xray_fdr_log_writer.h
8.72 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
//===-- xray_fdr_log_writer.h ---------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of XRay, a function call tracing system.
//
//===----------------------------------------------------------------------===//
#ifndef COMPILER_RT_LIB_XRAY_XRAY_FDR_LOG_WRITER_H_
#define COMPILER_RT_LIB_XRAY_XRAY_FDR_LOG_WRITER_H_
#include "xray_buffer_queue.h"
#include "xray_fdr_log_records.h"
#include <functional>
#include <tuple>
#include <type_traits>
#include <utility>
namespace __xray {
template <size_t Index> struct SerializerImpl {
template <class Tuple,
typename std::enable_if<
Index<std::tuple_size<
typename std::remove_reference<Tuple>::type>::value,
int>::type = 0> static void serializeTo(char *Buffer,
Tuple &&T) {
auto P = reinterpret_cast<const char *>(&std::get<Index>(T));
constexpr auto Size = sizeof(std::get<Index>(T));
internal_memcpy(Buffer, P, Size);
SerializerImpl<Index + 1>::serializeTo(Buffer + Size,
std::forward<Tuple>(T));
}
template <class Tuple,
typename std::enable_if<
Index >= std::tuple_size<typename std::remove_reference<
Tuple>::type>::value,
int>::type = 0>
static void serializeTo(char *, Tuple &&) {}
};
using Serializer = SerializerImpl<0>;
template <class Tuple, size_t Index> struct AggregateSizesImpl {
static constexpr size_t value =
sizeof(typename std::tuple_element<Index, Tuple>::type) +
AggregateSizesImpl<Tuple, Index - 1>::value;
};
template <class Tuple> struct AggregateSizesImpl<Tuple, 0> {
static constexpr size_t value =
sizeof(typename std::tuple_element<0, Tuple>::type);
};
template <class Tuple> struct AggregateSizes {
static constexpr size_t value =
AggregateSizesImpl<Tuple, std::tuple_size<Tuple>::value - 1>::value;
};
template <MetadataRecord::RecordKinds Kind, class... DataTypes>
MetadataRecord createMetadataRecord(DataTypes &&... Ds) {
static_assert(AggregateSizes<std::tuple<DataTypes...>>::value <=
sizeof(MetadataRecord) - 1,
"Metadata payload longer than metadata buffer!");
MetadataRecord R;
R.Type = 1;
R.RecordKind = static_cast<uint8_t>(Kind);
Serializer::serializeTo(R.Data,
std::make_tuple(std::forward<DataTypes>(Ds)...));
return R;
}
class FDRLogWriter {
BufferQueue::Buffer &Buffer;
char *NextRecord = nullptr;
template <class T> void writeRecord(const T &R) {
internal_memcpy(NextRecord, reinterpret_cast<const char *>(&R), sizeof(T));
NextRecord += sizeof(T);
// We need this atomic fence here to ensure that other threads attempting to
// read the bytes in the buffer will see the writes committed before the
// extents are updated.
atomic_thread_fence(memory_order_release);
atomic_fetch_add(Buffer.Extents, sizeof(T), memory_order_acq_rel);
}
public:
explicit FDRLogWriter(BufferQueue::Buffer &B, char *P)
: Buffer(B), NextRecord(P) {
DCHECK_NE(Buffer.Data, nullptr);
DCHECK_NE(NextRecord, nullptr);
}
explicit FDRLogWriter(BufferQueue::Buffer &B)
: FDRLogWriter(B, static_cast<char *>(B.Data)) {}
template <MetadataRecord::RecordKinds Kind, class... Data>
bool writeMetadata(Data &&... Ds) {
// TODO: Check boundary conditions:
// 1) Buffer is full, and cannot handle one metadata record.
// 2) Buffer queue is finalising.
writeRecord(createMetadataRecord<Kind>(std::forward<Data>(Ds)...));
return true;
}
template <size_t N> size_t writeMetadataRecords(MetadataRecord (&Recs)[N]) {
constexpr auto Size = sizeof(MetadataRecord) * N;
internal_memcpy(NextRecord, reinterpret_cast<const char *>(Recs), Size);
NextRecord += Size;
// We need this atomic fence here to ensure that other threads attempting to
// read the bytes in the buffer will see the writes committed before the
// extents are updated.
atomic_thread_fence(memory_order_release);
atomic_fetch_add(Buffer.Extents, Size, memory_order_acq_rel);
return Size;
}
enum class FunctionRecordKind : uint8_t {
Enter = 0x00,
Exit = 0x01,
TailExit = 0x02,
EnterArg = 0x03,
};
bool writeFunction(FunctionRecordKind Kind, int32_t FuncId, int32_t Delta) {
FunctionRecord R;
R.Type = 0;
R.RecordKind = uint8_t(Kind);
R.FuncId = FuncId;
R.TSCDelta = Delta;
writeRecord(R);
return true;
}
bool writeFunctionWithArg(FunctionRecordKind Kind, int32_t FuncId,
int32_t Delta, uint64_t Arg) {
// We need to write the function with arg into the buffer, and then
// atomically update the buffer extents. This ensures that any reads
// synchronised on the buffer extents record will always see the writes
// that happen before the atomic update.
FunctionRecord R;
R.Type = 0;
R.RecordKind = uint8_t(Kind);
R.FuncId = FuncId;
R.TSCDelta = Delta;
MetadataRecord A =
createMetadataRecord<MetadataRecord::RecordKinds::CallArgument>(Arg);
NextRecord = reinterpret_cast<char *>(internal_memcpy(
NextRecord, reinterpret_cast<char *>(&R), sizeof(R))) +
sizeof(R);
NextRecord = reinterpret_cast<char *>(internal_memcpy(
NextRecord, reinterpret_cast<char *>(&A), sizeof(A))) +
sizeof(A);
// We need this atomic fence here to ensure that other threads attempting to
// read the bytes in the buffer will see the writes committed before the
// extents are updated.
atomic_thread_fence(memory_order_release);
atomic_fetch_add(Buffer.Extents, sizeof(R) + sizeof(A),
memory_order_acq_rel);
return true;
}
bool writeCustomEvent(int32_t Delta, const void *Event, int32_t EventSize) {
// We write the metadata record and the custom event data into the buffer
// first, before we atomically update the extents for the buffer. This
// allows us to ensure that any threads reading the extents of the buffer
// will only ever see the full metadata and custom event payload accounted
// (no partial writes accounted).
MetadataRecord R =
createMetadataRecord<MetadataRecord::RecordKinds::CustomEventMarker>(
EventSize, Delta);
NextRecord = reinterpret_cast<char *>(internal_memcpy(
NextRecord, reinterpret_cast<char *>(&R), sizeof(R))) +
sizeof(R);
NextRecord = reinterpret_cast<char *>(
internal_memcpy(NextRecord, Event, EventSize)) +
EventSize;
// We need this atomic fence here to ensure that other threads attempting to
// read the bytes in the buffer will see the writes committed before the
// extents are updated.
atomic_thread_fence(memory_order_release);
atomic_fetch_add(Buffer.Extents, sizeof(R) + EventSize,
memory_order_acq_rel);
return true;
}
bool writeTypedEvent(int32_t Delta, uint16_t EventType, const void *Event,
int32_t EventSize) {
// We do something similar when writing out typed events, see
// writeCustomEvent(...) above for details.
MetadataRecord R =
createMetadataRecord<MetadataRecord::RecordKinds::TypedEventMarker>(
EventSize, Delta, EventType);
NextRecord = reinterpret_cast<char *>(internal_memcpy(
NextRecord, reinterpret_cast<char *>(&R), sizeof(R))) +
sizeof(R);
NextRecord = reinterpret_cast<char *>(
internal_memcpy(NextRecord, Event, EventSize)) +
EventSize;
// We need this atomic fence here to ensure that other threads attempting to
// read the bytes in the buffer will see the writes committed before the
// extents are updated.
atomic_thread_fence(memory_order_release);
atomic_fetch_add(Buffer.Extents, EventSize, memory_order_acq_rel);
return true;
}
char *getNextRecord() const { return NextRecord; }
void resetRecord() {
NextRecord = reinterpret_cast<char *>(Buffer.Data);
atomic_store(Buffer.Extents, 0, memory_order_release);
}
void undoWrites(size_t B) {
DCHECK_GE(NextRecord - B, reinterpret_cast<char *>(Buffer.Data));
NextRecord -= B;
atomic_fetch_sub(Buffer.Extents, B, memory_order_acq_rel);
}
}; // namespace __xray
} // namespace __xray
#endif // COMPILER-RT_LIB_XRAY_XRAY_FDR_LOG_WRITER_H_