0) {
digit_[digits_++] = n;
}
return 0;
} else {
while (n != 0 && digits_ < digitLimit_) {
auto q{n / radix};
digit_[digits_++] = static_cast<Digit>(n - q * radix);
n = q;
}
return n;
}
}
int RemoveLeastOrderZeroDigits() {
int remove{0};
if (digits_ > 0 && digit_[0] == 0) {
while (remove < digits_ && digit_[remove] == 0) {
++remove;
}
if (remove >= digits_) {
digits_ = 0;
} else if (remove > 0) {
#if defined __GNUC__ && __GNUC__ < 8
// (&& j + remove < maxDigits) was added to avoid GCC < 8 build failure
// on -Werror=array-bounds. This can be removed if -Werror is disable.
for (int j{0}; j + remove < digits_ && (j + remove < maxDigits); ++j) {
#else
for (int j{0}; j + remove < digits_; ++j) {
#endif
digit_[j] = digit_[j + remove];
}
digits_ -= remove;
}
}
return remove;
}
void RemoveLeadingZeroDigits() {
while (digits_ > 0 && digit_[digits_ - 1] == 0) {
--digits_;
}
}
void Normalize() {
RemoveLeadingZeroDigits();
exponent_ += RemoveLeastOrderZeroDigits() * log10Radix;
}
// This limited divisibility test only works for even divisors of the radix,
// which is fine since it's only ever used with 2 and 5.
template <int N> bool IsDivisibleBy() const {
static_assert(N > 1 && radix % N == 0, "bad modulus");
return digits_ == 0 || (digit_[0] % N) == 0;
}
template <unsigned DIVISOR> int DivideBy() {
Digit remainder{0};
for (int j{digits_ - 1}; j >= 0; --j) {
Digit q{digit_[j] / DIVISOR};
Digit nrem{digit_[j] - DIVISOR * q};
digit_[j] = q + (radix / DIVISOR) * remainder;
remainder = nrem;
}
return remainder;
}
void DivideByPowerOfTwo(int twoPow) { // twoPow <= log10Radix
Digit remainder{0};
auto mask{(Digit{1} << twoPow) - 1};
auto coeff{radix >> twoPow};
for (int j{digits_ - 1}; j >= 0; --j) {
auto nrem{digit_[j] & mask};
digit_[j] = (digit_[j] >> twoPow) + coeff * remainder;
remainder = nrem;
}
}
// Returns true on overflow
bool DivideByPowerOfTwoInPlace(int twoPow) {
if (digits_ > 0) {
while (twoPow > 0) {
int chunk{twoPow > log10Radix ? log10Radix : twoPow};
if ((digit_[0] & ((Digit{1} << chunk) - 1)) == 0) {
DivideByPowerOfTwo(chunk);
twoPow -= chunk;
continue;
}
twoPow -= chunk;
if (digit_[digits_ - 1] >> chunk != 0) {
if (digits_ == digitLimit_) {
return true; // overflow
}
digit_[digits_++] = 0;
}
auto remainder{digit_[digits_ - 1]};
exponent_ -= log10Radix;
auto coeff{radix >> chunk}; // precise; radix is (5*2)**log10Radix
auto mask{(Digit{1} << chunk) - 1};
for (int j{digits_ - 1}; j >= 1; --j) {
digit_[j] = (digit_[j - 1] >> chunk) + coeff * remainder;
remainder = digit_[j - 1] & mask;
}
digit_[0] = coeff * remainder;
}
}
return false; // no overflow
}
int AddCarry(int position = 0, int carry = 1) {
for (; position < digits_; ++position) {
Digit v{digit_[position] + carry};
if (v < radix) {
digit_[position] = v;
return 0;
}
digit_[position] = v - radix;
carry = 1;
}
if (digits_ < digitLimit_) {
digit_[digits_++] = carry;
return 0;
}
Normalize();
if (digits_ < digitLimit_) {
digit_[digits_++] = carry;
return 0;
}
return carry;
}
void Decrement() {
for (int j{0}; digit_[j]-- == 0; ++j) {
digit_[j] = radix - 1;
}
}
template <int N> int MultiplyByHelper(int carry = 0) {
for (int j{0}; j < digits_; ++j) {
auto v{N * digit_[j] + carry};
carry = v / radix;
digit_[j] = v - carry * radix; // i.e., v % radix
}
return carry;
}
template <int N> int MultiplyBy(int carry = 0) {
if (int newCarry{MultiplyByHelper<N>(carry)}) {
return AddCarry(digits_, newCarry);
} else {
return 0;
}
}
template <int N> int MultiplyWithoutNormalization() {
if (int carry{MultiplyByHelper<N>(0)}) {
if (digits_ < digitLimit_) {
digit_[digits_++] = carry;
return 0;
} else {
return carry;
}
} else {
return 0;
}
}
void LoseLeastSignificantDigit(); // with rounding
void PushCarry(int carry) {
if (digits_ == maxDigits && RemoveLeastOrderZeroDigits() == 0) {
LoseLeastSignificantDigit();
digit_[digits_ - 1] += carry;
} else {
digit_[digits_++] = carry;
}
}
// Adds another number and then divides by two.
// Assumes same exponent and sign.
// Returns true when the the result has effectively been rounded down.
bool Mean(const BigRadixFloatingPointNumber &);
bool ParseNumber(const char *&, bool &inexact);
using Raw = typename Real::RawType;
constexpr Raw SignBit() const { return Raw{isNegative_} << (Real::bits - 1); }
constexpr Raw Infinity() const {
return (Raw{Real::maxExponent} << Real::significandBits) | SignBit();
}
static constexpr Raw NaN() {
return (Raw{Real::maxExponent} << Real::significandBits) |
(Raw{1} << (Real::significandBits - 2));
}
Digit digit_[maxDigits]; // in little-endian order: digit_[0] is LSD
int digits_{0}; // # of elements in digit_[] array; zero when zero
int digitLimit_{maxDigits}; // precision clamp
int exponent_{0}; // signed power of ten
bool isNegative_{false};
enum FortranRounding rounding_ { RoundNearest };
};
} // namespace Fortran::decimal
#endif