combined_test.cpp 19.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
//===-- combined_test.cpp ---------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "tests/scudo_unit_test.h"

#include "allocator_config.h"
#include "combined.h"

#include <condition_variable>
#include <memory>
#include <mutex>
#include <set>
#include <thread>
#include <vector>

static std::mutex Mutex;
static std::condition_variable Cv;
static bool Ready;

static constexpr scudo::Chunk::Origin Origin = scudo::Chunk::Origin::Malloc;

// Fuchsia complains that the function is not used.
UNUSED static void disableDebuggerdMaybe() {
#if SCUDO_ANDROID
  // Disable the debuggerd signal handler on Android, without this we can end
  // up spending a significant amount of time creating tombstones.
  signal(SIGSEGV, SIG_DFL);
#endif
}

template <class AllocatorT>
bool isTaggedAllocation(AllocatorT *Allocator, scudo::uptr Size,
                        scudo::uptr Alignment) {
  if (!Allocator->useMemoryTagging() ||
      !scudo::systemDetectsMemoryTagFaultsTestOnly())
    return false;

  const scudo::uptr MinAlignment = 1UL << SCUDO_MIN_ALIGNMENT_LOG;
  if (Alignment < MinAlignment)
    Alignment = MinAlignment;
  const scudo::uptr NeededSize =
      scudo::roundUpTo(Size, MinAlignment) +
      ((Alignment > MinAlignment) ? Alignment : scudo::Chunk::getHeaderSize());
  return AllocatorT::PrimaryT::canAllocate(NeededSize);
}

template <class AllocatorT>
void checkMemoryTaggingMaybe(AllocatorT *Allocator, void *P, scudo::uptr Size,
                             scudo::uptr Alignment) {
  if (!isTaggedAllocation(Allocator, Size, Alignment))
    return;

  Size = scudo::roundUpTo(Size, scudo::archMemoryTagGranuleSize());
  EXPECT_DEATH(
      {
        disableDebuggerdMaybe();
        reinterpret_cast<char *>(P)[-1] = 0xaa;
      },
      "");
  EXPECT_DEATH(
      {
        disableDebuggerdMaybe();
        reinterpret_cast<char *>(P)[Size] = 0xaa;
      },
      "");
}

template <typename Config> struct TestAllocator : scudo::Allocator<Config> {
  TestAllocator() {
    this->reset();
    this->initThreadMaybe();
  }
  ~TestAllocator() { this->unmapTestOnly(); }
};

template <class Config> static void testAllocator() {
  using AllocatorT = TestAllocator<Config>;
  auto Allocator = std::unique_ptr<AllocatorT>(new AllocatorT());

  static scudo::u8 StaticBuffer[scudo::Chunk::getHeaderSize() + 1];
  EXPECT_FALSE(
      Allocator->isOwned(&StaticBuffer[scudo::Chunk::getHeaderSize()]));

  scudo::u8 StackBuffer[scudo::Chunk::getHeaderSize() + 1];
  for (scudo::uptr I = 0; I < sizeof(StackBuffer); I++)
    StackBuffer[I] = 0x42U;
  EXPECT_FALSE(Allocator->isOwned(&StackBuffer[scudo::Chunk::getHeaderSize()]));
  for (scudo::uptr I = 0; I < sizeof(StackBuffer); I++)
    EXPECT_EQ(StackBuffer[I], 0x42U);

  constexpr scudo::uptr MinAlignLog = FIRST_32_SECOND_64(3U, 4U);

  // This allocates and deallocates a bunch of chunks, with a wide range of
  // sizes and alignments, with a focus on sizes that could trigger weird
  // behaviors (plus or minus a small delta of a power of two for example).
  for (scudo::uptr SizeLog = 0U; SizeLog <= 20U; SizeLog++) {
    for (scudo::uptr AlignLog = MinAlignLog; AlignLog <= 16U; AlignLog++) {
      const scudo::uptr Align = 1U << AlignLog;
      for (scudo::sptr Delta = -32; Delta <= 32; Delta++) {
        if (static_cast<scudo::sptr>(1U << SizeLog) + Delta <= 0)
          continue;
        const scudo::uptr Size = (1U << SizeLog) + Delta;
        void *P = Allocator->allocate(Size, Origin, Align);
        EXPECT_NE(P, nullptr);
        EXPECT_TRUE(Allocator->isOwned(P));
        EXPECT_TRUE(scudo::isAligned(reinterpret_cast<scudo::uptr>(P), Align));
        EXPECT_LE(Size, Allocator->getUsableSize(P));
        memset(P, 0xaa, Size);
        checkMemoryTaggingMaybe(Allocator.get(), P, Size, Align);
        Allocator->deallocate(P, Origin, Size);
      }
    }
  }
  Allocator->releaseToOS();

  // Ensure that specifying ZeroContents returns a zero'd out block.
  for (scudo::uptr SizeLog = 0U; SizeLog <= 20U; SizeLog++) {
    for (scudo::uptr Delta = 0U; Delta <= 4U; Delta++) {
      const scudo::uptr Size = (1U << SizeLog) + Delta * 128U;
      void *P = Allocator->allocate(Size, Origin, 1U << MinAlignLog, true);
      EXPECT_NE(P, nullptr);
      for (scudo::uptr I = 0; I < Size; I++)
        ASSERT_EQ((reinterpret_cast<char *>(P))[I], 0);
      memset(P, 0xaa, Size);
      Allocator->deallocate(P, Origin, Size);
    }
  }
  Allocator->releaseToOS();

  // Ensure that specifying ZeroContents returns a zero'd out block.
  Allocator->setFillContents(scudo::ZeroFill);
  for (scudo::uptr SizeLog = 0U; SizeLog <= 20U; SizeLog++) {
    for (scudo::uptr Delta = 0U; Delta <= 4U; Delta++) {
      const scudo::uptr Size = (1U << SizeLog) + Delta * 128U;
      void *P = Allocator->allocate(Size, Origin, 1U << MinAlignLog, false);
      EXPECT_NE(P, nullptr);
      for (scudo::uptr I = 0; I < Size; I++)
        ASSERT_EQ((reinterpret_cast<char *>(P))[I], 0);
      memset(P, 0xaa, Size);
      Allocator->deallocate(P, Origin, Size);
    }
  }
  Allocator->releaseToOS();

  // Ensure that specifying PatternOrZeroFill returns a pattern-filled block in
  // the primary allocator, and either pattern or zero filled block in the
  // secondary.
  Allocator->setFillContents(scudo::PatternOrZeroFill);
  for (scudo::uptr SizeLog = 0U; SizeLog <= 20U; SizeLog++) {
    for (scudo::uptr Delta = 0U; Delta <= 4U; Delta++) {
      const scudo::uptr Size = (1U << SizeLog) + Delta * 128U;
      void *P = Allocator->allocate(Size, Origin, 1U << MinAlignLog, false);
      EXPECT_NE(P, nullptr);
      for (scudo::uptr I = 0; I < Size; I++) {
        unsigned char V = (reinterpret_cast<unsigned char *>(P))[I];
        if (AllocatorT::PrimaryT::canAllocate(Size))
          ASSERT_EQ(V, scudo::PatternFillByte);
        else
          ASSERT_TRUE(V == scudo::PatternFillByte || V == 0);
      }
      memset(P, 0xaa, Size);
      Allocator->deallocate(P, Origin, Size);
    }
  }
  Allocator->releaseToOS();

  // Verify that a chunk will end up being reused, at some point.
  const scudo::uptr NeedleSize = 1024U;
  void *NeedleP = Allocator->allocate(NeedleSize, Origin);
  Allocator->deallocate(NeedleP, Origin);
  bool Found = false;
  for (scudo::uptr I = 0; I < 1024U && !Found; I++) {
    void *P = Allocator->allocate(NeedleSize, Origin);
    if (Allocator->untagPointerMaybe(P) ==
        Allocator->untagPointerMaybe(NeedleP))
      Found = true;
    Allocator->deallocate(P, Origin);
  }
  EXPECT_TRUE(Found);

  constexpr scudo::uptr MaxSize = Config::Primary::SizeClassMap::MaxSize;

  // Reallocate a large chunk all the way down to a byte, verifying that we
  // preserve the data in the process.
  scudo::uptr Size = MaxSize * 2;
  const scudo::uptr DataSize = 2048U;
  void *P = Allocator->allocate(Size, Origin);
  const char Marker = 0xab;
  memset(P, Marker, scudo::Min(Size, DataSize));
  while (Size > 1U) {
    Size /= 2U;
    void *NewP = Allocator->reallocate(P, Size);
    EXPECT_NE(NewP, nullptr);
    for (scudo::uptr J = 0; J < scudo::Min(Size, DataSize); J++)
      EXPECT_EQ((reinterpret_cast<char *>(NewP))[J], Marker);
    P = NewP;
  }
  Allocator->deallocate(P, Origin);

  // Check that reallocating a chunk to a slightly smaller or larger size
  // returns the same chunk. This requires that all the sizes we iterate on use
  // the same block size, but that should be the case for MaxSize - 64 with our
  // default class size maps.
  constexpr scudo::uptr ReallocSize = MaxSize - 64;
  P = Allocator->allocate(ReallocSize, Origin);
  memset(P, Marker, ReallocSize);
  for (scudo::sptr Delta = -32; Delta < 32; Delta += 8) {
    const scudo::uptr NewSize = ReallocSize + Delta;
    void *NewP = Allocator->reallocate(P, NewSize);
    EXPECT_EQ(NewP, P);
    for (scudo::uptr I = 0; I < ReallocSize - 32; I++)
      EXPECT_EQ((reinterpret_cast<char *>(NewP))[I], Marker);
    checkMemoryTaggingMaybe(Allocator.get(), NewP, NewSize, 0);
  }
  Allocator->deallocate(P, Origin);

  // Allocates a bunch of chunks, then iterate over all the chunks, ensuring
  // they are the ones we allocated. This requires the allocator to not have any
  // other allocated chunk at this point (eg: won't work with the Quarantine).
  if (!UseQuarantine) {
    std::vector<void *> V;
    for (scudo::uptr I = 0; I < 64U; I++)
      V.push_back(Allocator->allocate(rand() % (MaxSize / 2U), Origin));
    Allocator->disable();
    Allocator->iterateOverChunks(
        0U, static_cast<scudo::uptr>(SCUDO_MMAP_RANGE_SIZE - 1),
        [](uintptr_t Base, size_t Size, void *Arg) {
          std::vector<void *> *V = reinterpret_cast<std::vector<void *> *>(Arg);
          void *P = reinterpret_cast<void *>(Base);
          EXPECT_NE(std::find(V->begin(), V->end(), P), V->end());
        },
        reinterpret_cast<void *>(&V));
    Allocator->enable();
    while (!V.empty()) {
      Allocator->deallocate(V.back(), Origin);
      V.pop_back();
    }
  }

  Allocator->releaseToOS();

  if (Allocator->useMemoryTagging() &&
      scudo::systemDetectsMemoryTagFaultsTestOnly()) {
    // Check that use-after-free is detected.
    for (scudo::uptr SizeLog = 0U; SizeLog <= 20U; SizeLog++) {
      const scudo::uptr Size = 1U << SizeLog;
      if (!isTaggedAllocation(Allocator.get(), Size, 1))
        continue;
      // UAF detection is probabilistic, so we repeat the test up to 256 times
      // if necessary. With 15 possible tags this means a 1 in 15^256 chance of
      // a false positive.
      EXPECT_DEATH(
          {
            disableDebuggerdMaybe();
            for (unsigned I = 0; I != 256; ++I) {
              void *P = Allocator->allocate(Size, Origin);
              Allocator->deallocate(P, Origin);
              reinterpret_cast<char *>(P)[0] = 0xaa;
            }
          },
          "");
      EXPECT_DEATH(
          {
            disableDebuggerdMaybe();
            for (unsigned I = 0; I != 256; ++I) {
              void *P = Allocator->allocate(Size, Origin);
              Allocator->deallocate(P, Origin);
              reinterpret_cast<char *>(P)[Size - 1] = 0xaa;
            }
          },
          "");
    }

    // Check that disabling memory tagging works correctly.
    void *P = Allocator->allocate(2048, Origin);
    EXPECT_DEATH(reinterpret_cast<char *>(P)[2048] = 0xaa, "");
    scudo::disableMemoryTagChecksTestOnly();
    Allocator->disableMemoryTagging();
    reinterpret_cast<char *>(P)[2048] = 0xaa;
    Allocator->deallocate(P, Origin);

    P = Allocator->allocate(2048, Origin);
    EXPECT_EQ(Allocator->untagPointerMaybe(P), P);
    reinterpret_cast<char *>(P)[2048] = 0xaa;
    Allocator->deallocate(P, Origin);

    Allocator->releaseToOS();

    // Disabling memory tag checks may interfere with subsequent tests.
    // Re-enable them now.
    scudo::enableMemoryTagChecksTestOnly();
  }

  scudo::uptr BufferSize = 8192;
  std::vector<char> Buffer(BufferSize);
  scudo::uptr ActualSize = Allocator->getStats(Buffer.data(), BufferSize);
  while (ActualSize > BufferSize) {
    BufferSize = ActualSize + 1024;
    Buffer.resize(BufferSize);
    ActualSize = Allocator->getStats(Buffer.data(), BufferSize);
  }
  std::string Stats(Buffer.begin(), Buffer.end());
  // Basic checks on the contents of the statistics output, which also allows us
  // to verify that we got it all.
  EXPECT_NE(Stats.find("Stats: SizeClassAllocator"), std::string::npos);
  EXPECT_NE(Stats.find("Stats: MapAllocator"), std::string::npos);
  EXPECT_NE(Stats.find("Stats: Quarantine"), std::string::npos);
}

// Test that multiple instantiations of the allocator have not messed up the
// process's signal handlers (GWP-ASan used to do this).
void testSEGV() {
  const scudo::uptr Size = 4 * scudo::getPageSizeCached();
  scudo::MapPlatformData Data = {};
  void *P = scudo::map(nullptr, Size, "testSEGV", MAP_NOACCESS, &Data);
  EXPECT_NE(P, nullptr);
  EXPECT_DEATH(memset(P, 0xaa, Size), "");
  scudo::unmap(P, Size, UNMAP_ALL, &Data);
}

TEST(ScudoCombinedTest, BasicCombined) {
  UseQuarantine = false;
  testAllocator<scudo::AndroidSvelteConfig>();
#if SCUDO_FUCHSIA
  testAllocator<scudo::FuchsiaConfig>();
#else
  testAllocator<scudo::DefaultConfig>();
  UseQuarantine = true;
  testAllocator<scudo::AndroidConfig>();
  testSEGV();
#endif
}

template <typename AllocatorT> static void stressAllocator(AllocatorT *A) {
  {
    std::unique_lock<std::mutex> Lock(Mutex);
    while (!Ready)
      Cv.wait(Lock);
  }
  std::vector<std::pair<void *, scudo::uptr>> V;
  for (scudo::uptr I = 0; I < 256U; I++) {
    const scudo::uptr Size = std::rand() % 4096U;
    void *P = A->allocate(Size, Origin);
    // A region could have ran out of memory, resulting in a null P.
    if (P)
      V.push_back(std::make_pair(P, Size));
  }
  while (!V.empty()) {
    auto Pair = V.back();
    A->deallocate(Pair.first, Origin, Pair.second);
    V.pop_back();
  }
}

template <class Config> static void testAllocatorThreaded() {
  Ready = false;
  using AllocatorT = TestAllocator<Config>;
  auto Allocator = std::unique_ptr<AllocatorT>(new AllocatorT());
  std::thread Threads[32];
  for (scudo::uptr I = 0; I < ARRAY_SIZE(Threads); I++)
    Threads[I] = std::thread(stressAllocator<AllocatorT>, Allocator.get());
  {
    std::unique_lock<std::mutex> Lock(Mutex);
    Ready = true;
    Cv.notify_all();
  }
  for (auto &T : Threads)
    T.join();
  Allocator->releaseToOS();
}

TEST(ScudoCombinedTest, ThreadedCombined) {
  UseQuarantine = false;
  testAllocatorThreaded<scudo::AndroidSvelteConfig>();
#if SCUDO_FUCHSIA
  testAllocatorThreaded<scudo::FuchsiaConfig>();
#else
  testAllocatorThreaded<scudo::DefaultConfig>();
  UseQuarantine = true;
  testAllocatorThreaded<scudo::AndroidConfig>();
#endif
}

struct DeathSizeClassConfig {
  static const scudo::uptr NumBits = 1;
  static const scudo::uptr MinSizeLog = 10;
  static const scudo::uptr MidSizeLog = 10;
  static const scudo::uptr MaxSizeLog = 13;
  static const scudo::u32 MaxNumCachedHint = 4;
  static const scudo::uptr MaxBytesCachedLog = 12;
};

static const scudo::uptr DeathRegionSizeLog = 20U;
struct DeathConfig {
  // Tiny allocator, its Primary only serves chunks of four sizes.
  using DeathSizeClassMap = scudo::FixedSizeClassMap<DeathSizeClassConfig>;
  typedef scudo::SizeClassAllocator64<DeathSizeClassMap, DeathRegionSizeLog>
      Primary;
  typedef scudo::MapAllocator<scudo::MapAllocatorNoCache> Secondary;
  template <class A> using TSDRegistryT = scudo::TSDRegistrySharedT<A, 1U, 1U>;
};

TEST(ScudoCombinedTest, DeathCombined) {
  using AllocatorT = TestAllocator<DeathConfig>;
  auto Allocator = std::unique_ptr<AllocatorT>(new AllocatorT());

  const scudo::uptr Size = 1000U;
  void *P = Allocator->allocate(Size, Origin);
  EXPECT_NE(P, nullptr);

  // Invalid sized deallocation.
  EXPECT_DEATH(Allocator->deallocate(P, Origin, Size + 8U), "");

  // Misaligned pointer. Potentially unused if EXPECT_DEATH isn't available.
  UNUSED void *MisalignedP =
      reinterpret_cast<void *>(reinterpret_cast<scudo::uptr>(P) | 1U);
  EXPECT_DEATH(Allocator->deallocate(MisalignedP, Origin, Size), "");
  EXPECT_DEATH(Allocator->reallocate(MisalignedP, Size * 2U), "");

  // Header corruption.
  scudo::u64 *H =
      reinterpret_cast<scudo::u64 *>(scudo::Chunk::getAtomicHeader(P));
  *H ^= 0x42U;
  EXPECT_DEATH(Allocator->deallocate(P, Origin, Size), "");
  *H ^= 0x420042U;
  EXPECT_DEATH(Allocator->deallocate(P, Origin, Size), "");
  *H ^= 0x420000U;

  // Invalid chunk state.
  Allocator->deallocate(P, Origin, Size);
  EXPECT_DEATH(Allocator->deallocate(P, Origin, Size), "");
  EXPECT_DEATH(Allocator->reallocate(P, Size * 2U), "");
  EXPECT_DEATH(Allocator->getUsableSize(P), "");
}

// Ensure that releaseToOS can be called prior to any other allocator
// operation without issue.
TEST(ScudoCombinedTest, ReleaseToOS) {
  using AllocatorT = TestAllocator<DeathConfig>;
  auto Allocator = std::unique_ptr<AllocatorT>(new AllocatorT());

  Allocator->releaseToOS();
}

// Verify that when a region gets full, the allocator will still manage to
// fulfill the allocation through a larger size class.
TEST(ScudoCombinedTest, FullRegion) {
  using AllocatorT = TestAllocator<DeathConfig>;
  auto Allocator = std::unique_ptr<AllocatorT>(new AllocatorT());

  std::vector<void *> V;
  scudo::uptr FailedAllocationsCount = 0;
  for (scudo::uptr ClassId = 1U;
       ClassId <= DeathConfig::DeathSizeClassMap::LargestClassId; ClassId++) {
    const scudo::uptr Size =
        DeathConfig::DeathSizeClassMap::getSizeByClassId(ClassId);
    // Allocate enough to fill all of the regions above this one.
    const scudo::uptr MaxNumberOfChunks =
        ((1U << DeathRegionSizeLog) / Size) *
        (DeathConfig::DeathSizeClassMap::LargestClassId - ClassId + 1);
    void *P;
    for (scudo::uptr I = 0; I <= MaxNumberOfChunks; I++) {
      P = Allocator->allocate(Size - 64U, Origin);
      if (!P)
        FailedAllocationsCount++;
      else
        V.push_back(P);
    }
    while (!V.empty()) {
      Allocator->deallocate(V.back(), Origin);
      V.pop_back();
    }
  }
  EXPECT_EQ(FailedAllocationsCount, 0U);
}

TEST(ScudoCombinedTest, OddEven) {
  using AllocatorT = TestAllocator<scudo::AndroidConfig>;
  using SizeClassMap = AllocatorT::PrimaryT::SizeClassMap;
  auto Allocator = std::unique_ptr<AllocatorT>(new AllocatorT());

  if (!Allocator->useMemoryTagging())
    return;

  auto CheckOddEven = [](scudo::uptr P1, scudo::uptr P2) {
    scudo::uptr Tag1 = scudo::extractTag(scudo::loadTag(P1));
    scudo::uptr Tag2 = scudo::extractTag(scudo::loadTag(P2));
    EXPECT_NE(Tag1 % 2, Tag2 % 2);
  };

  for (scudo::uptr ClassId = 1U; ClassId <= SizeClassMap::LargestClassId;
       ClassId++) {
    const scudo::uptr Size = SizeClassMap::getSizeByClassId(ClassId);

    std::set<scudo::uptr> Ptrs;
    bool Found = false;
    for (unsigned I = 0; I != 65536; ++I) {
      scudo::uptr P = scudo::untagPointer(reinterpret_cast<scudo::uptr>(
          Allocator->allocate(Size - scudo::Chunk::getHeaderSize(), Origin)));
      if (Ptrs.count(P - Size)) {
        Found = true;
        CheckOddEven(P, P - Size);
        break;
      }
      if (Ptrs.count(P + Size)) {
        Found = true;
        CheckOddEven(P, P + Size);
        break;
      }
      Ptrs.insert(P);
    }
    EXPECT_TRUE(Found);
  }
}

TEST(ScudoCombinedTest, DisableMemInit) {
  using AllocatorT = TestAllocator<scudo::AndroidConfig>;
  using SizeClassMap = AllocatorT::PrimaryT::SizeClassMap;
  auto Allocator = std::unique_ptr<AllocatorT>(new AllocatorT());

  std::vector<void *> Ptrs(65536, nullptr);

  Allocator->setOption(scudo::Option::ThreadDisableMemInit, 1);

  constexpr scudo::uptr MinAlignLog = FIRST_32_SECOND_64(3U, 4U);

  // Test that if mem-init is disabled on a thread, calloc should still work as
  // expected. This is tricky to ensure when MTE is enabled, so this test tries
  // to exercise the relevant code on our MTE path.
  for (scudo::uptr ClassId = 1U; ClassId <= 8; ClassId++) {
    const scudo::uptr Size =
        SizeClassMap::getSizeByClassId(ClassId) - scudo::Chunk::getHeaderSize();
    if (Size < 8)
      continue;
    for (unsigned I = 0; I != Ptrs.size(); ++I) {
      Ptrs[I] = Allocator->allocate(Size, Origin);
      memset(Ptrs[I], 0xaa, Size);
    }
    for (unsigned I = 0; I != Ptrs.size(); ++I)
      Allocator->deallocate(Ptrs[I], Origin, Size);
    for (unsigned I = 0; I != Ptrs.size(); ++I) {
      Ptrs[I] = Allocator->allocate(Size - 8, Origin);
      memset(Ptrs[I], 0xbb, Size - 8);
    }
    for (unsigned I = 0; I != Ptrs.size(); ++I)
      Allocator->deallocate(Ptrs[I], Origin, Size - 8);
    for (unsigned I = 0; I != Ptrs.size(); ++I) {
      Ptrs[I] = Allocator->allocate(Size, Origin, 1U << MinAlignLog, true);
      for (scudo::uptr J = 0; J < Size; ++J)
        ASSERT_EQ((reinterpret_cast<char *>(Ptrs[I]))[J], 0);
    }
  }

  Allocator->setOption(scudo::Option::ThreadDisableMemInit, 0);
}