ubsan_handlers.cpp 32.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
//===-- ubsan_handlers.cpp ------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Error logging entry points for the UBSan runtime.
//
//===----------------------------------------------------------------------===//

#include "ubsan_platform.h"
#if CAN_SANITIZE_UB
#include "ubsan_handlers.h"
#include "ubsan_diag.h"
#include "ubsan_flags.h"
#include "ubsan_monitor.h"
#include "ubsan_value.h"

#include "sanitizer_common/sanitizer_common.h"

using namespace __sanitizer;
using namespace __ubsan;

namespace __ubsan {
bool ignoreReport(SourceLocation SLoc, ReportOptions Opts, ErrorType ET) {
  // We are not allowed to skip error report: if we are in unrecoverable
  // handler, we have to terminate the program right now, and therefore
  // have to print some diagnostic.
  //
  // Even if source location is disabled, it doesn't mean that we have
  // already report an error to the user: some concurrently running
  // thread could have acquired it, but not yet printed the report.
  if (Opts.FromUnrecoverableHandler)
    return false;
  return SLoc.isDisabled() || IsPCSuppressed(ET, Opts.pc, SLoc.getFilename());
}

/// Situations in which we might emit a check for the suitability of a
/// pointer or glvalue. Needs to be kept in sync with CodeGenFunction.h in
/// clang.
enum TypeCheckKind {
  /// Checking the operand of a load. Must be suitably sized and aligned.
  TCK_Load,
  /// Checking the destination of a store. Must be suitably sized and aligned.
  TCK_Store,
  /// Checking the bound value in a reference binding. Must be suitably sized
  /// and aligned, but is not required to refer to an object (until the
  /// reference is used), per core issue 453.
  TCK_ReferenceBinding,
  /// Checking the object expression in a non-static data member access. Must
  /// be an object within its lifetime.
  TCK_MemberAccess,
  /// Checking the 'this' pointer for a call to a non-static member function.
  /// Must be an object within its lifetime.
  TCK_MemberCall,
  /// Checking the 'this' pointer for a constructor call.
  TCK_ConstructorCall,
  /// Checking the operand of a static_cast to a derived pointer type. Must be
  /// null or an object within its lifetime.
  TCK_DowncastPointer,
  /// Checking the operand of a static_cast to a derived reference type. Must
  /// be an object within its lifetime.
  TCK_DowncastReference,
  /// Checking the operand of a cast to a base object. Must be suitably sized
  /// and aligned.
  TCK_Upcast,
  /// Checking the operand of a cast to a virtual base object. Must be an
  /// object within its lifetime.
  TCK_UpcastToVirtualBase,
  /// Checking the value assigned to a _Nonnull pointer. Must not be null.
  TCK_NonnullAssign,
  /// Checking the operand of a dynamic_cast or a typeid expression.  Must be
  /// null or an object within its lifetime.
  TCK_DynamicOperation
};

const char *TypeCheckKinds[] = {
    "load of", "store to", "reference binding to", "member access within",
    "member call on", "constructor call on", "downcast of", "downcast of",
    "upcast of", "cast to virtual base of", "_Nonnull binding to",
    "dynamic operation on"};
}

static void handleTypeMismatchImpl(TypeMismatchData *Data, ValueHandle Pointer,
                                   ReportOptions Opts) {
  Location Loc = Data->Loc.acquire();

  uptr Alignment = (uptr)1 << Data->LogAlignment;
  ErrorType ET;
  if (!Pointer)
    ET = (Data->TypeCheckKind == TCK_NonnullAssign)
             ? ErrorType::NullPointerUseWithNullability
             : ErrorType::NullPointerUse;
  else if (Pointer & (Alignment - 1))
    ET = ErrorType::MisalignedPointerUse;
  else
    ET = ErrorType::InsufficientObjectSize;

  // Use the SourceLocation from Data to track deduplication, even if it's
  // invalid.
  if (ignoreReport(Loc.getSourceLocation(), Opts, ET))
    return;

  SymbolizedStackHolder FallbackLoc;
  if (Data->Loc.isInvalid()) {
    FallbackLoc.reset(getCallerLocation(Opts.pc));
    Loc = FallbackLoc;
  }

  ScopedReport R(Opts, Loc, ET);

  switch (ET) {
  case ErrorType::NullPointerUse:
  case ErrorType::NullPointerUseWithNullability:
    Diag(Loc, DL_Error, ET, "%0 null pointer of type %1")
        << TypeCheckKinds[Data->TypeCheckKind] << Data->Type;
    break;
  case ErrorType::MisalignedPointerUse:
    Diag(Loc, DL_Error, ET, "%0 misaligned address %1 for type %3, "
                        "which requires %2 byte alignment")
        << TypeCheckKinds[Data->TypeCheckKind] << (void *)Pointer << Alignment
        << Data->Type;
    break;
  case ErrorType::InsufficientObjectSize:
    Diag(Loc, DL_Error, ET, "%0 address %1 with insufficient space "
                        "for an object of type %2")
        << TypeCheckKinds[Data->TypeCheckKind] << (void *)Pointer << Data->Type;
    break;
  default:
    UNREACHABLE("unexpected error type!");
  }

  if (Pointer)
    Diag(Pointer, DL_Note, ET, "pointer points here");
}

void __ubsan::__ubsan_handle_type_mismatch_v1(TypeMismatchData *Data,
                                              ValueHandle Pointer) {
  GET_REPORT_OPTIONS(false);
  handleTypeMismatchImpl(Data, Pointer, Opts);
}
void __ubsan::__ubsan_handle_type_mismatch_v1_abort(TypeMismatchData *Data,
                                                    ValueHandle Pointer) {
  GET_REPORT_OPTIONS(true);
  handleTypeMismatchImpl(Data, Pointer, Opts);
  Die();
}

static void handleAlignmentAssumptionImpl(AlignmentAssumptionData *Data,
                                          ValueHandle Pointer,
                                          ValueHandle Alignment,
                                          ValueHandle Offset,
                                          ReportOptions Opts) {
  Location Loc = Data->Loc.acquire();
  SourceLocation AssumptionLoc = Data->AssumptionLoc.acquire();

  ErrorType ET = ErrorType::AlignmentAssumption;

  if (ignoreReport(Loc.getSourceLocation(), Opts, ET))
    return;

  ScopedReport R(Opts, Loc, ET);

  uptr RealPointer = Pointer - Offset;
  uptr LSB = LeastSignificantSetBitIndex(RealPointer);
  uptr ActualAlignment = uptr(1) << LSB;

  uptr Mask = Alignment - 1;
  uptr MisAlignmentOffset = RealPointer & Mask;

  if (!Offset) {
    Diag(Loc, DL_Error, ET,
         "assumption of %0 byte alignment for pointer of type %1 failed")
        << Alignment << Data->Type;
  } else {
    Diag(Loc, DL_Error, ET,
         "assumption of %0 byte alignment (with offset of %1 byte) for pointer "
         "of type %2 failed")
        << Alignment << Offset << Data->Type;
  }

  if (!AssumptionLoc.isInvalid())
    Diag(AssumptionLoc, DL_Note, ET, "alignment assumption was specified here");

  Diag(RealPointer, DL_Note, ET,
       "%0address is %1 aligned, misalignment offset is %2 bytes")
      << (Offset ? "offset " : "") << ActualAlignment << MisAlignmentOffset;
}

void __ubsan::__ubsan_handle_alignment_assumption(AlignmentAssumptionData *Data,
                                                  ValueHandle Pointer,
                                                  ValueHandle Alignment,
                                                  ValueHandle Offset) {
  GET_REPORT_OPTIONS(false);
  handleAlignmentAssumptionImpl(Data, Pointer, Alignment, Offset, Opts);
}
void __ubsan::__ubsan_handle_alignment_assumption_abort(
    AlignmentAssumptionData *Data, ValueHandle Pointer, ValueHandle Alignment,
    ValueHandle Offset) {
  GET_REPORT_OPTIONS(true);
  handleAlignmentAssumptionImpl(Data, Pointer, Alignment, Offset, Opts);
  Die();
}

/// \brief Common diagnostic emission for various forms of integer overflow.
template <typename T>
static void handleIntegerOverflowImpl(OverflowData *Data, ValueHandle LHS,
                                      const char *Operator, T RHS,
                                      ReportOptions Opts) {
  SourceLocation Loc = Data->Loc.acquire();
  bool IsSigned = Data->Type.isSignedIntegerTy();
  ErrorType ET = IsSigned ? ErrorType::SignedIntegerOverflow
                          : ErrorType::UnsignedIntegerOverflow;

  if (ignoreReport(Loc, Opts, ET))
    return;

  // If this is an unsigned overflow in non-fatal mode, potentially ignore it.
  if (!IsSigned && !Opts.FromUnrecoverableHandler &&
      flags()->silence_unsigned_overflow)
    return;

  ScopedReport R(Opts, Loc, ET);

  Diag(Loc, DL_Error, ET, "%0 integer overflow: "
                          "%1 %2 %3 cannot be represented in type %4")
      << (IsSigned ? "signed" : "unsigned") << Value(Data->Type, LHS)
      << Operator << RHS << Data->Type;
}

#define UBSAN_OVERFLOW_HANDLER(handler_name, op, unrecoverable)                \
  void __ubsan::handler_name(OverflowData *Data, ValueHandle LHS,              \
                             ValueHandle RHS) {                                \
    GET_REPORT_OPTIONS(unrecoverable);                                         \
    handleIntegerOverflowImpl(Data, LHS, op, Value(Data->Type, RHS), Opts);    \
    if (unrecoverable)                                                         \
      Die();                                                                   \
  }

UBSAN_OVERFLOW_HANDLER(__ubsan_handle_add_overflow, "+", false)
UBSAN_OVERFLOW_HANDLER(__ubsan_handle_add_overflow_abort, "+", true)
UBSAN_OVERFLOW_HANDLER(__ubsan_handle_sub_overflow, "-", false)
UBSAN_OVERFLOW_HANDLER(__ubsan_handle_sub_overflow_abort, "-", true)
UBSAN_OVERFLOW_HANDLER(__ubsan_handle_mul_overflow, "*", false)
UBSAN_OVERFLOW_HANDLER(__ubsan_handle_mul_overflow_abort, "*", true)

static void handleNegateOverflowImpl(OverflowData *Data, ValueHandle OldVal,
                                     ReportOptions Opts) {
  SourceLocation Loc = Data->Loc.acquire();
  bool IsSigned = Data->Type.isSignedIntegerTy();
  ErrorType ET = IsSigned ? ErrorType::SignedIntegerOverflow
                          : ErrorType::UnsignedIntegerOverflow;

  if (ignoreReport(Loc, Opts, ET))
    return;

  if (!IsSigned && flags()->silence_unsigned_overflow)
    return;

  ScopedReport R(Opts, Loc, ET);

  if (IsSigned)
    Diag(Loc, DL_Error, ET,
         "negation of %0 cannot be represented in type %1; "
         "cast to an unsigned type to negate this value to itself")
        << Value(Data->Type, OldVal) << Data->Type;
  else
    Diag(Loc, DL_Error, ET, "negation of %0 cannot be represented in type %1")
        << Value(Data->Type, OldVal) << Data->Type;
}

void __ubsan::__ubsan_handle_negate_overflow(OverflowData *Data,
                                             ValueHandle OldVal) {
  GET_REPORT_OPTIONS(false);
  handleNegateOverflowImpl(Data, OldVal, Opts);
}
void __ubsan::__ubsan_handle_negate_overflow_abort(OverflowData *Data,
                                                    ValueHandle OldVal) {
  GET_REPORT_OPTIONS(true);
  handleNegateOverflowImpl(Data, OldVal, Opts);
  Die();
}

static void handleDivremOverflowImpl(OverflowData *Data, ValueHandle LHS,
                                     ValueHandle RHS, ReportOptions Opts) {
  SourceLocation Loc = Data->Loc.acquire();
  Value LHSVal(Data->Type, LHS);
  Value RHSVal(Data->Type, RHS);

  ErrorType ET;
  if (RHSVal.isMinusOne())
    ET = ErrorType::SignedIntegerOverflow;
  else if (Data->Type.isIntegerTy())
    ET = ErrorType::IntegerDivideByZero;
  else
    ET = ErrorType::FloatDivideByZero;

  if (ignoreReport(Loc, Opts, ET))
    return;

  ScopedReport R(Opts, Loc, ET);

  switch (ET) {
  case ErrorType::SignedIntegerOverflow:
    Diag(Loc, DL_Error, ET,
         "division of %0 by -1 cannot be represented in type %1")
        << LHSVal << Data->Type;
    break;
  default:
    Diag(Loc, DL_Error, ET, "division by zero");
    break;
  }
}

void __ubsan::__ubsan_handle_divrem_overflow(OverflowData *Data,
                                             ValueHandle LHS, ValueHandle RHS) {
  GET_REPORT_OPTIONS(false);
  handleDivremOverflowImpl(Data, LHS, RHS, Opts);
}
void __ubsan::__ubsan_handle_divrem_overflow_abort(OverflowData *Data,
                                                    ValueHandle LHS,
                                                    ValueHandle RHS) {
  GET_REPORT_OPTIONS(true);
  handleDivremOverflowImpl(Data, LHS, RHS, Opts);
  Die();
}

static void handleShiftOutOfBoundsImpl(ShiftOutOfBoundsData *Data,
                                       ValueHandle LHS, ValueHandle RHS,
                                       ReportOptions Opts) {
  SourceLocation Loc = Data->Loc.acquire();
  Value LHSVal(Data->LHSType, LHS);
  Value RHSVal(Data->RHSType, RHS);

  ErrorType ET;
  if (RHSVal.isNegative() ||
      RHSVal.getPositiveIntValue() >= Data->LHSType.getIntegerBitWidth())
    ET = ErrorType::InvalidShiftExponent;
  else
    ET = ErrorType::InvalidShiftBase;

  if (ignoreReport(Loc, Opts, ET))
    return;

  ScopedReport R(Opts, Loc, ET);

  if (ET == ErrorType::InvalidShiftExponent) {
    if (RHSVal.isNegative())
      Diag(Loc, DL_Error, ET, "shift exponent %0 is negative") << RHSVal;
    else
      Diag(Loc, DL_Error, ET,
           "shift exponent %0 is too large for %1-bit type %2")
          << RHSVal << Data->LHSType.getIntegerBitWidth() << Data->LHSType;
  } else {
    if (LHSVal.isNegative())
      Diag(Loc, DL_Error, ET, "left shift of negative value %0") << LHSVal;
    else
      Diag(Loc, DL_Error, ET,
           "left shift of %0 by %1 places cannot be represented in type %2")
          << LHSVal << RHSVal << Data->LHSType;
  }
}

void __ubsan::__ubsan_handle_shift_out_of_bounds(ShiftOutOfBoundsData *Data,
                                                 ValueHandle LHS,
                                                 ValueHandle RHS) {
  GET_REPORT_OPTIONS(false);
  handleShiftOutOfBoundsImpl(Data, LHS, RHS, Opts);
}
void __ubsan::__ubsan_handle_shift_out_of_bounds_abort(
                                                     ShiftOutOfBoundsData *Data,
                                                     ValueHandle LHS,
                                                     ValueHandle RHS) {
  GET_REPORT_OPTIONS(true);
  handleShiftOutOfBoundsImpl(Data, LHS, RHS, Opts);
  Die();
}

static void handleOutOfBoundsImpl(OutOfBoundsData *Data, ValueHandle Index,
                                  ReportOptions Opts) {
  SourceLocation Loc = Data->Loc.acquire();
  ErrorType ET = ErrorType::OutOfBoundsIndex;

  if (ignoreReport(Loc, Opts, ET))
    return;

  ScopedReport R(Opts, Loc, ET);

  Value IndexVal(Data->IndexType, Index);
  Diag(Loc, DL_Error, ET, "index %0 out of bounds for type %1")
    << IndexVal << Data->ArrayType;
}

void __ubsan::__ubsan_handle_out_of_bounds(OutOfBoundsData *Data,
                                           ValueHandle Index) {
  GET_REPORT_OPTIONS(false);
  handleOutOfBoundsImpl(Data, Index, Opts);
}
void __ubsan::__ubsan_handle_out_of_bounds_abort(OutOfBoundsData *Data,
                                                 ValueHandle Index) {
  GET_REPORT_OPTIONS(true);
  handleOutOfBoundsImpl(Data, Index, Opts);
  Die();
}

static void handleBuiltinUnreachableImpl(UnreachableData *Data,
                                         ReportOptions Opts) {
  ErrorType ET = ErrorType::UnreachableCall;
  ScopedReport R(Opts, Data->Loc, ET);
  Diag(Data->Loc, DL_Error, ET,
       "execution reached an unreachable program point");
}

void __ubsan::__ubsan_handle_builtin_unreachable(UnreachableData *Data) {
  GET_REPORT_OPTIONS(true);
  handleBuiltinUnreachableImpl(Data, Opts);
  Die();
}

static void handleMissingReturnImpl(UnreachableData *Data, ReportOptions Opts) {
  ErrorType ET = ErrorType::MissingReturn;
  ScopedReport R(Opts, Data->Loc, ET);
  Diag(Data->Loc, DL_Error, ET,
       "execution reached the end of a value-returning function "
       "without returning a value");
}

void __ubsan::__ubsan_handle_missing_return(UnreachableData *Data) {
  GET_REPORT_OPTIONS(true);
  handleMissingReturnImpl(Data, Opts);
  Die();
}

static void handleVLABoundNotPositive(VLABoundData *Data, ValueHandle Bound,
                                      ReportOptions Opts) {
  SourceLocation Loc = Data->Loc.acquire();
  ErrorType ET = ErrorType::NonPositiveVLAIndex;

  if (ignoreReport(Loc, Opts, ET))
    return;

  ScopedReport R(Opts, Loc, ET);

  Diag(Loc, DL_Error, ET, "variable length array bound evaluates to "
                          "non-positive value %0")
      << Value(Data->Type, Bound);
}

void __ubsan::__ubsan_handle_vla_bound_not_positive(VLABoundData *Data,
                                                    ValueHandle Bound) {
  GET_REPORT_OPTIONS(false);
  handleVLABoundNotPositive(Data, Bound, Opts);
}
void __ubsan::__ubsan_handle_vla_bound_not_positive_abort(VLABoundData *Data,
                                                          ValueHandle Bound) {
  GET_REPORT_OPTIONS(true);
  handleVLABoundNotPositive(Data, Bound, Opts);
  Die();
}

static bool looksLikeFloatCastOverflowDataV1(void *Data) {
  // First field is either a pointer to filename or a pointer to a
  // TypeDescriptor.
  u8 *FilenameOrTypeDescriptor;
  internal_memcpy(&FilenameOrTypeDescriptor, Data,
                  sizeof(FilenameOrTypeDescriptor));

  // Heuristic: For float_cast_overflow, the TypeKind will be either TK_Integer
  // (0x0), TK_Float (0x1) or TK_Unknown (0xff). If both types are known,
  // adding both bytes will be 0 or 1 (for BE or LE). If it were a filename,
  // adding two printable characters will not yield such a value. Otherwise,
  // if one of them is 0xff, this is most likely TK_Unknown type descriptor.
  u16 MaybeFromTypeKind =
      FilenameOrTypeDescriptor[0] + FilenameOrTypeDescriptor[1];
  return MaybeFromTypeKind < 2 || FilenameOrTypeDescriptor[0] == 0xff ||
         FilenameOrTypeDescriptor[1] == 0xff;
}

static void handleFloatCastOverflow(void *DataPtr, ValueHandle From,
                                    ReportOptions Opts) {
  SymbolizedStackHolder CallerLoc;
  Location Loc;
  const TypeDescriptor *FromType, *ToType;
  ErrorType ET = ErrorType::FloatCastOverflow;

  if (looksLikeFloatCastOverflowDataV1(DataPtr)) {
    auto Data = reinterpret_cast<FloatCastOverflowData *>(DataPtr);
    CallerLoc.reset(getCallerLocation(Opts.pc));
    Loc = CallerLoc;
    FromType = &Data->FromType;
    ToType = &Data->ToType;
  } else {
    auto Data = reinterpret_cast<FloatCastOverflowDataV2 *>(DataPtr);
    SourceLocation SLoc = Data->Loc.acquire();
    if (ignoreReport(SLoc, Opts, ET))
      return;
    Loc = SLoc;
    FromType = &Data->FromType;
    ToType = &Data->ToType;
  }

  ScopedReport R(Opts, Loc, ET);

  Diag(Loc, DL_Error, ET,
       "%0 is outside the range of representable values of type %2")
      << Value(*FromType, From) << *FromType << *ToType;
}

void __ubsan::__ubsan_handle_float_cast_overflow(void *Data, ValueHandle From) {
  GET_REPORT_OPTIONS(false);
  handleFloatCastOverflow(Data, From, Opts);
}
void __ubsan::__ubsan_handle_float_cast_overflow_abort(void *Data,
                                                       ValueHandle From) {
  GET_REPORT_OPTIONS(true);
  handleFloatCastOverflow(Data, From, Opts);
  Die();
}

static void handleLoadInvalidValue(InvalidValueData *Data, ValueHandle Val,
                                   ReportOptions Opts) {
  SourceLocation Loc = Data->Loc.acquire();
  // This check could be more precise if we used different handlers for
  // -fsanitize=bool and -fsanitize=enum.
  bool IsBool = (0 == internal_strcmp(Data->Type.getTypeName(), "'bool'")) ||
                (0 == internal_strncmp(Data->Type.getTypeName(), "'BOOL'", 6));
  ErrorType ET =
      IsBool ? ErrorType::InvalidBoolLoad : ErrorType::InvalidEnumLoad;

  if (ignoreReport(Loc, Opts, ET))
    return;

  ScopedReport R(Opts, Loc, ET);

  Diag(Loc, DL_Error, ET,
       "load of value %0, which is not a valid value for type %1")
      << Value(Data->Type, Val) << Data->Type;
}

void __ubsan::__ubsan_handle_load_invalid_value(InvalidValueData *Data,
                                                ValueHandle Val) {
  GET_REPORT_OPTIONS(false);
  handleLoadInvalidValue(Data, Val, Opts);
}
void __ubsan::__ubsan_handle_load_invalid_value_abort(InvalidValueData *Data,
                                                      ValueHandle Val) {
  GET_REPORT_OPTIONS(true);
  handleLoadInvalidValue(Data, Val, Opts);
  Die();
}

static void handleImplicitConversion(ImplicitConversionData *Data,
                                     ReportOptions Opts, ValueHandle Src,
                                     ValueHandle Dst) {
  SourceLocation Loc = Data->Loc.acquire();
  ErrorType ET = ErrorType::GenericUB;

  const TypeDescriptor &SrcTy = Data->FromType;
  const TypeDescriptor &DstTy = Data->ToType;

  bool SrcSigned = SrcTy.isSignedIntegerTy();
  bool DstSigned = DstTy.isSignedIntegerTy();

  switch (Data->Kind) {
  case ICCK_IntegerTruncation: { // Legacy, no longer used.
    // Let's figure out what it should be as per the new types, and upgrade.
    // If both types are unsigned, then it's an unsigned truncation.
    // Else, it is a signed truncation.
    if (!SrcSigned && !DstSigned) {
      ET = ErrorType::ImplicitUnsignedIntegerTruncation;
    } else {
      ET = ErrorType::ImplicitSignedIntegerTruncation;
    }
    break;
  }
  case ICCK_UnsignedIntegerTruncation:
    ET = ErrorType::ImplicitUnsignedIntegerTruncation;
    break;
  case ICCK_SignedIntegerTruncation:
    ET = ErrorType::ImplicitSignedIntegerTruncation;
    break;
  case ICCK_IntegerSignChange:
    ET = ErrorType::ImplicitIntegerSignChange;
    break;
  case ICCK_SignedIntegerTruncationOrSignChange:
    ET = ErrorType::ImplicitSignedIntegerTruncationOrSignChange;
    break;
  }

  if (ignoreReport(Loc, Opts, ET))
    return;

  ScopedReport R(Opts, Loc, ET);

  // FIXME: is it possible to dump the values as hex with fixed width?

  Diag(Loc, DL_Error, ET,
       "implicit conversion from type %0 of value %1 (%2-bit, %3signed) to "
       "type %4 changed the value to %5 (%6-bit, %7signed)")
      << SrcTy << Value(SrcTy, Src) << SrcTy.getIntegerBitWidth()
      << (SrcSigned ? "" : "un") << DstTy << Value(DstTy, Dst)
      << DstTy.getIntegerBitWidth() << (DstSigned ? "" : "un");
}

void __ubsan::__ubsan_handle_implicit_conversion(ImplicitConversionData *Data,
                                                 ValueHandle Src,
                                                 ValueHandle Dst) {
  GET_REPORT_OPTIONS(false);
  handleImplicitConversion(Data, Opts, Src, Dst);
}
void __ubsan::__ubsan_handle_implicit_conversion_abort(
    ImplicitConversionData *Data, ValueHandle Src, ValueHandle Dst) {
  GET_REPORT_OPTIONS(true);
  handleImplicitConversion(Data, Opts, Src, Dst);
  Die();
}

static void handleInvalidBuiltin(InvalidBuiltinData *Data, ReportOptions Opts) {
  SourceLocation Loc = Data->Loc.acquire();
  ErrorType ET = ErrorType::InvalidBuiltin;

  if (ignoreReport(Loc, Opts, ET))
    return;

  ScopedReport R(Opts, Loc, ET);

  Diag(Loc, DL_Error, ET,
       "passing zero to %0, which is not a valid argument")
    << ((Data->Kind == BCK_CTZPassedZero) ? "ctz()" : "clz()");
}

void __ubsan::__ubsan_handle_invalid_builtin(InvalidBuiltinData *Data) {
  GET_REPORT_OPTIONS(true);
  handleInvalidBuiltin(Data, Opts);
}
void __ubsan::__ubsan_handle_invalid_builtin_abort(InvalidBuiltinData *Data) {
  GET_REPORT_OPTIONS(true);
  handleInvalidBuiltin(Data, Opts);
  Die();
}

static void handleInvalidObjCCast(InvalidObjCCast *Data, ValueHandle Pointer,
                                  ReportOptions Opts) {
  SourceLocation Loc = Data->Loc.acquire();
  ErrorType ET = ErrorType::InvalidObjCCast;

  if (ignoreReport(Loc, Opts, ET))
    return;

  ScopedReport R(Opts, Loc, ET);

  const char *GivenClass = getObjCClassName(Pointer);
  const char *GivenClassStr = GivenClass ? GivenClass : "<unknown type>";

  Diag(Loc, DL_Error, ET,
       "invalid ObjC cast, object is a '%0', but expected a %1")
      << GivenClassStr << Data->ExpectedType;
}

void __ubsan::__ubsan_handle_invalid_objc_cast(InvalidObjCCast *Data,
                                               ValueHandle Pointer) {
  GET_REPORT_OPTIONS(false);
  handleInvalidObjCCast(Data, Pointer, Opts);
}
void __ubsan::__ubsan_handle_invalid_objc_cast_abort(InvalidObjCCast *Data,
                                                     ValueHandle Pointer) {
  GET_REPORT_OPTIONS(true);
  handleInvalidObjCCast(Data, Pointer, Opts);
  Die();
}

static void handleNonNullReturn(NonNullReturnData *Data, SourceLocation *LocPtr,
                                ReportOptions Opts, bool IsAttr) {
  if (!LocPtr)
    UNREACHABLE("source location pointer is null!");

  SourceLocation Loc = LocPtr->acquire();
  ErrorType ET = IsAttr ? ErrorType::InvalidNullReturn
                        : ErrorType::InvalidNullReturnWithNullability;

  if (ignoreReport(Loc, Opts, ET))
    return;

  ScopedReport R(Opts, Loc, ET);

  Diag(Loc, DL_Error, ET,
       "null pointer returned from function declared to never return null");
  if (!Data->AttrLoc.isInvalid())
    Diag(Data->AttrLoc, DL_Note, ET, "%0 specified here")
        << (IsAttr ? "returns_nonnull attribute"
                   : "_Nonnull return type annotation");
}

void __ubsan::__ubsan_handle_nonnull_return_v1(NonNullReturnData *Data,
                                               SourceLocation *LocPtr) {
  GET_REPORT_OPTIONS(false);
  handleNonNullReturn(Data, LocPtr, Opts, true);
}

void __ubsan::__ubsan_handle_nonnull_return_v1_abort(NonNullReturnData *Data,
                                                     SourceLocation *LocPtr) {
  GET_REPORT_OPTIONS(true);
  handleNonNullReturn(Data, LocPtr, Opts, true);
  Die();
}

void __ubsan::__ubsan_handle_nullability_return_v1(NonNullReturnData *Data,
                                                   SourceLocation *LocPtr) {
  GET_REPORT_OPTIONS(false);
  handleNonNullReturn(Data, LocPtr, Opts, false);
}

void __ubsan::__ubsan_handle_nullability_return_v1_abort(
    NonNullReturnData *Data, SourceLocation *LocPtr) {
  GET_REPORT_OPTIONS(true);
  handleNonNullReturn(Data, LocPtr, Opts, false);
  Die();
}

static void handleNonNullArg(NonNullArgData *Data, ReportOptions Opts,
                             bool IsAttr) {
  SourceLocation Loc = Data->Loc.acquire();
  ErrorType ET = IsAttr ? ErrorType::InvalidNullArgument
                        : ErrorType::InvalidNullArgumentWithNullability;

  if (ignoreReport(Loc, Opts, ET))
    return;

  ScopedReport R(Opts, Loc, ET);

  Diag(Loc, DL_Error, ET,
       "null pointer passed as argument %0, which is declared to "
       "never be null")
      << Data->ArgIndex;
  if (!Data->AttrLoc.isInvalid())
    Diag(Data->AttrLoc, DL_Note, ET, "%0 specified here")
        << (IsAttr ? "nonnull attribute" : "_Nonnull type annotation");
}

void __ubsan::__ubsan_handle_nonnull_arg(NonNullArgData *Data) {
  GET_REPORT_OPTIONS(false);
  handleNonNullArg(Data, Opts, true);
}

void __ubsan::__ubsan_handle_nonnull_arg_abort(NonNullArgData *Data) {
  GET_REPORT_OPTIONS(true);
  handleNonNullArg(Data, Opts, true);
  Die();
}

void __ubsan::__ubsan_handle_nullability_arg(NonNullArgData *Data) {
  GET_REPORT_OPTIONS(false);
  handleNonNullArg(Data, Opts, false);
}

void __ubsan::__ubsan_handle_nullability_arg_abort(NonNullArgData *Data) {
  GET_REPORT_OPTIONS(true);
  handleNonNullArg(Data, Opts, false);
  Die();
}

static void handlePointerOverflowImpl(PointerOverflowData *Data,
                                      ValueHandle Base,
                                      ValueHandle Result,
                                      ReportOptions Opts) {
  SourceLocation Loc = Data->Loc.acquire();
  ErrorType ET;

  if (Base == 0 && Result == 0)
    ET = ErrorType::NullptrWithOffset;
  else if (Base == 0 && Result != 0)
    ET = ErrorType::NullptrWithNonZeroOffset;
  else if (Base != 0 && Result == 0)
    ET = ErrorType::NullptrAfterNonZeroOffset;
  else
    ET = ErrorType::PointerOverflow;

  if (ignoreReport(Loc, Opts, ET))
    return;

  ScopedReport R(Opts, Loc, ET);

  if (ET == ErrorType::NullptrWithOffset) {
    Diag(Loc, DL_Error, ET, "applying zero offset to null pointer");
  } else if (ET == ErrorType::NullptrWithNonZeroOffset) {
    Diag(Loc, DL_Error, ET, "applying non-zero offset %0 to null pointer")
        << Result;
  } else if (ET == ErrorType::NullptrAfterNonZeroOffset) {
    Diag(
        Loc, DL_Error, ET,
        "applying non-zero offset to non-null pointer %0 produced null pointer")
        << (void *)Base;
  } else if ((sptr(Base) >= 0) == (sptr(Result) >= 0)) {
    if (Base > Result)
      Diag(Loc, DL_Error, ET,
           "addition of unsigned offset to %0 overflowed to %1")
          << (void *)Base << (void *)Result;
    else
      Diag(Loc, DL_Error, ET,
           "subtraction of unsigned offset from %0 overflowed to %1")
          << (void *)Base << (void *)Result;
  } else {
    Diag(Loc, DL_Error, ET,
         "pointer index expression with base %0 overflowed to %1")
        << (void *)Base << (void *)Result;
  }
}

void __ubsan::__ubsan_handle_pointer_overflow(PointerOverflowData *Data,
                                              ValueHandle Base,
                                              ValueHandle Result) {
  GET_REPORT_OPTIONS(false);
  handlePointerOverflowImpl(Data, Base, Result, Opts);
}

void __ubsan::__ubsan_handle_pointer_overflow_abort(PointerOverflowData *Data,
                                                    ValueHandle Base,
                                                    ValueHandle Result) {
  GET_REPORT_OPTIONS(true);
  handlePointerOverflowImpl(Data, Base, Result, Opts);
  Die();
}

static void handleCFIBadIcall(CFICheckFailData *Data, ValueHandle Function,
                              ReportOptions Opts) {
  if (Data->CheckKind != CFITCK_ICall && Data->CheckKind != CFITCK_NVMFCall)
    Die();

  SourceLocation Loc = Data->Loc.acquire();
  ErrorType ET = ErrorType::CFIBadType;

  if (ignoreReport(Loc, Opts, ET))
    return;

  ScopedReport R(Opts, Loc, ET);

  const char *CheckKindStr = Data->CheckKind == CFITCK_NVMFCall
                                 ? "non-virtual pointer to member function call"
                                 : "indirect function call";
  Diag(Loc, DL_Error, ET,
       "control flow integrity check for type %0 failed during %1")
      << Data->Type << CheckKindStr;

  SymbolizedStackHolder FLoc(getSymbolizedLocation(Function));
  const char *FName = FLoc.get()->info.function;
  if (!FName)
    FName = "(unknown)";
  Diag(FLoc, DL_Note, ET, "%0 defined here") << FName;

  // If the failure involved different DSOs for the check location and icall
  // target, report the DSO names.
  const char *DstModule = FLoc.get()->info.module;
  if (!DstModule)
    DstModule = "(unknown)";

  const char *SrcModule = Symbolizer::GetOrInit()->GetModuleNameForPc(Opts.pc);
  if (!SrcModule)
    SrcModule = "(unknown)";

  if (internal_strcmp(SrcModule, DstModule))
    Diag(Loc, DL_Note, ET,
         "check failed in %0, destination function located in %1")
        << SrcModule << DstModule;
}

namespace __ubsan {

#ifdef UBSAN_CAN_USE_CXXABI

#ifdef _WIN32

extern "C" void __ubsan_handle_cfi_bad_type_default(CFICheckFailData *Data,
                                                    ValueHandle Vtable,
                                                    bool ValidVtable,
                                                    ReportOptions Opts) {
  Die();
}

WIN_WEAK_ALIAS(__ubsan_handle_cfi_bad_type, __ubsan_handle_cfi_bad_type_default)
#else
SANITIZER_WEAK_ATTRIBUTE
#endif
void __ubsan_handle_cfi_bad_type(CFICheckFailData *Data, ValueHandle Vtable,
                                 bool ValidVtable, ReportOptions Opts);

#else
void __ubsan_handle_cfi_bad_type(CFICheckFailData *Data, ValueHandle Vtable,
                                 bool ValidVtable, ReportOptions Opts) {
  Die();
}
#endif

}  // namespace __ubsan

void __ubsan::__ubsan_handle_cfi_check_fail(CFICheckFailData *Data,
                                            ValueHandle Value,
                                            uptr ValidVtable) {
  GET_REPORT_OPTIONS(false);
  if (Data->CheckKind == CFITCK_ICall || Data->CheckKind == CFITCK_NVMFCall)
    handleCFIBadIcall(Data, Value, Opts);
  else
    __ubsan_handle_cfi_bad_type(Data, Value, ValidVtable, Opts);
}

void __ubsan::__ubsan_handle_cfi_check_fail_abort(CFICheckFailData *Data,
                                                  ValueHandle Value,
                                                  uptr ValidVtable) {
  GET_REPORT_OPTIONS(true);
  if (Data->CheckKind == CFITCK_ICall || Data->CheckKind == CFITCK_NVMFCall)
    handleCFIBadIcall(Data, Value, Opts);
  else
    __ubsan_handle_cfi_bad_type(Data, Value, ValidVtable, Opts);
  Die();
}

#endif  // CAN_SANITIZE_UB