xray_profiling.cpp
17.6 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
//===-- xray_profiling.cpp --------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of XRay, a dynamic runtime instrumentation system.
//
// This is the implementation of a profiling handler.
//
//===----------------------------------------------------------------------===//
#include <memory>
#include <time.h>
#include "sanitizer_common/sanitizer_atomic.h"
#include "sanitizer_common/sanitizer_flags.h"
#include "xray/xray_interface.h"
#include "xray/xray_log_interface.h"
#include "xray_buffer_queue.h"
#include "xray_flags.h"
#include "xray_profile_collector.h"
#include "xray_profiling_flags.h"
#include "xray_recursion_guard.h"
#include "xray_tsc.h"
#include "xray_utils.h"
#include <pthread.h>
namespace __xray {
namespace {
static atomic_sint32_t ProfilerLogFlushStatus = {
XRayLogFlushStatus::XRAY_LOG_NOT_FLUSHING};
static atomic_sint32_t ProfilerLogStatus = {
XRayLogInitStatus::XRAY_LOG_UNINITIALIZED};
static SpinMutex ProfilerOptionsMutex;
struct ProfilingData {
atomic_uintptr_t Allocators;
atomic_uintptr_t FCT;
};
static pthread_key_t ProfilingKey;
// We use a global buffer queue, which gets initialized once at initialisation
// time, and gets reset when profiling is "done".
static std::aligned_storage<sizeof(BufferQueue), alignof(BufferQueue)>::type
BufferQueueStorage;
static BufferQueue *BQ = nullptr;
thread_local FunctionCallTrie::Allocators::Buffers ThreadBuffers;
thread_local std::aligned_storage<sizeof(FunctionCallTrie::Allocators),
alignof(FunctionCallTrie::Allocators)>::type
AllocatorsStorage;
thread_local std::aligned_storage<sizeof(FunctionCallTrie),
alignof(FunctionCallTrie)>::type
FunctionCallTrieStorage;
thread_local ProfilingData TLD{{0}, {0}};
thread_local atomic_uint8_t ReentranceGuard{0};
// We use a separate guard for ensuring that for this thread, if we're already
// cleaning up, that any signal handlers don't attempt to cleanup nor
// initialise.
thread_local atomic_uint8_t TLDInitGuard{0};
// We also use a separate latch to signal that the thread is exiting, and
// non-essential work should be ignored (things like recording events, etc.).
thread_local atomic_uint8_t ThreadExitingLatch{0};
static ProfilingData *getThreadLocalData() XRAY_NEVER_INSTRUMENT {
thread_local auto ThreadOnce = []() XRAY_NEVER_INSTRUMENT {
pthread_setspecific(ProfilingKey, &TLD);
return false;
}();
(void)ThreadOnce;
RecursionGuard TLDInit(TLDInitGuard);
if (!TLDInit)
return nullptr;
if (atomic_load_relaxed(&ThreadExitingLatch))
return nullptr;
uptr Allocators = 0;
if (atomic_compare_exchange_strong(&TLD.Allocators, &Allocators, 1,
memory_order_acq_rel)) {
bool Success = false;
auto AllocatorsUndo = at_scope_exit([&]() XRAY_NEVER_INSTRUMENT {
if (!Success)
atomic_store(&TLD.Allocators, 0, memory_order_release);
});
// Acquire a set of buffers for this thread.
if (BQ == nullptr)
return nullptr;
if (BQ->getBuffer(ThreadBuffers.NodeBuffer) != BufferQueue::ErrorCode::Ok)
return nullptr;
auto NodeBufferUndo = at_scope_exit([&]() XRAY_NEVER_INSTRUMENT {
if (!Success)
BQ->releaseBuffer(ThreadBuffers.NodeBuffer);
});
if (BQ->getBuffer(ThreadBuffers.RootsBuffer) != BufferQueue::ErrorCode::Ok)
return nullptr;
auto RootsBufferUndo = at_scope_exit([&]() XRAY_NEVER_INSTRUMENT {
if (!Success)
BQ->releaseBuffer(ThreadBuffers.RootsBuffer);
});
if (BQ->getBuffer(ThreadBuffers.ShadowStackBuffer) !=
BufferQueue::ErrorCode::Ok)
return nullptr;
auto ShadowStackBufferUndo = at_scope_exit([&]() XRAY_NEVER_INSTRUMENT {
if (!Success)
BQ->releaseBuffer(ThreadBuffers.ShadowStackBuffer);
});
if (BQ->getBuffer(ThreadBuffers.NodeIdPairBuffer) !=
BufferQueue::ErrorCode::Ok)
return nullptr;
Success = true;
new (&AllocatorsStorage) FunctionCallTrie::Allocators(
FunctionCallTrie::InitAllocatorsFromBuffers(ThreadBuffers));
Allocators = reinterpret_cast<uptr>(
reinterpret_cast<FunctionCallTrie::Allocators *>(&AllocatorsStorage));
atomic_store(&TLD.Allocators, Allocators, memory_order_release);
}
if (Allocators == 1)
return nullptr;
uptr FCT = 0;
if (atomic_compare_exchange_strong(&TLD.FCT, &FCT, 1, memory_order_acq_rel)) {
new (&FunctionCallTrieStorage)
FunctionCallTrie(*reinterpret_cast<FunctionCallTrie::Allocators *>(
atomic_load_relaxed(&TLD.Allocators)));
FCT = reinterpret_cast<uptr>(
reinterpret_cast<FunctionCallTrie *>(&FunctionCallTrieStorage));
atomic_store(&TLD.FCT, FCT, memory_order_release);
}
if (FCT == 1)
return nullptr;
return &TLD;
}
static void cleanupTLD() XRAY_NEVER_INSTRUMENT {
auto FCT = atomic_exchange(&TLD.FCT, 0, memory_order_acq_rel);
if (FCT == reinterpret_cast<uptr>(reinterpret_cast<FunctionCallTrie *>(
&FunctionCallTrieStorage)))
reinterpret_cast<FunctionCallTrie *>(FCT)->~FunctionCallTrie();
auto Allocators = atomic_exchange(&TLD.Allocators, 0, memory_order_acq_rel);
if (Allocators ==
reinterpret_cast<uptr>(
reinterpret_cast<FunctionCallTrie::Allocators *>(&AllocatorsStorage)))
reinterpret_cast<FunctionCallTrie::Allocators *>(Allocators)->~Allocators();
}
static void postCurrentThreadFCT(ProfilingData &T) XRAY_NEVER_INSTRUMENT {
RecursionGuard TLDInit(TLDInitGuard);
if (!TLDInit)
return;
uptr P = atomic_exchange(&T.FCT, 0, memory_order_acq_rel);
if (P != reinterpret_cast<uptr>(
reinterpret_cast<FunctionCallTrie *>(&FunctionCallTrieStorage)))
return;
auto FCT = reinterpret_cast<FunctionCallTrie *>(P);
DCHECK_NE(FCT, nullptr);
uptr A = atomic_exchange(&T.Allocators, 0, memory_order_acq_rel);
if (A !=
reinterpret_cast<uptr>(
reinterpret_cast<FunctionCallTrie::Allocators *>(&AllocatorsStorage)))
return;
auto Allocators = reinterpret_cast<FunctionCallTrie::Allocators *>(A);
DCHECK_NE(Allocators, nullptr);
// Always move the data into the profile collector.
profileCollectorService::post(BQ, std::move(*FCT), std::move(*Allocators),
std::move(ThreadBuffers), GetTid());
// Re-initialize the ThreadBuffers object to a known "default" state.
ThreadBuffers = FunctionCallTrie::Allocators::Buffers{};
}
} // namespace
const char *profilingCompilerDefinedFlags() XRAY_NEVER_INSTRUMENT {
#ifdef XRAY_PROFILER_DEFAULT_OPTIONS
return SANITIZER_STRINGIFY(XRAY_PROFILER_DEFAULT_OPTIONS);
#else
return "";
#endif
}
XRayLogFlushStatus profilingFlush() XRAY_NEVER_INSTRUMENT {
if (atomic_load(&ProfilerLogStatus, memory_order_acquire) !=
XRayLogInitStatus::XRAY_LOG_FINALIZED) {
if (Verbosity())
Report("Not flushing profiles, profiling not been finalized.\n");
return XRayLogFlushStatus::XRAY_LOG_NOT_FLUSHING;
}
RecursionGuard SignalGuard(ReentranceGuard);
if (!SignalGuard) {
if (Verbosity())
Report("Cannot finalize properly inside a signal handler!\n");
atomic_store(&ProfilerLogFlushStatus,
XRayLogFlushStatus::XRAY_LOG_NOT_FLUSHING,
memory_order_release);
return XRayLogFlushStatus::XRAY_LOG_NOT_FLUSHING;
}
s32 Previous = atomic_exchange(&ProfilerLogFlushStatus,
XRayLogFlushStatus::XRAY_LOG_FLUSHING,
memory_order_acq_rel);
if (Previous == XRayLogFlushStatus::XRAY_LOG_FLUSHING) {
if (Verbosity())
Report("Not flushing profiles, implementation still flushing.\n");
return XRayLogFlushStatus::XRAY_LOG_FLUSHING;
}
// At this point, we'll create the file that will contain the profile, but
// only if the options say so.
if (!profilingFlags()->no_flush) {
// First check whether we have data in the profile collector service
// before we try and write anything down.
XRayBuffer B = profileCollectorService::nextBuffer({nullptr, 0});
if (B.Data == nullptr) {
if (Verbosity())
Report("profiling: No data to flush.\n");
} else {
LogWriter *LW = LogWriter::Open();
if (LW == nullptr) {
if (Verbosity())
Report("profiling: Failed to flush to file, dropping data.\n");
} else {
// Now for each of the buffers, write out the profile data as we would
// see it in memory, verbatim.
while (B.Data != nullptr && B.Size != 0) {
LW->WriteAll(reinterpret_cast<const char *>(B.Data),
reinterpret_cast<const char *>(B.Data) + B.Size);
B = profileCollectorService::nextBuffer(B);
}
}
LogWriter::Close(LW);
}
}
profileCollectorService::reset();
atomic_store(&ProfilerLogFlushStatus, XRayLogFlushStatus::XRAY_LOG_FLUSHED,
memory_order_release);
atomic_store(&ProfilerLogStatus, XRayLogInitStatus::XRAY_LOG_UNINITIALIZED,
memory_order_release);
return XRayLogFlushStatus::XRAY_LOG_FLUSHED;
}
void profilingHandleArg0(int32_t FuncId,
XRayEntryType Entry) XRAY_NEVER_INSTRUMENT {
unsigned char CPU;
auto TSC = readTSC(CPU);
RecursionGuard G(ReentranceGuard);
if (!G)
return;
auto Status = atomic_load(&ProfilerLogStatus, memory_order_acquire);
if (UNLIKELY(Status == XRayLogInitStatus::XRAY_LOG_UNINITIALIZED ||
Status == XRayLogInitStatus::XRAY_LOG_INITIALIZING))
return;
if (UNLIKELY(Status == XRayLogInitStatus::XRAY_LOG_FINALIZED ||
Status == XRayLogInitStatus::XRAY_LOG_FINALIZING)) {
postCurrentThreadFCT(TLD);
return;
}
auto T = getThreadLocalData();
if (T == nullptr)
return;
auto FCT = reinterpret_cast<FunctionCallTrie *>(atomic_load_relaxed(&T->FCT));
switch (Entry) {
case XRayEntryType::ENTRY:
case XRayEntryType::LOG_ARGS_ENTRY:
FCT->enterFunction(FuncId, TSC, CPU);
break;
case XRayEntryType::EXIT:
case XRayEntryType::TAIL:
FCT->exitFunction(FuncId, TSC, CPU);
break;
default:
// FIXME: Handle bugs.
break;
}
}
void profilingHandleArg1(int32_t FuncId, XRayEntryType Entry,
uint64_t) XRAY_NEVER_INSTRUMENT {
return profilingHandleArg0(FuncId, Entry);
}
XRayLogInitStatus profilingFinalize() XRAY_NEVER_INSTRUMENT {
s32 CurrentStatus = XRayLogInitStatus::XRAY_LOG_INITIALIZED;
if (!atomic_compare_exchange_strong(&ProfilerLogStatus, &CurrentStatus,
XRayLogInitStatus::XRAY_LOG_FINALIZING,
memory_order_release)) {
if (Verbosity())
Report("Cannot finalize profile, the profiling is not initialized.\n");
return static_cast<XRayLogInitStatus>(CurrentStatus);
}
// Mark then finalize the current generation of buffers. This allows us to let
// the threads currently holding onto new buffers still use them, but let the
// last reference do the memory cleanup.
DCHECK_NE(BQ, nullptr);
BQ->finalize();
// Wait a grace period to allow threads to see that we're finalizing.
SleepForMillis(profilingFlags()->grace_period_ms);
// If we for some reason are entering this function from an instrumented
// handler, we bail out.
RecursionGuard G(ReentranceGuard);
if (!G)
return static_cast<XRayLogInitStatus>(CurrentStatus);
// Post the current thread's data if we have any.
postCurrentThreadFCT(TLD);
// Then we force serialize the log data.
profileCollectorService::serialize();
atomic_store(&ProfilerLogStatus, XRayLogInitStatus::XRAY_LOG_FINALIZED,
memory_order_release);
return XRayLogInitStatus::XRAY_LOG_FINALIZED;
}
XRayLogInitStatus
profilingLoggingInit(size_t, size_t, void *Options,
size_t OptionsSize) XRAY_NEVER_INSTRUMENT {
RecursionGuard G(ReentranceGuard);
if (!G)
return XRayLogInitStatus::XRAY_LOG_UNINITIALIZED;
s32 CurrentStatus = XRayLogInitStatus::XRAY_LOG_UNINITIALIZED;
if (!atomic_compare_exchange_strong(&ProfilerLogStatus, &CurrentStatus,
XRayLogInitStatus::XRAY_LOG_INITIALIZING,
memory_order_acq_rel)) {
if (Verbosity())
Report("Cannot initialize already initialised profiling "
"implementation.\n");
return static_cast<XRayLogInitStatus>(CurrentStatus);
}
{
SpinMutexLock Lock(&ProfilerOptionsMutex);
FlagParser ConfigParser;
ProfilerFlags Flags;
Flags.setDefaults();
registerProfilerFlags(&ConfigParser, &Flags);
ConfigParser.ParseString(profilingCompilerDefinedFlags());
const char *Env = GetEnv("XRAY_PROFILING_OPTIONS");
if (Env == nullptr)
Env = "";
ConfigParser.ParseString(Env);
// Then parse the configuration string provided.
ConfigParser.ParseString(static_cast<const char *>(Options));
if (Verbosity())
ReportUnrecognizedFlags();
*profilingFlags() = Flags;
}
// We need to reset the profile data collection implementation now.
profileCollectorService::reset();
// Then also reset the buffer queue implementation.
if (BQ == nullptr) {
bool Success = false;
new (&BufferQueueStorage)
BufferQueue(profilingFlags()->per_thread_allocator_max,
profilingFlags()->buffers_max, Success);
if (!Success) {
if (Verbosity())
Report("Failed to initialize preallocated memory buffers!");
atomic_store(&ProfilerLogStatus,
XRayLogInitStatus::XRAY_LOG_UNINITIALIZED,
memory_order_release);
return XRayLogInitStatus::XRAY_LOG_UNINITIALIZED;
}
// If we've succeded, set the global pointer to the initialised storage.
BQ = reinterpret_cast<BufferQueue *>(&BufferQueueStorage);
} else {
BQ->finalize();
auto InitStatus = BQ->init(profilingFlags()->per_thread_allocator_max,
profilingFlags()->buffers_max);
if (InitStatus != BufferQueue::ErrorCode::Ok) {
if (Verbosity())
Report("Failed to initialize preallocated memory buffers; error: %s",
BufferQueue::getErrorString(InitStatus));
atomic_store(&ProfilerLogStatus,
XRayLogInitStatus::XRAY_LOG_UNINITIALIZED,
memory_order_release);
return XRayLogInitStatus::XRAY_LOG_UNINITIALIZED;
}
DCHECK(!BQ->finalizing());
}
// We need to set up the exit handlers.
static pthread_once_t Once = PTHREAD_ONCE_INIT;
pthread_once(
&Once, +[] {
pthread_key_create(
&ProfilingKey, +[](void *P) XRAY_NEVER_INSTRUMENT {
if (atomic_exchange(&ThreadExitingLatch, 1, memory_order_acq_rel))
return;
if (P == nullptr)
return;
auto T = reinterpret_cast<ProfilingData *>(P);
if (atomic_load_relaxed(&T->Allocators) == 0)
return;
{
// If we're somehow executing this while inside a
// non-reentrant-friendly context, we skip attempting to post
// the current thread's data.
RecursionGuard G(ReentranceGuard);
if (!G)
return;
postCurrentThreadFCT(*T);
}
});
// We also need to set up an exit handler, so that we can get the
// profile information at exit time. We use the C API to do this, to not
// rely on C++ ABI functions for registering exit handlers.
Atexit(+[]() XRAY_NEVER_INSTRUMENT {
if (atomic_exchange(&ThreadExitingLatch, 1, memory_order_acq_rel))
return;
auto Cleanup =
at_scope_exit([]() XRAY_NEVER_INSTRUMENT { cleanupTLD(); });
// Finalize and flush.
if (profilingFinalize() != XRAY_LOG_FINALIZED ||
profilingFlush() != XRAY_LOG_FLUSHED)
return;
if (Verbosity())
Report("XRay Profile flushed at exit.");
});
});
__xray_log_set_buffer_iterator(profileCollectorService::nextBuffer);
__xray_set_handler(profilingHandleArg0);
__xray_set_handler_arg1(profilingHandleArg1);
atomic_store(&ProfilerLogStatus, XRayLogInitStatus::XRAY_LOG_INITIALIZED,
memory_order_release);
if (Verbosity())
Report("XRay Profiling init successful.\n");
return XRayLogInitStatus::XRAY_LOG_INITIALIZED;
}
bool profilingDynamicInitializer() XRAY_NEVER_INSTRUMENT {
// Set up the flag defaults from the static defaults and the
// compiler-provided defaults.
{
SpinMutexLock Lock(&ProfilerOptionsMutex);
auto *F = profilingFlags();
F->setDefaults();
FlagParser ProfilingParser;
registerProfilerFlags(&ProfilingParser, F);
ProfilingParser.ParseString(profilingCompilerDefinedFlags());
}
XRayLogImpl Impl{
profilingLoggingInit,
profilingFinalize,
profilingHandleArg0,
profilingFlush,
};
auto RegistrationResult = __xray_log_register_mode("xray-profiling", Impl);
if (RegistrationResult != XRayLogRegisterStatus::XRAY_REGISTRATION_OK) {
if (Verbosity())
Report("Cannot register XRay Profiling mode to 'xray-profiling'; error = "
"%d\n",
RegistrationResult);
return false;
}
if (!internal_strcmp(flags()->xray_mode, "xray-profiling"))
__xray_log_select_mode("xray_profiling");
return true;
}
} // namespace __xray
static auto UNUSED Unused = __xray::profilingDynamicInitializer();