xray_segmented_array.h 21.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
//===-- xray_segmented_array.h ---------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of XRay, a dynamic runtime instrumentation system.
//
// Defines the implementation of a segmented array, with fixed-size segments
// backing the segments.
//
//===----------------------------------------------------------------------===//
#ifndef XRAY_SEGMENTED_ARRAY_H
#define XRAY_SEGMENTED_ARRAY_H

#include "sanitizer_common/sanitizer_allocator.h"
#include "xray_allocator.h"
#include "xray_utils.h"
#include <cassert>
#include <type_traits>
#include <utility>

namespace __xray {

/// The Array type provides an interface similar to std::vector<...> but does
/// not shrink in size. Once constructed, elements can be appended but cannot be
/// removed. The implementation is heavily dependent on the contract provided by
/// the Allocator type, in that all memory will be released when the Allocator
/// is destroyed. When an Array is destroyed, it will destroy elements in the
/// backing store but will not free the memory.
template <class T> class Array {
  struct Segment {
    Segment *Prev;
    Segment *Next;
    char Data[1];
  };

public:
  // Each segment of the array will be laid out with the following assumptions:
  //
  //   - Each segment will be on a cache-line address boundary (kCacheLineSize
  //     aligned).
  //
  //   - The elements will be accessed through an aligned pointer, dependent on
  //     the alignment of T.
  //
  //   - Each element is at least two-pointers worth from the beginning of the
  //     Segment, aligned properly, and the rest of the elements are accessed
  //     through appropriate alignment.
  //
  // We then compute the size of the segment to follow this logic:
  //
  //   - Compute the number of elements that can fit within
  //     kCacheLineSize-multiple segments, minus the size of two pointers.
  //
  //   - Request cacheline-multiple sized elements from the allocator.
  static constexpr uint64_t AlignedElementStorageSize =
      sizeof(typename std::aligned_storage<sizeof(T), alignof(T)>::type);

  static constexpr uint64_t SegmentControlBlockSize = sizeof(Segment *) * 2;

  static constexpr uint64_t SegmentSize = nearest_boundary(
      SegmentControlBlockSize + next_pow2(sizeof(T)), kCacheLineSize);

  using AllocatorType = Allocator<SegmentSize>;

  static constexpr uint64_t ElementsPerSegment =
      (SegmentSize - SegmentControlBlockSize) / next_pow2(sizeof(T));

  static_assert(ElementsPerSegment > 0,
                "Must have at least 1 element per segment.");

  static Segment SentinelSegment;

  using size_type = uint64_t;

private:
  // This Iterator models a BidirectionalIterator.
  template <class U> class Iterator {
    Segment *S = &SentinelSegment;
    uint64_t Offset = 0;
    uint64_t Size = 0;

  public:
    Iterator(Segment *IS, uint64_t Off, uint64_t S) XRAY_NEVER_INSTRUMENT
        : S(IS),
          Offset(Off),
          Size(S) {}
    Iterator(const Iterator &) NOEXCEPT XRAY_NEVER_INSTRUMENT = default;
    Iterator() NOEXCEPT XRAY_NEVER_INSTRUMENT = default;
    Iterator(Iterator &&) NOEXCEPT XRAY_NEVER_INSTRUMENT = default;
    Iterator &operator=(const Iterator &) XRAY_NEVER_INSTRUMENT = default;
    Iterator &operator=(Iterator &&) XRAY_NEVER_INSTRUMENT = default;
    ~Iterator() XRAY_NEVER_INSTRUMENT = default;

    Iterator &operator++() XRAY_NEVER_INSTRUMENT {
      if (++Offset % ElementsPerSegment || Offset == Size)
        return *this;

      // At this point, we know that Offset % N == 0, so we must advance the
      // segment pointer.
      DCHECK_EQ(Offset % ElementsPerSegment, 0);
      DCHECK_NE(Offset, Size);
      DCHECK_NE(S, &SentinelSegment);
      DCHECK_NE(S->Next, &SentinelSegment);
      S = S->Next;
      DCHECK_NE(S, &SentinelSegment);
      return *this;
    }

    Iterator &operator--() XRAY_NEVER_INSTRUMENT {
      DCHECK_NE(S, &SentinelSegment);
      DCHECK_GT(Offset, 0);

      auto PreviousOffset = Offset--;
      if (PreviousOffset != Size && PreviousOffset % ElementsPerSegment == 0) {
        DCHECK_NE(S->Prev, &SentinelSegment);
        S = S->Prev;
      }

      return *this;
    }

    Iterator operator++(int) XRAY_NEVER_INSTRUMENT {
      Iterator Copy(*this);
      ++(*this);
      return Copy;
    }

    Iterator operator--(int) XRAY_NEVER_INSTRUMENT {
      Iterator Copy(*this);
      --(*this);
      return Copy;
    }

    template <class V, class W>
    friend bool operator==(const Iterator<V> &L,
                           const Iterator<W> &R) XRAY_NEVER_INSTRUMENT {
      return L.S == R.S && L.Offset == R.Offset;
    }

    template <class V, class W>
    friend bool operator!=(const Iterator<V> &L,
                           const Iterator<W> &R) XRAY_NEVER_INSTRUMENT {
      return !(L == R);
    }

    U &operator*() const XRAY_NEVER_INSTRUMENT {
      DCHECK_NE(S, &SentinelSegment);
      auto RelOff = Offset % ElementsPerSegment;

      // We need to compute the character-aligned pointer, offset from the
      // segment's Data location to get the element in the position of Offset.
      auto Base = &S->Data;
      auto AlignedOffset = Base + (RelOff * AlignedElementStorageSize);
      return *reinterpret_cast<U *>(AlignedOffset);
    }

    U *operator->() const XRAY_NEVER_INSTRUMENT { return &(**this); }
  };

  AllocatorType *Alloc;
  Segment *Head;
  Segment *Tail;

  // Here we keep track of segments in the freelist, to allow us to re-use
  // segments when elements are trimmed off the end.
  Segment *Freelist;
  uint64_t Size;

  // ===============================
  // In the following implementation, we work through the algorithms and the
  // list operations using the following notation:
  //
  //   - pred(s) is the predecessor (previous node accessor) and succ(s) is
  //     the successor (next node accessor).
  //
  //   - S is a sentinel segment, which has the following property:
  //
  //         pred(S) == succ(S) == S
  //
  //   - @ is a loop operator, which can imply pred(s) == s if it appears on
  //     the left of s, or succ(s) == S if it appears on the right of s.
  //
  //   - sL <-> sR : means a bidirectional relation between sL and sR, which
  //     means:
  //
  //         succ(sL) == sR && pred(SR) == sL
  //
  //   - sL -> sR : implies a unidirectional relation between sL and SR,
  //     with the following properties:
  //
  //         succ(sL) == sR
  //
  //     sL <- sR : implies a unidirectional relation between sR and sL,
  //     with the following properties:
  //
  //         pred(sR) == sL
  //
  // ===============================

  Segment *NewSegment() XRAY_NEVER_INSTRUMENT {
    // We need to handle the case in which enough elements have been trimmed to
    // allow us to re-use segments we've allocated before. For this we look into
    // the Freelist, to see whether we need to actually allocate new blocks or
    // just re-use blocks we've already seen before.
    if (Freelist != &SentinelSegment) {
      // The current state of lists resemble something like this at this point:
      //
      //   Freelist: @S@<-f0->...<->fN->@S@
      //                  ^ Freelist
      //
      // We want to perform a splice of `f0` from Freelist to a temporary list,
      // which looks like:
      //
      //   Templist: @S@<-f0->@S@
      //                  ^ FreeSegment
      //
      // Our algorithm preconditions are:
      DCHECK_EQ(Freelist->Prev, &SentinelSegment);

      // Then the algorithm we implement is:
      //
      //   SFS = Freelist
      //   Freelist = succ(Freelist)
      //   if (Freelist != S)
      //     pred(Freelist) = S
      //   succ(SFS) = S
      //   pred(SFS) = S
      //
      auto *FreeSegment = Freelist;
      Freelist = Freelist->Next;

      // Note that we need to handle the case where Freelist is now pointing to
      // S, which we don't want to be overwriting.
      // TODO: Determine whether the cost of the branch is higher than the cost
      // of the blind assignment.
      if (Freelist != &SentinelSegment)
        Freelist->Prev = &SentinelSegment;

      FreeSegment->Next = &SentinelSegment;
      FreeSegment->Prev = &SentinelSegment;

      // Our postconditions are:
      DCHECK_EQ(Freelist->Prev, &SentinelSegment);
      DCHECK_NE(FreeSegment, &SentinelSegment);
      return FreeSegment;
    }

    auto SegmentBlock = Alloc->Allocate();
    if (SegmentBlock.Data == nullptr)
      return nullptr;

    // Placement-new the Segment element at the beginning of the SegmentBlock.
    new (SegmentBlock.Data) Segment{&SentinelSegment, &SentinelSegment, {0}};
    auto SB = reinterpret_cast<Segment *>(SegmentBlock.Data);
    return SB;
  }

  Segment *InitHeadAndTail() XRAY_NEVER_INSTRUMENT {
    DCHECK_EQ(Head, &SentinelSegment);
    DCHECK_EQ(Tail, &SentinelSegment);
    auto S = NewSegment();
    if (S == nullptr)
      return nullptr;
    DCHECK_EQ(S->Next, &SentinelSegment);
    DCHECK_EQ(S->Prev, &SentinelSegment);
    DCHECK_NE(S, &SentinelSegment);
    Head = S;
    Tail = S;
    DCHECK_EQ(Head, Tail);
    DCHECK_EQ(Tail->Next, &SentinelSegment);
    DCHECK_EQ(Tail->Prev, &SentinelSegment);
    return S;
  }

  Segment *AppendNewSegment() XRAY_NEVER_INSTRUMENT {
    auto S = NewSegment();
    if (S == nullptr)
      return nullptr;
    DCHECK_NE(Tail, &SentinelSegment);
    DCHECK_EQ(Tail->Next, &SentinelSegment);
    DCHECK_EQ(S->Prev, &SentinelSegment);
    DCHECK_EQ(S->Next, &SentinelSegment);
    S->Prev = Tail;
    Tail->Next = S;
    Tail = S;
    DCHECK_EQ(S, S->Prev->Next);
    DCHECK_EQ(Tail->Next, &SentinelSegment);
    return S;
  }

public:
  explicit Array(AllocatorType &A) XRAY_NEVER_INSTRUMENT
      : Alloc(&A),
        Head(&SentinelSegment),
        Tail(&SentinelSegment),
        Freelist(&SentinelSegment),
        Size(0) {}

  Array() XRAY_NEVER_INSTRUMENT : Alloc(nullptr),
                                  Head(&SentinelSegment),
                                  Tail(&SentinelSegment),
                                  Freelist(&SentinelSegment),
                                  Size(0) {}

  Array(const Array &) = delete;
  Array &operator=(const Array &) = delete;

  Array(Array &&O) XRAY_NEVER_INSTRUMENT : Alloc(O.Alloc),
                                           Head(O.Head),
                                           Tail(O.Tail),
                                           Freelist(O.Freelist),
                                           Size(O.Size) {
    O.Alloc = nullptr;
    O.Head = &SentinelSegment;
    O.Tail = &SentinelSegment;
    O.Size = 0;
    O.Freelist = &SentinelSegment;
  }

  Array &operator=(Array &&O) XRAY_NEVER_INSTRUMENT {
    Alloc = O.Alloc;
    O.Alloc = nullptr;
    Head = O.Head;
    O.Head = &SentinelSegment;
    Tail = O.Tail;
    O.Tail = &SentinelSegment;
    Freelist = O.Freelist;
    O.Freelist = &SentinelSegment;
    Size = O.Size;
    O.Size = 0;
    return *this;
  }

  ~Array() XRAY_NEVER_INSTRUMENT {
    for (auto &E : *this)
      (&E)->~T();
  }

  bool empty() const XRAY_NEVER_INSTRUMENT { return Size == 0; }

  AllocatorType &allocator() const XRAY_NEVER_INSTRUMENT {
    DCHECK_NE(Alloc, nullptr);
    return *Alloc;
  }

  uint64_t size() const XRAY_NEVER_INSTRUMENT { return Size; }

  template <class... Args>
  T *AppendEmplace(Args &&... args) XRAY_NEVER_INSTRUMENT {
    DCHECK((Size == 0 && Head == &SentinelSegment && Head == Tail) ||
           (Size != 0 && Head != &SentinelSegment && Tail != &SentinelSegment));
    if (UNLIKELY(Head == &SentinelSegment)) {
      auto R = InitHeadAndTail();
      if (R == nullptr)
        return nullptr;
    }

    DCHECK_NE(Head, &SentinelSegment);
    DCHECK_NE(Tail, &SentinelSegment);

    auto Offset = Size % ElementsPerSegment;
    if (UNLIKELY(Size != 0 && Offset == 0))
      if (AppendNewSegment() == nullptr)
        return nullptr;

    DCHECK_NE(Tail, &SentinelSegment);
    auto Base = &Tail->Data;
    auto AlignedOffset = Base + (Offset * AlignedElementStorageSize);
    DCHECK_LE(AlignedOffset + sizeof(T),
              reinterpret_cast<unsigned char *>(Base) + SegmentSize);

    // In-place construct at Position.
    new (AlignedOffset) T{std::forward<Args>(args)...};
    ++Size;
    return reinterpret_cast<T *>(AlignedOffset);
  }

  T *Append(const T &E) XRAY_NEVER_INSTRUMENT {
    // FIXME: This is a duplication of AppenEmplace with the copy semantics
    // explicitly used, as a work-around to GCC 4.8 not invoking the copy
    // constructor with the placement new with braced-init syntax.
    DCHECK((Size == 0 && Head == &SentinelSegment && Head == Tail) ||
           (Size != 0 && Head != &SentinelSegment && Tail != &SentinelSegment));
    if (UNLIKELY(Head == &SentinelSegment)) {
      auto R = InitHeadAndTail();
      if (R == nullptr)
        return nullptr;
    }

    DCHECK_NE(Head, &SentinelSegment);
    DCHECK_NE(Tail, &SentinelSegment);

    auto Offset = Size % ElementsPerSegment;
    if (UNLIKELY(Size != 0 && Offset == 0))
      if (AppendNewSegment() == nullptr)
        return nullptr;

    DCHECK_NE(Tail, &SentinelSegment);
    auto Base = &Tail->Data;
    auto AlignedOffset = Base + (Offset * AlignedElementStorageSize);
    DCHECK_LE(AlignedOffset + sizeof(T),
              reinterpret_cast<unsigned char *>(Tail) + SegmentSize);

    // In-place construct at Position.
    new (AlignedOffset) T(E);
    ++Size;
    return reinterpret_cast<T *>(AlignedOffset);
  }

  T &operator[](uint64_t Offset) const XRAY_NEVER_INSTRUMENT {
    DCHECK_LE(Offset, Size);
    // We need to traverse the array enough times to find the element at Offset.
    auto S = Head;
    while (Offset >= ElementsPerSegment) {
      S = S->Next;
      Offset -= ElementsPerSegment;
      DCHECK_NE(S, &SentinelSegment);
    }
    auto Base = &S->Data;
    auto AlignedOffset = Base + (Offset * AlignedElementStorageSize);
    auto Position = reinterpret_cast<T *>(AlignedOffset);
    return *reinterpret_cast<T *>(Position);
  }

  T &front() const XRAY_NEVER_INSTRUMENT {
    DCHECK_NE(Head, &SentinelSegment);
    DCHECK_NE(Size, 0u);
    return *begin();
  }

  T &back() const XRAY_NEVER_INSTRUMENT {
    DCHECK_NE(Tail, &SentinelSegment);
    DCHECK_NE(Size, 0u);
    auto It = end();
    --It;
    return *It;
  }

  template <class Predicate>
  T *find_element(Predicate P) const XRAY_NEVER_INSTRUMENT {
    if (empty())
      return nullptr;

    auto E = end();
    for (auto I = begin(); I != E; ++I)
      if (P(*I))
        return &(*I);

    return nullptr;
  }

  /// Remove N Elements from the end. This leaves the blocks behind, and not
  /// require allocation of new blocks for new elements added after trimming.
  void trim(uint64_t Elements) XRAY_NEVER_INSTRUMENT {
    auto OldSize = Size;
    Elements = Elements > Size ? Size : Elements;
    Size -= Elements;

    // We compute the number of segments we're going to return from the tail by
    // counting how many elements have been trimmed. Given the following:
    //
    // - Each segment has N valid positions, where N > 0
    // - The previous size > current size
    //
    // To compute the number of segments to return, we need to perform the
    // following calculations for the number of segments required given 'x'
    // elements:
    //
    //   f(x) = {
    //            x == 0          : 0
    //          , 0 < x <= N      : 1
    //          , N < x <= max    : x / N + (x % N ? 1 : 0)
    //          }
    //
    // We can simplify this down to:
    //
    //   f(x) = {
    //            x == 0          : 0,
    //          , 0 < x <= max    : x / N + (x < N || x % N ? 1 : 0)
    //          }
    //
    // And further down to:
    //
    //   f(x) = x ? x / N + (x < N || x % N ? 1 : 0) : 0
    //
    // We can then perform the following calculation `s` which counts the number
    // of segments we need to remove from the end of the data structure:
    //
    //   s(p, c) = f(p) - f(c)
    //
    // If we treat p = previous size, and c = current size, and given the
    // properties above, the possible range for s(...) is [0..max(typeof(p))/N]
    // given that typeof(p) == typeof(c).
    auto F = [](uint64_t X) {
      return X ? (X / ElementsPerSegment) +
                     (X < ElementsPerSegment || X % ElementsPerSegment ? 1 : 0)
               : 0;
    };
    auto PS = F(OldSize);
    auto CS = F(Size);
    DCHECK_GE(PS, CS);
    auto SegmentsToTrim = PS - CS;
    for (auto I = 0uL; I < SegmentsToTrim; ++I) {
      // Here we place the current tail segment to the freelist. To do this
      // appropriately, we need to perform a splice operation on two
      // bidirectional linked-lists. In particular, we have the current state of
      // the doubly-linked list of segments:
      //
      //   @S@ <- s0 <-> s1 <-> ... <-> sT -> @S@
      //
      DCHECK_NE(Head, &SentinelSegment);
      DCHECK_NE(Tail, &SentinelSegment);
      DCHECK_EQ(Tail->Next, &SentinelSegment);

      if (Freelist == &SentinelSegment) {
        // Our two lists at this point are in this configuration:
        //
        //   Freelist: (potentially) @S@
        //   Mainlist: @S@<-s0<->s1<->...<->sPT<->sT->@S@
        //                  ^ Head                ^ Tail
        //
        // The end state for us will be this configuration:
        //
        //   Freelist: @S@<-sT->@S@
        //   Mainlist: @S@<-s0<->s1<->...<->sPT->@S@
        //                  ^ Head          ^ Tail
        //
        // The first step for us is to hold a reference to the tail of Mainlist,
        // which in our notation is represented by sT. We call this our "free
        // segment" which is the segment we are placing on the Freelist.
        //
        //   sF = sT
        //
        // Then, we also hold a reference to the "pre-tail" element, which we
        // call sPT:
        //
        //   sPT = pred(sT)
        //
        // We want to splice sT into the beginning of the Freelist, which in
        // an empty Freelist means placing a segment whose predecessor and
        // successor is the sentinel segment.
        //
        // The splice operation then can be performed in the following
        // algorithm:
        //
        //   succ(sPT) = S
        //   pred(sT) = S
        //   succ(sT) = Freelist
        //   Freelist = sT
        //   Tail = sPT
        //
        auto SPT = Tail->Prev;
        SPT->Next = &SentinelSegment;
        Tail->Prev = &SentinelSegment;
        Tail->Next = Freelist;
        Freelist = Tail;
        Tail = SPT;

        // Our post-conditions here are:
        DCHECK_EQ(Tail->Next, &SentinelSegment);
        DCHECK_EQ(Freelist->Prev, &SentinelSegment);
      } else {
        // In the other case, where the Freelist is not empty, we perform the
        // following transformation instead:
        //
        // This transforms the current state:
        //
        //   Freelist: @S@<-f0->@S@
        //                  ^ Freelist
        //   Mainlist: @S@<-s0<->s1<->...<->sPT<->sT->@S@
        //                  ^ Head                ^ Tail
        //
        // Into the following:
        //
        //   Freelist: @S@<-sT<->f0->@S@
        //                  ^ Freelist
        //   Mainlist: @S@<-s0<->s1<->...<->sPT->@S@
        //                  ^ Head          ^ Tail
        //
        // The algorithm is:
        //
        //   sFH = Freelist
        //   sPT = pred(sT)
        //   pred(SFH) = sT
        //   succ(sT) = Freelist
        //   pred(sT) = S
        //   succ(sPT) = S
        //   Tail = sPT
        //   Freelist = sT
        //
        auto SFH = Freelist;
        auto SPT = Tail->Prev;
        auto ST = Tail;
        SFH->Prev = ST;
        ST->Next = Freelist;
        ST->Prev = &SentinelSegment;
        SPT->Next = &SentinelSegment;
        Tail = SPT;
        Freelist = ST;

        // Our post-conditions here are:
        DCHECK_EQ(Tail->Next, &SentinelSegment);
        DCHECK_EQ(Freelist->Prev, &SentinelSegment);
        DCHECK_EQ(Freelist->Next->Prev, Freelist);
      }
    }

    // Now in case we've spliced all the segments in the end, we ensure that the
    // main list is "empty", or both the head and tail pointing to the sentinel
    // segment.
    if (Tail == &SentinelSegment)
      Head = Tail;

    DCHECK(
        (Size == 0 && Head == &SentinelSegment && Tail == &SentinelSegment) ||
        (Size != 0 && Head != &SentinelSegment && Tail != &SentinelSegment));
    DCHECK(
        (Freelist != &SentinelSegment && Freelist->Prev == &SentinelSegment) ||
        (Freelist == &SentinelSegment && Tail->Next == &SentinelSegment));
  }

  // Provide iterators.
  Iterator<T> begin() const XRAY_NEVER_INSTRUMENT {
    return Iterator<T>(Head, 0, Size);
  }
  Iterator<T> end() const XRAY_NEVER_INSTRUMENT {
    return Iterator<T>(Tail, Size, Size);
  }
  Iterator<const T> cbegin() const XRAY_NEVER_INSTRUMENT {
    return Iterator<const T>(Head, 0, Size);
  }
  Iterator<const T> cend() const XRAY_NEVER_INSTRUMENT {
    return Iterator<const T>(Tail, Size, Size);
  }
};

// We need to have this storage definition out-of-line so that the compiler can
// ensure that storage for the SentinelSegment is defined and has a single
// address.
template <class T>
typename Array<T>::Segment Array<T>::SentinelSegment{
    &Array<T>::SentinelSegment, &Array<T>::SentinelSegment, {'\0'}};

} // namespace __xray

#endif // XRAY_SEGMENTED_ARRAY_H