tsd_destruction.c
1.4 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
// RUN: %clang_scudo %s -o %t
// RUN: %run %t 2>&1
#include <locale.h>
#include <pthread.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
// Some of glibc's own thread local data is destroyed after a user's thread
// local destructors are called, via __libc_thread_freeres. This might involve
// calling free, as is the case for strerror_thread_freeres.
// If there is no prior heap operation in the thread, this free would end up
// initializing some thread specific data that would never be destroyed
// properly, while still being deallocated when the TLS goes away. As a result,
// a program could SEGV, usually in
// __sanitizer::AllocatorGlobalStats::Unregister, where one of the doubly
// linked list links would refer to a now unmapped memory area.
// This test reproduces those circumstances. Success means executing without
// a segmentation fault.
const int kNumThreads = 16;
pthread_t tid[kNumThreads];
void *thread_func(void *arg) {
uintptr_t i = (uintptr_t)arg;
if ((i & 1) == 0) free(malloc(16));
// Calling strerror_l allows for strerror_thread_freeres to be called.
strerror_l(0, LC_GLOBAL_LOCALE);
return 0;
}
int main(int argc, char** argv) {
for (uintptr_t j = 0; j < 8; j++) {
for (uintptr_t i = 0; i < kNumThreads; i++)
pthread_create(&tid[i], 0, thread_func, (void *)i);
for (uintptr_t i = 0; i < kNumThreads; i++)
pthread_join(tid[i], 0);
}
return 0;
}