xray_function_call_trie.h
22.4 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
//===-- xray_function_call_trie.h ------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of XRay, a dynamic runtime instrumentation system.
//
// This file defines the interface for a function call trie.
//
//===----------------------------------------------------------------------===//
#ifndef XRAY_FUNCTION_CALL_TRIE_H
#define XRAY_FUNCTION_CALL_TRIE_H
#include "xray_buffer_queue.h"
#include "xray_defs.h"
#include "xray_profiling_flags.h"
#include "xray_segmented_array.h"
#include <limits>
#include <memory> // For placement new.
#include <utility>
namespace __xray {
/// A FunctionCallTrie represents the stack traces of XRay instrumented
/// functions that we've encountered, where a node corresponds to a function and
/// the path from the root to the node its stack trace. Each node in the trie
/// will contain some useful values, including:
///
/// * The cumulative amount of time spent in this particular node/stack.
/// * The number of times this stack has appeared.
/// * A histogram of latencies for that particular node.
///
/// Each node in the trie will also contain a list of callees, represented using
/// a Array<NodeIdPair> -- each NodeIdPair instance will contain the function
/// ID of the callee, and a pointer to the node.
///
/// If we visualise this data structure, we'll find the following potential
/// representation:
///
/// [function id node] -> [callees] [cumulative time]
/// [call counter] [latency histogram]
///
/// As an example, when we have a function in this pseudocode:
///
/// func f(N) {
/// g()
/// h()
/// for i := 1..N { j() }
/// }
///
/// We may end up with a trie of the following form:
///
/// f -> [ g, h, j ] [...] [1] [...]
/// g -> [ ... ] [...] [1] [...]
/// h -> [ ... ] [...] [1] [...]
/// j -> [ ... ] [...] [N] [...]
///
/// If for instance the function g() called j() like so:
///
/// func g() {
/// for i := 1..10 { j() }
/// }
///
/// We'll find the following updated trie:
///
/// f -> [ g, h, j ] [...] [1] [...]
/// g -> [ j' ] [...] [1] [...]
/// h -> [ ... ] [...] [1] [...]
/// j -> [ ... ] [...] [N] [...]
/// j' -> [ ... ] [...] [10] [...]
///
/// Note that we'll have a new node representing the path `f -> g -> j'` with
/// isolated data. This isolation gives us a means of representing the stack
/// traces as a path, as opposed to a key in a table. The alternative
/// implementation here would be to use a separate table for the path, and use
/// hashes of the path as an identifier to accumulate the information. We've
/// moved away from this approach as it takes a lot of time to compute the hash
/// every time we need to update a function's call information as we're handling
/// the entry and exit events.
///
/// This approach allows us to maintain a shadow stack, which represents the
/// currently executing path, and on function exits quickly compute the amount
/// of time elapsed from the entry, then update the counters for the node
/// already represented in the trie. This necessitates an efficient
/// representation of the various data structures (the list of callees must be
/// cache-aware and efficient to look up, and the histogram must be compact and
/// quick to update) to enable us to keep the overheads of this implementation
/// to the minimum.
class FunctionCallTrie {
public:
struct Node;
// We use a NodeIdPair type instead of a std::pair<...> to not rely on the
// standard library types in this header.
struct NodeIdPair {
Node *NodePtr;
int32_t FId;
};
using NodeIdPairArray = Array<NodeIdPair>;
using NodeIdPairAllocatorType = NodeIdPairArray::AllocatorType;
// A Node in the FunctionCallTrie gives us a list of callees, the cumulative
// number of times this node actually appeared, the cumulative amount of time
// for this particular node including its children call times, and just the
// local time spent on this node. Each Node will have the ID of the XRay
// instrumented function that it is associated to.
struct Node {
Node *Parent;
NodeIdPairArray Callees;
uint64_t CallCount;
uint64_t CumulativeLocalTime; // Typically in TSC deltas, not wall-time.
int32_t FId;
// TODO: Include the compact histogram.
};
private:
struct ShadowStackEntry {
uint64_t EntryTSC;
Node *NodePtr;
uint16_t EntryCPU;
};
using NodeArray = Array<Node>;
using RootArray = Array<Node *>;
using ShadowStackArray = Array<ShadowStackEntry>;
public:
// We collate the allocators we need into a single struct, as a convenience to
// allow us to initialize these as a group.
struct Allocators {
using NodeAllocatorType = NodeArray::AllocatorType;
using RootAllocatorType = RootArray::AllocatorType;
using ShadowStackAllocatorType = ShadowStackArray::AllocatorType;
// Use hosted aligned storage members to allow for trivial move and init.
// This also allows us to sidestep the potential-failing allocation issue.
typename std::aligned_storage<sizeof(NodeAllocatorType),
alignof(NodeAllocatorType)>::type
NodeAllocatorStorage;
typename std::aligned_storage<sizeof(RootAllocatorType),
alignof(RootAllocatorType)>::type
RootAllocatorStorage;
typename std::aligned_storage<sizeof(ShadowStackAllocatorType),
alignof(ShadowStackAllocatorType)>::type
ShadowStackAllocatorStorage;
typename std::aligned_storage<sizeof(NodeIdPairAllocatorType),
alignof(NodeIdPairAllocatorType)>::type
NodeIdPairAllocatorStorage;
NodeAllocatorType *NodeAllocator = nullptr;
RootAllocatorType *RootAllocator = nullptr;
ShadowStackAllocatorType *ShadowStackAllocator = nullptr;
NodeIdPairAllocatorType *NodeIdPairAllocator = nullptr;
Allocators() = default;
Allocators(const Allocators &) = delete;
Allocators &operator=(const Allocators &) = delete;
struct Buffers {
BufferQueue::Buffer NodeBuffer;
BufferQueue::Buffer RootsBuffer;
BufferQueue::Buffer ShadowStackBuffer;
BufferQueue::Buffer NodeIdPairBuffer;
};
explicit Allocators(Buffers &B) XRAY_NEVER_INSTRUMENT {
new (&NodeAllocatorStorage)
NodeAllocatorType(B.NodeBuffer.Data, B.NodeBuffer.Size);
NodeAllocator =
reinterpret_cast<NodeAllocatorType *>(&NodeAllocatorStorage);
new (&RootAllocatorStorage)
RootAllocatorType(B.RootsBuffer.Data, B.RootsBuffer.Size);
RootAllocator =
reinterpret_cast<RootAllocatorType *>(&RootAllocatorStorage);
new (&ShadowStackAllocatorStorage) ShadowStackAllocatorType(
B.ShadowStackBuffer.Data, B.ShadowStackBuffer.Size);
ShadowStackAllocator = reinterpret_cast<ShadowStackAllocatorType *>(
&ShadowStackAllocatorStorage);
new (&NodeIdPairAllocatorStorage) NodeIdPairAllocatorType(
B.NodeIdPairBuffer.Data, B.NodeIdPairBuffer.Size);
NodeIdPairAllocator = reinterpret_cast<NodeIdPairAllocatorType *>(
&NodeIdPairAllocatorStorage);
}
explicit Allocators(uptr Max) XRAY_NEVER_INSTRUMENT {
new (&NodeAllocatorStorage) NodeAllocatorType(Max);
NodeAllocator =
reinterpret_cast<NodeAllocatorType *>(&NodeAllocatorStorage);
new (&RootAllocatorStorage) RootAllocatorType(Max);
RootAllocator =
reinterpret_cast<RootAllocatorType *>(&RootAllocatorStorage);
new (&ShadowStackAllocatorStorage) ShadowStackAllocatorType(Max);
ShadowStackAllocator = reinterpret_cast<ShadowStackAllocatorType *>(
&ShadowStackAllocatorStorage);
new (&NodeIdPairAllocatorStorage) NodeIdPairAllocatorType(Max);
NodeIdPairAllocator = reinterpret_cast<NodeIdPairAllocatorType *>(
&NodeIdPairAllocatorStorage);
}
Allocators(Allocators &&O) XRAY_NEVER_INSTRUMENT {
// Here we rely on the safety of memcpy'ing contents of the storage
// members, and then pointing the source pointers to nullptr.
internal_memcpy(&NodeAllocatorStorage, &O.NodeAllocatorStorage,
sizeof(NodeAllocatorType));
internal_memcpy(&RootAllocatorStorage, &O.RootAllocatorStorage,
sizeof(RootAllocatorType));
internal_memcpy(&ShadowStackAllocatorStorage,
&O.ShadowStackAllocatorStorage,
sizeof(ShadowStackAllocatorType));
internal_memcpy(&NodeIdPairAllocatorStorage,
&O.NodeIdPairAllocatorStorage,
sizeof(NodeIdPairAllocatorType));
NodeAllocator =
reinterpret_cast<NodeAllocatorType *>(&NodeAllocatorStorage);
RootAllocator =
reinterpret_cast<RootAllocatorType *>(&RootAllocatorStorage);
ShadowStackAllocator = reinterpret_cast<ShadowStackAllocatorType *>(
&ShadowStackAllocatorStorage);
NodeIdPairAllocator = reinterpret_cast<NodeIdPairAllocatorType *>(
&NodeIdPairAllocatorStorage);
O.NodeAllocator = nullptr;
O.RootAllocator = nullptr;
O.ShadowStackAllocator = nullptr;
O.NodeIdPairAllocator = nullptr;
}
Allocators &operator=(Allocators &&O) XRAY_NEVER_INSTRUMENT {
// When moving into an existing instance, we ensure that we clean up the
// current allocators.
if (NodeAllocator)
NodeAllocator->~NodeAllocatorType();
if (O.NodeAllocator) {
new (&NodeAllocatorStorage)
NodeAllocatorType(std::move(*O.NodeAllocator));
NodeAllocator =
reinterpret_cast<NodeAllocatorType *>(&NodeAllocatorStorage);
O.NodeAllocator = nullptr;
} else {
NodeAllocator = nullptr;
}
if (RootAllocator)
RootAllocator->~RootAllocatorType();
if (O.RootAllocator) {
new (&RootAllocatorStorage)
RootAllocatorType(std::move(*O.RootAllocator));
RootAllocator =
reinterpret_cast<RootAllocatorType *>(&RootAllocatorStorage);
O.RootAllocator = nullptr;
} else {
RootAllocator = nullptr;
}
if (ShadowStackAllocator)
ShadowStackAllocator->~ShadowStackAllocatorType();
if (O.ShadowStackAllocator) {
new (&ShadowStackAllocatorStorage)
ShadowStackAllocatorType(std::move(*O.ShadowStackAllocator));
ShadowStackAllocator = reinterpret_cast<ShadowStackAllocatorType *>(
&ShadowStackAllocatorStorage);
O.ShadowStackAllocator = nullptr;
} else {
ShadowStackAllocator = nullptr;
}
if (NodeIdPairAllocator)
NodeIdPairAllocator->~NodeIdPairAllocatorType();
if (O.NodeIdPairAllocator) {
new (&NodeIdPairAllocatorStorage)
NodeIdPairAllocatorType(std::move(*O.NodeIdPairAllocator));
NodeIdPairAllocator = reinterpret_cast<NodeIdPairAllocatorType *>(
&NodeIdPairAllocatorStorage);
O.NodeIdPairAllocator = nullptr;
} else {
NodeIdPairAllocator = nullptr;
}
return *this;
}
~Allocators() XRAY_NEVER_INSTRUMENT {
if (NodeAllocator != nullptr)
NodeAllocator->~NodeAllocatorType();
if (RootAllocator != nullptr)
RootAllocator->~RootAllocatorType();
if (ShadowStackAllocator != nullptr)
ShadowStackAllocator->~ShadowStackAllocatorType();
if (NodeIdPairAllocator != nullptr)
NodeIdPairAllocator->~NodeIdPairAllocatorType();
}
};
static Allocators InitAllocators() XRAY_NEVER_INSTRUMENT {
return InitAllocatorsCustom(profilingFlags()->per_thread_allocator_max);
}
static Allocators InitAllocatorsCustom(uptr Max) XRAY_NEVER_INSTRUMENT {
Allocators A(Max);
return A;
}
static Allocators
InitAllocatorsFromBuffers(Allocators::Buffers &Bufs) XRAY_NEVER_INSTRUMENT {
Allocators A(Bufs);
return A;
}
private:
NodeArray Nodes;
RootArray Roots;
ShadowStackArray ShadowStack;
NodeIdPairAllocatorType *NodeIdPairAllocator;
uint32_t OverflowedFunctions;
public:
explicit FunctionCallTrie(const Allocators &A) XRAY_NEVER_INSTRUMENT
: Nodes(*A.NodeAllocator),
Roots(*A.RootAllocator),
ShadowStack(*A.ShadowStackAllocator),
NodeIdPairAllocator(A.NodeIdPairAllocator),
OverflowedFunctions(0) {}
FunctionCallTrie() = delete;
FunctionCallTrie(const FunctionCallTrie &) = delete;
FunctionCallTrie &operator=(const FunctionCallTrie &) = delete;
FunctionCallTrie(FunctionCallTrie &&O) XRAY_NEVER_INSTRUMENT
: Nodes(std::move(O.Nodes)),
Roots(std::move(O.Roots)),
ShadowStack(std::move(O.ShadowStack)),
NodeIdPairAllocator(O.NodeIdPairAllocator),
OverflowedFunctions(O.OverflowedFunctions) {}
FunctionCallTrie &operator=(FunctionCallTrie &&O) XRAY_NEVER_INSTRUMENT {
Nodes = std::move(O.Nodes);
Roots = std::move(O.Roots);
ShadowStack = std::move(O.ShadowStack);
NodeIdPairAllocator = O.NodeIdPairAllocator;
OverflowedFunctions = O.OverflowedFunctions;
return *this;
}
~FunctionCallTrie() XRAY_NEVER_INSTRUMENT {}
void enterFunction(const int32_t FId, uint64_t TSC,
uint16_t CPU) XRAY_NEVER_INSTRUMENT {
DCHECK_NE(FId, 0);
// If we're already overflowed the function call stack, do not bother
// attempting to record any more function entries.
if (UNLIKELY(OverflowedFunctions)) {
++OverflowedFunctions;
return;
}
// If this is the first function we've encountered, we want to set up the
// node(s) and treat it as a root.
if (UNLIKELY(ShadowStack.empty())) {
auto *NewRoot = Nodes.AppendEmplace(
nullptr, NodeIdPairArray(*NodeIdPairAllocator), 0u, 0u, FId);
if (UNLIKELY(NewRoot == nullptr))
return;
if (Roots.AppendEmplace(NewRoot) == nullptr) {
Nodes.trim(1);
return;
}
if (ShadowStack.AppendEmplace(TSC, NewRoot, CPU) == nullptr) {
Nodes.trim(1);
Roots.trim(1);
++OverflowedFunctions;
return;
}
return;
}
// From this point on, we require that the stack is not empty.
DCHECK(!ShadowStack.empty());
auto TopNode = ShadowStack.back().NodePtr;
DCHECK_NE(TopNode, nullptr);
// If we've seen this callee before, then we access that node and place that
// on the top of the stack.
auto* Callee = TopNode->Callees.find_element(
[FId](const NodeIdPair &NR) { return NR.FId == FId; });
if (Callee != nullptr) {
CHECK_NE(Callee->NodePtr, nullptr);
if (ShadowStack.AppendEmplace(TSC, Callee->NodePtr, CPU) == nullptr)
++OverflowedFunctions;
return;
}
// This means we've never seen this stack before, create a new node here.
auto* NewNode = Nodes.AppendEmplace(
TopNode, NodeIdPairArray(*NodeIdPairAllocator), 0u, 0u, FId);
if (UNLIKELY(NewNode == nullptr))
return;
DCHECK_NE(NewNode, nullptr);
TopNode->Callees.AppendEmplace(NewNode, FId);
if (ShadowStack.AppendEmplace(TSC, NewNode, CPU) == nullptr)
++OverflowedFunctions;
return;
}
void exitFunction(int32_t FId, uint64_t TSC,
uint16_t CPU) XRAY_NEVER_INSTRUMENT {
// If we're exiting functions that have "overflowed" or don't fit into the
// stack due to allocator constraints, we then decrement that count first.
if (OverflowedFunctions) {
--OverflowedFunctions;
return;
}
// When we exit a function, we look up the ShadowStack to see whether we've
// entered this function before. We do as little processing here as we can,
// since most of the hard work would have already been done at function
// entry.
uint64_t CumulativeTreeTime = 0;
while (!ShadowStack.empty()) {
const auto &Top = ShadowStack.back();
auto TopNode = Top.NodePtr;
DCHECK_NE(TopNode, nullptr);
// We may encounter overflow on the TSC we're provided, which may end up
// being less than the TSC when we first entered the function.
//
// To get the accurate measurement of cycles, we need to check whether
// we've overflowed (TSC < Top.EntryTSC) and then account the difference
// between the entry TSC and the max for the TSC counter (max of uint64_t)
// then add the value of TSC. We can prove that the maximum delta we will
// get is at most the 64-bit unsigned value, since the difference between
// a TSC of 0 and a Top.EntryTSC of 1 is (numeric_limits<uint64_t>::max()
// - 1) + 1.
//
// NOTE: This assumes that TSCs are synchronised across CPUs.
// TODO: Count the number of times we've seen CPU migrations.
uint64_t LocalTime =
Top.EntryTSC > TSC
? (std::numeric_limits<uint64_t>::max() - Top.EntryTSC) + TSC
: TSC - Top.EntryTSC;
TopNode->CallCount++;
TopNode->CumulativeLocalTime += LocalTime - CumulativeTreeTime;
CumulativeTreeTime += LocalTime;
ShadowStack.trim(1);
// TODO: Update the histogram for the node.
if (TopNode->FId == FId)
break;
}
}
const RootArray &getRoots() const XRAY_NEVER_INSTRUMENT { return Roots; }
// The deepCopyInto operation will update the provided FunctionCallTrie by
// re-creating the contents of this particular FunctionCallTrie in the other
// FunctionCallTrie. It will do this using a Depth First Traversal from the
// roots, and while doing so recreating the traversal in the provided
// FunctionCallTrie.
//
// This operation will *not* destroy the state in `O`, and thus may cause some
// duplicate entries in `O` if it is not empty.
//
// This function is *not* thread-safe, and may require external
// synchronisation of both "this" and |O|.
//
// This function must *not* be called with a non-empty FunctionCallTrie |O|.
void deepCopyInto(FunctionCallTrie &O) const XRAY_NEVER_INSTRUMENT {
DCHECK(O.getRoots().empty());
// We then push the root into a stack, to use as the parent marker for new
// nodes we push in as we're traversing depth-first down the call tree.
struct NodeAndParent {
FunctionCallTrie::Node *Node;
FunctionCallTrie::Node *NewNode;
};
using Stack = Array<NodeAndParent>;
typename Stack::AllocatorType StackAllocator(
profilingFlags()->stack_allocator_max);
Stack DFSStack(StackAllocator);
for (const auto Root : getRoots()) {
// Add a node in O for this root.
auto NewRoot = O.Nodes.AppendEmplace(
nullptr, NodeIdPairArray(*O.NodeIdPairAllocator), Root->CallCount,
Root->CumulativeLocalTime, Root->FId);
// Because we cannot allocate more memory we should bail out right away.
if (UNLIKELY(NewRoot == nullptr))
return;
if (UNLIKELY(O.Roots.Append(NewRoot) == nullptr))
return;
// TODO: Figure out what to do if we fail to allocate any more stack
// space. Maybe warn or report once?
if (DFSStack.AppendEmplace(Root, NewRoot) == nullptr)
return;
while (!DFSStack.empty()) {
NodeAndParent NP = DFSStack.back();
DCHECK_NE(NP.Node, nullptr);
DCHECK_NE(NP.NewNode, nullptr);
DFSStack.trim(1);
for (const auto Callee : NP.Node->Callees) {
auto NewNode = O.Nodes.AppendEmplace(
NP.NewNode, NodeIdPairArray(*O.NodeIdPairAllocator),
Callee.NodePtr->CallCount, Callee.NodePtr->CumulativeLocalTime,
Callee.FId);
if (UNLIKELY(NewNode == nullptr))
return;
if (UNLIKELY(NP.NewNode->Callees.AppendEmplace(NewNode, Callee.FId) ==
nullptr))
return;
if (UNLIKELY(DFSStack.AppendEmplace(Callee.NodePtr, NewNode) ==
nullptr))
return;
}
}
}
}
// The mergeInto operation will update the provided FunctionCallTrie by
// traversing the current trie's roots and updating (i.e. merging) the data in
// the nodes with the data in the target's nodes. If the node doesn't exist in
// the provided trie, we add a new one in the right position, and inherit the
// data from the original (current) trie, along with all its callees.
//
// This function is *not* thread-safe, and may require external
// synchronisation of both "this" and |O|.
void mergeInto(FunctionCallTrie &O) const XRAY_NEVER_INSTRUMENT {
struct NodeAndTarget {
FunctionCallTrie::Node *OrigNode;
FunctionCallTrie::Node *TargetNode;
};
using Stack = Array<NodeAndTarget>;
typename Stack::AllocatorType StackAllocator(
profilingFlags()->stack_allocator_max);
Stack DFSStack(StackAllocator);
for (const auto Root : getRoots()) {
Node *TargetRoot = nullptr;
auto R = O.Roots.find_element(
[&](const Node *Node) { return Node->FId == Root->FId; });
if (R == nullptr) {
TargetRoot = O.Nodes.AppendEmplace(
nullptr, NodeIdPairArray(*O.NodeIdPairAllocator), 0u, 0u,
Root->FId);
if (UNLIKELY(TargetRoot == nullptr))
return;
O.Roots.Append(TargetRoot);
} else {
TargetRoot = *R;
}
DFSStack.AppendEmplace(Root, TargetRoot);
while (!DFSStack.empty()) {
NodeAndTarget NT = DFSStack.back();
DCHECK_NE(NT.OrigNode, nullptr);
DCHECK_NE(NT.TargetNode, nullptr);
DFSStack.trim(1);
// TODO: Update the histogram as well when we have it ready.
NT.TargetNode->CallCount += NT.OrigNode->CallCount;
NT.TargetNode->CumulativeLocalTime += NT.OrigNode->CumulativeLocalTime;
for (const auto Callee : NT.OrigNode->Callees) {
auto TargetCallee = NT.TargetNode->Callees.find_element(
[&](const FunctionCallTrie::NodeIdPair &C) {
return C.FId == Callee.FId;
});
if (TargetCallee == nullptr) {
auto NewTargetNode = O.Nodes.AppendEmplace(
NT.TargetNode, NodeIdPairArray(*O.NodeIdPairAllocator), 0u, 0u,
Callee.FId);
if (UNLIKELY(NewTargetNode == nullptr))
return;
TargetCallee =
NT.TargetNode->Callees.AppendEmplace(NewTargetNode, Callee.FId);
}
DFSStack.AppendEmplace(Callee.NodePtr, TargetCallee->NodePtr);
}
}
}
}
};
} // namespace __xray
#endif // XRAY_FUNCTION_CALL_TRIE_H