wrappers_c_test.cpp 11.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
//===-- wrappers_c_test.cpp -------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "scudo/interface.h"
#include "tests/scudo_unit_test.h"

#include <errno.h>
#include <limits.h>
#include <malloc.h>
#include <stdlib.h>
#include <unistd.h>

extern "C" {
void malloc_enable(void);
void malloc_disable(void);
int malloc_iterate(uintptr_t base, size_t size,
                   void (*callback)(uintptr_t base, size_t size, void *arg),
                   void *arg);
void *valloc(size_t size);
void *pvalloc(size_t size);
}

// Note that every C allocation function in the test binary will be fulfilled
// by Scudo (this includes the gtest APIs, etc.), which is a test by itself.
// But this might also lead to unexpected side-effects, since the allocation and
// deallocation operations in the TEST functions will coexist with others (see
// the EXPECT_DEATH comment below).

// We have to use a small quarantine to make sure that our double-free tests
// trigger. Otherwise EXPECT_DEATH ends up reallocating the chunk that was just
// freed (this depends on the size obviously) and the following free succeeds.

static const size_t Size = 100U;

TEST(ScudoWrappersCTest, Malloc) {
  void *P = malloc(Size);
  EXPECT_NE(P, nullptr);
  EXPECT_LE(Size, malloc_usable_size(P));
  EXPECT_EQ(reinterpret_cast<uintptr_t>(P) % FIRST_32_SECOND_64(8U, 16U), 0U);
  EXPECT_DEATH(
      free(reinterpret_cast<void *>(reinterpret_cast<uintptr_t>(P) | 1U)), "");
  free(P);
  EXPECT_DEATH(free(P), "");

  P = malloc(0U);
  EXPECT_NE(P, nullptr);
  free(P);

  errno = 0;
  EXPECT_EQ(malloc(SIZE_MAX), nullptr);
  EXPECT_EQ(errno, ENOMEM);
}

TEST(ScudoWrappersCTest, Calloc) {
  void *P = calloc(1U, Size);
  EXPECT_NE(P, nullptr);
  EXPECT_LE(Size, malloc_usable_size(P));
  for (size_t I = 0; I < Size; I++)
    EXPECT_EQ((reinterpret_cast<uint8_t *>(P))[I], 0U);
  free(P);

  P = calloc(1U, 0U);
  EXPECT_NE(P, nullptr);
  free(P);
  P = calloc(0U, 1U);
  EXPECT_NE(P, nullptr);
  free(P);

  errno = 0;
  EXPECT_EQ(calloc(SIZE_MAX, 1U), nullptr);
  EXPECT_EQ(errno, ENOMEM);
  errno = 0;
  EXPECT_EQ(calloc(static_cast<size_t>(LONG_MAX) + 1U, 2U), nullptr);
  if (SCUDO_ANDROID)
    EXPECT_EQ(errno, ENOMEM);
  errno = 0;
  EXPECT_EQ(calloc(SIZE_MAX, SIZE_MAX), nullptr);
  EXPECT_EQ(errno, ENOMEM);
}

TEST(ScudoWrappersCTest, Memalign) {
  void *P;
  for (size_t I = FIRST_32_SECOND_64(2U, 3U); I <= 18U; I++) {
    const size_t Alignment = 1U << I;

    P = memalign(Alignment, Size);
    EXPECT_NE(P, nullptr);
    EXPECT_LE(Size, malloc_usable_size(P));
    EXPECT_EQ(reinterpret_cast<uintptr_t>(P) % Alignment, 0U);
    free(P);

    P = nullptr;
    EXPECT_EQ(posix_memalign(&P, Alignment, Size), 0);
    EXPECT_NE(P, nullptr);
    EXPECT_LE(Size, malloc_usable_size(P));
    EXPECT_EQ(reinterpret_cast<uintptr_t>(P) % Alignment, 0U);
    free(P);
  }

  EXPECT_EQ(memalign(4096U, SIZE_MAX), nullptr);
  EXPECT_EQ(posix_memalign(&P, 15U, Size), EINVAL);
  EXPECT_EQ(posix_memalign(&P, 4096U, SIZE_MAX), ENOMEM);

  // Android's memalign accepts non power-of-2 alignments, and 0.
  if (SCUDO_ANDROID) {
    for (size_t Alignment = 0U; Alignment <= 128U; Alignment++) {
      P = memalign(Alignment, 1024U);
      EXPECT_NE(P, nullptr);
      free(P);
    }
  }
}

TEST(ScudoWrappersCTest, AlignedAlloc) {
  const size_t Alignment = 4096U;
  void *P = aligned_alloc(Alignment, Alignment * 4U);
  EXPECT_NE(P, nullptr);
  EXPECT_LE(Alignment * 4U, malloc_usable_size(P));
  EXPECT_EQ(reinterpret_cast<uintptr_t>(P) % Alignment, 0U);
  free(P);

  errno = 0;
  P = aligned_alloc(Alignment, Size);
  EXPECT_EQ(P, nullptr);
  EXPECT_EQ(errno, EINVAL);
}

TEST(ScudoWrappersCTest, Realloc) {
  // realloc(nullptr, N) is malloc(N)
  void *P = realloc(nullptr, 0U);
  EXPECT_NE(P, nullptr);
  free(P);

  P = malloc(Size);
  EXPECT_NE(P, nullptr);
  // realloc(P, 0U) is free(P) and returns nullptr
  EXPECT_EQ(realloc(P, 0U), nullptr);

  P = malloc(Size);
  EXPECT_NE(P, nullptr);
  EXPECT_LE(Size, malloc_usable_size(P));
  memset(P, 0x42, Size);

  P = realloc(P, Size * 2U);
  EXPECT_NE(P, nullptr);
  EXPECT_LE(Size * 2U, malloc_usable_size(P));
  for (size_t I = 0; I < Size; I++)
    EXPECT_EQ(0x42, (reinterpret_cast<uint8_t *>(P))[I]);

  P = realloc(P, Size / 2U);
  EXPECT_NE(P, nullptr);
  EXPECT_LE(Size / 2U, malloc_usable_size(P));
  for (size_t I = 0; I < Size / 2U; I++)
    EXPECT_EQ(0x42, (reinterpret_cast<uint8_t *>(P))[I]);
  free(P);

  EXPECT_DEATH(P = realloc(P, Size), "");

  errno = 0;
  EXPECT_EQ(realloc(nullptr, SIZE_MAX), nullptr);
  EXPECT_EQ(errno, ENOMEM);
  P = malloc(Size);
  EXPECT_NE(P, nullptr);
  errno = 0;
  EXPECT_EQ(realloc(P, SIZE_MAX), nullptr);
  EXPECT_EQ(errno, ENOMEM);
  free(P);

  // Android allows realloc of memalign pointers.
  if (SCUDO_ANDROID) {
    const size_t Alignment = 1024U;
    P = memalign(Alignment, Size);
    EXPECT_NE(P, nullptr);
    EXPECT_LE(Size, malloc_usable_size(P));
    EXPECT_EQ(reinterpret_cast<uintptr_t>(P) % Alignment, 0U);
    memset(P, 0x42, Size);

    P = realloc(P, Size * 2U);
    EXPECT_NE(P, nullptr);
    EXPECT_LE(Size * 2U, malloc_usable_size(P));
    for (size_t I = 0; I < Size; I++)
      EXPECT_EQ(0x42, (reinterpret_cast<uint8_t *>(P))[I]);
    free(P);
  }
}

#if !SCUDO_FUCHSIA
TEST(ScudoWrappersCTest, MallOpt) {
  errno = 0;
  EXPECT_EQ(mallopt(-1000, 1), 0);
  // mallopt doesn't set errno.
  EXPECT_EQ(errno, 0);

  EXPECT_EQ(mallopt(M_PURGE, 0), 1);

  EXPECT_EQ(mallopt(M_DECAY_TIME, 1), 1);
  EXPECT_EQ(mallopt(M_DECAY_TIME, 0), 1);
  EXPECT_EQ(mallopt(M_DECAY_TIME, 1), 1);
  EXPECT_EQ(mallopt(M_DECAY_TIME, 0), 1);

  if (SCUDO_ANDROID) {
    EXPECT_EQ(mallopt(M_CACHE_COUNT_MAX, 100), 1);
    EXPECT_EQ(mallopt(M_CACHE_SIZE_MAX, 1024 * 1024 * 2), 1);
    EXPECT_EQ(mallopt(M_TSDS_COUNT_MAX, 10), 1);
  }
}
#endif

TEST(ScudoWrappersCTest, OtherAlloc) {
#if !SCUDO_FUCHSIA
  const size_t PageSize = sysconf(_SC_PAGESIZE);

  void *P = pvalloc(Size);
  EXPECT_NE(P, nullptr);
  EXPECT_EQ(reinterpret_cast<uintptr_t>(P) & (PageSize - 1), 0U);
  EXPECT_LE(PageSize, malloc_usable_size(P));
  free(P);

  EXPECT_EQ(pvalloc(SIZE_MAX), nullptr);

  P = pvalloc(Size);
  EXPECT_NE(P, nullptr);
  EXPECT_EQ(reinterpret_cast<uintptr_t>(P) & (PageSize - 1), 0U);
  free(P);
#endif

  EXPECT_EQ(valloc(SIZE_MAX), nullptr);
}

#if !SCUDO_FUCHSIA
TEST(ScudoWrappersCTest, MallInfo) {
  const size_t BypassQuarantineSize = 1024U;

  struct mallinfo MI = mallinfo();
  size_t Allocated = MI.uordblks;
  void *P = malloc(BypassQuarantineSize);
  EXPECT_NE(P, nullptr);
  MI = mallinfo();
  EXPECT_GE(static_cast<size_t>(MI.uordblks), Allocated + BypassQuarantineSize);
  EXPECT_GT(static_cast<size_t>(MI.hblkhd), 0U);
  size_t Free = MI.fordblks;
  free(P);
  MI = mallinfo();
  EXPECT_GE(static_cast<size_t>(MI.fordblks), Free + BypassQuarantineSize);
}
#endif

static uintptr_t BoundaryP;
static size_t Count;

static void callback(uintptr_t Base, size_t Size, void *Arg) {
  if (Base == BoundaryP)
    Count++;
}

// Verify that a block located on an iteration boundary is not mis-accounted.
// To achieve this, we allocate a chunk for which the backing block will be
// aligned on a page, then run the malloc_iterate on both the pages that the
// block is a boundary for. It must only be seen once by the callback function.
TEST(ScudoWrappersCTest, MallocIterateBoundary) {
  const size_t PageSize = sysconf(_SC_PAGESIZE);
  const size_t BlockDelta = FIRST_32_SECOND_64(8U, 16U);
  const size_t SpecialSize = PageSize - BlockDelta;

  // We aren't guaranteed that any size class is exactly a page wide. So we need
  // to keep making allocations until we succeed.
  //
  // With a 16-byte block alignment and 4096-byte page size, each allocation has
  // a probability of (1 - (16/4096)) of failing to meet the alignment
  // requirements, and the probability of failing 65536 times is
  // (1 - (16/4096))^65536 < 10^-112. So if we still haven't succeeded after
  // 65536 tries, give up.
  uintptr_t Block;
  void *P = nullptr;
  for (unsigned I = 0; I != 65536; ++I) {
    void *PrevP = P;
    P = malloc(SpecialSize);
    EXPECT_NE(P, nullptr);
    *reinterpret_cast<void **>(P) = PrevP;
    BoundaryP = reinterpret_cast<uintptr_t>(P);
    Block = BoundaryP - BlockDelta;
    if ((Block & (PageSize - 1)) == 0U)
      break;
  }
  EXPECT_EQ((Block & (PageSize - 1)), 0U);

  Count = 0U;
  malloc_disable();
  malloc_iterate(Block - PageSize, PageSize, callback, nullptr);
  malloc_iterate(Block, PageSize, callback, nullptr);
  malloc_enable();
  EXPECT_EQ(Count, 1U);

  while (P) {
    void *NextP = *reinterpret_cast<void **>(P);
    free(P);
    P = NextP;
  }
}

// We expect heap operations within a disable/enable scope to deadlock.
TEST(ScudoWrappersCTest, MallocDisableDeadlock) {
  EXPECT_DEATH(
      {
        void *P = malloc(Size);
        EXPECT_NE(P, nullptr);
        free(P);
        malloc_disable();
        alarm(1);
        P = malloc(Size);
        malloc_enable();
      },
      "");
}

// Fuchsia doesn't have fork or malloc_info.
#if !SCUDO_FUCHSIA

TEST(ScudoWrappersCTest, MallocInfo) {
  // Use volatile so that the allocations don't get optimized away.
  void *volatile P1 = malloc(1234);
  void *volatile P2 = malloc(4321);

  char Buffer[16384];
  FILE *F = fmemopen(Buffer, sizeof(Buffer), "w+");
  EXPECT_NE(F, nullptr);
  errno = 0;
  EXPECT_EQ(malloc_info(0, F), 0);
  EXPECT_EQ(errno, 0);
  fclose(F);
  EXPECT_EQ(strncmp(Buffer, "<malloc version=\"scudo-", 23), 0);
  EXPECT_NE(nullptr, strstr(Buffer, "<alloc size=\"1234\" count=\""));
  EXPECT_NE(nullptr, strstr(Buffer, "<alloc size=\"4321\" count=\""));

  free(P1);
  free(P2);
}

TEST(ScudoWrappersCTest, Fork) {
  void *P;
  pid_t Pid = fork();
  EXPECT_GE(Pid, 0);
  if (Pid == 0) {
    P = malloc(Size);
    EXPECT_NE(P, nullptr);
    memset(P, 0x42, Size);
    free(P);
    _exit(0);
  }
  waitpid(Pid, nullptr, 0);
  P = malloc(Size);
  EXPECT_NE(P, nullptr);
  memset(P, 0x42, Size);
  free(P);

  // fork should stall if the allocator has been disabled.
  EXPECT_DEATH(
      {
        malloc_disable();
        alarm(1);
        Pid = fork();
        EXPECT_GE(Pid, 0);
      },
      "");
}

static pthread_mutex_t Mutex;
static pthread_cond_t Conditional = PTHREAD_COND_INITIALIZER;
static bool Ready;

static void *enableMalloc(void *Unused) {
  // Initialize the allocator for this thread.
  void *P = malloc(Size);
  EXPECT_NE(P, nullptr);
  memset(P, 0x42, Size);
  free(P);

  // Signal the main thread we are ready.
  pthread_mutex_lock(&Mutex);
  Ready = true;
  pthread_cond_signal(&Conditional);
  pthread_mutex_unlock(&Mutex);

  // Wait for the malloc_disable & fork, then enable the allocator again.
  sleep(1);
  malloc_enable();

  return nullptr;
}

TEST(ScudoWrappersCTest, DisableForkEnable) {
  pthread_t ThreadId;
  Ready = false;
  EXPECT_EQ(pthread_create(&ThreadId, nullptr, &enableMalloc, nullptr), 0);

  // Wait for the thread to be warmed up.
  pthread_mutex_lock(&Mutex);
  while (!Ready)
    pthread_cond_wait(&Conditional, &Mutex);
  pthread_mutex_unlock(&Mutex);

  // Disable the allocator and fork. fork should succeed after malloc_enable.
  malloc_disable();
  pid_t Pid = fork();
  EXPECT_GE(Pid, 0);
  if (Pid == 0) {
    void *P = malloc(Size);
    EXPECT_NE(P, nullptr);
    memset(P, 0x42, Size);
    free(P);
    _exit(0);
  }
  waitpid(Pid, nullptr, 0);
  EXPECT_EQ(pthread_join(ThreadId, 0), 0);
}

#endif // SCUDO_FUCHSIA