combined.h 44.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
//===-- combined.h ----------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#ifndef SCUDO_COMBINED_H_
#define SCUDO_COMBINED_H_

#include "chunk.h"
#include "common.h"
#include "flags.h"
#include "flags_parser.h"
#include "local_cache.h"
#include "memtag.h"
#include "options.h"
#include "quarantine.h"
#include "report.h"
#include "secondary.h"
#include "stack_depot.h"
#include "string_utils.h"
#include "tsd.h"

#include "scudo/interface.h"

#ifdef GWP_ASAN_HOOKS
#include "gwp_asan/guarded_pool_allocator.h"
#include "gwp_asan/optional/backtrace.h"
#include "gwp_asan/optional/segv_handler.h"
#endif // GWP_ASAN_HOOKS

extern "C" inline void EmptyCallback() {}

#ifdef HAVE_ANDROID_UNSAFE_FRAME_POINTER_CHASE
// This function is not part of the NDK so it does not appear in any public
// header files. We only declare/use it when targeting the platform.
extern "C" size_t android_unsafe_frame_pointer_chase(scudo::uptr *buf,
                                                     size_t num_entries);
#endif

namespace scudo {

template <class Params, void (*PostInitCallback)(void) = EmptyCallback>
class Allocator {
public:
  using PrimaryT = typename Params::Primary;
  using CacheT = typename PrimaryT::CacheT;
  typedef Allocator<Params, PostInitCallback> ThisT;
  typedef typename Params::template TSDRegistryT<ThisT> TSDRegistryT;

  void callPostInitCallback() {
    static pthread_once_t OnceControl = PTHREAD_ONCE_INIT;
    pthread_once(&OnceControl, PostInitCallback);
  }

  struct QuarantineCallback {
    explicit QuarantineCallback(ThisT &Instance, CacheT &LocalCache)
        : Allocator(Instance), Cache(LocalCache) {}

    // Chunk recycling function, returns a quarantined chunk to the backend,
    // first making sure it hasn't been tampered with.
    void recycle(void *Ptr) {
      Chunk::UnpackedHeader Header;
      Chunk::loadHeader(Allocator.Cookie, Ptr, &Header);
      if (UNLIKELY(Header.State != Chunk::State::Quarantined))
        reportInvalidChunkState(AllocatorAction::Recycling, Ptr);

      Chunk::UnpackedHeader NewHeader = Header;
      NewHeader.State = Chunk::State::Available;
      Chunk::compareExchangeHeader(Allocator.Cookie, Ptr, &NewHeader, &Header);

      void *BlockBegin = Allocator::getBlockBegin(Ptr, &NewHeader);
      const uptr ClassId = NewHeader.ClassId;
      if (LIKELY(ClassId))
        Cache.deallocate(ClassId, BlockBegin);
      else
        Allocator.Secondary.deallocate(BlockBegin);
    }

    // We take a shortcut when allocating a quarantine batch by working with the
    // appropriate class ID instead of using Size. The compiler should optimize
    // the class ID computation and work with the associated cache directly.
    void *allocate(UNUSED uptr Size) {
      const uptr QuarantineClassId = SizeClassMap::getClassIdBySize(
          sizeof(QuarantineBatch) + Chunk::getHeaderSize());
      void *Ptr = Cache.allocate(QuarantineClassId);
      // Quarantine batch allocation failure is fatal.
      if (UNLIKELY(!Ptr))
        reportOutOfMemory(SizeClassMap::getSizeByClassId(QuarantineClassId));

      Ptr = reinterpret_cast<void *>(reinterpret_cast<uptr>(Ptr) +
                                     Chunk::getHeaderSize());
      Chunk::UnpackedHeader Header = {};
      Header.ClassId = QuarantineClassId & Chunk::ClassIdMask;
      Header.SizeOrUnusedBytes = sizeof(QuarantineBatch);
      Header.State = Chunk::State::Allocated;
      Chunk::storeHeader(Allocator.Cookie, Ptr, &Header);

      return Ptr;
    }

    void deallocate(void *Ptr) {
      const uptr QuarantineClassId = SizeClassMap::getClassIdBySize(
          sizeof(QuarantineBatch) + Chunk::getHeaderSize());
      Chunk::UnpackedHeader Header;
      Chunk::loadHeader(Allocator.Cookie, Ptr, &Header);

      if (UNLIKELY(Header.State != Chunk::State::Allocated))
        reportInvalidChunkState(AllocatorAction::Deallocating, Ptr);
      DCHECK_EQ(Header.ClassId, QuarantineClassId);
      DCHECK_EQ(Header.Offset, 0);
      DCHECK_EQ(Header.SizeOrUnusedBytes, sizeof(QuarantineBatch));

      Chunk::UnpackedHeader NewHeader = Header;
      NewHeader.State = Chunk::State::Available;
      Chunk::compareExchangeHeader(Allocator.Cookie, Ptr, &NewHeader, &Header);
      Cache.deallocate(QuarantineClassId,
                       reinterpret_cast<void *>(reinterpret_cast<uptr>(Ptr) -
                                                Chunk::getHeaderSize()));
    }

  private:
    ThisT &Allocator;
    CacheT &Cache;
  };

  typedef GlobalQuarantine<QuarantineCallback, void> QuarantineT;
  typedef typename QuarantineT::CacheT QuarantineCacheT;

  void initLinkerInitialized() {
    performSanityChecks();

    // Check if hardware CRC32 is supported in the binary and by the platform,
    // if so, opt for the CRC32 hardware version of the checksum.
    if (&computeHardwareCRC32 && hasHardwareCRC32())
      HashAlgorithm = Checksum::HardwareCRC32;

    if (UNLIKELY(!getRandom(&Cookie, sizeof(Cookie))))
      Cookie = static_cast<u32>(getMonotonicTime() ^
                                (reinterpret_cast<uptr>(this) >> 4));

    initFlags();
    reportUnrecognizedFlags();

    // Store some flags locally.
    if (getFlags()->may_return_null)
      Primary.Options.set(OptionBit::MayReturnNull);
    if (getFlags()->zero_contents)
      Primary.Options.setFillContentsMode(ZeroFill);
    else if (getFlags()->pattern_fill_contents)
      Primary.Options.setFillContentsMode(PatternOrZeroFill);
    if (getFlags()->dealloc_type_mismatch)
      Primary.Options.set(OptionBit::DeallocTypeMismatch);
    if (getFlags()->delete_size_mismatch)
      Primary.Options.set(OptionBit::DeleteSizeMismatch);
    Primary.Options.set(OptionBit::UseOddEvenTags);

    QuarantineMaxChunkSize =
        static_cast<u32>(getFlags()->quarantine_max_chunk_size);

    Stats.initLinkerInitialized();
    const s32 ReleaseToOsIntervalMs = getFlags()->release_to_os_interval_ms;
    Primary.initLinkerInitialized(ReleaseToOsIntervalMs);
    Secondary.initLinkerInitialized(&Stats, ReleaseToOsIntervalMs);

    Quarantine.init(
        static_cast<uptr>(getFlags()->quarantine_size_kb << 10),
        static_cast<uptr>(getFlags()->thread_local_quarantine_size_kb << 10));
  }

  // Initialize the embedded GWP-ASan instance. Requires the main allocator to
  // be functional, best called from PostInitCallback.
  void initGwpAsan() {
#ifdef GWP_ASAN_HOOKS
    gwp_asan::options::Options Opt;
    Opt.Enabled = getFlags()->GWP_ASAN_Enabled;
    // Bear in mind - Scudo has its own alignment guarantees that are strictly
    // enforced. Scudo exposes the same allocation function for everything from
    // malloc() to posix_memalign, so in general this flag goes unused, as Scudo
    // will always ask GWP-ASan for an aligned amount of bytes.
    Opt.PerfectlyRightAlign = getFlags()->GWP_ASAN_PerfectlyRightAlign;
    Opt.MaxSimultaneousAllocations =
        getFlags()->GWP_ASAN_MaxSimultaneousAllocations;
    Opt.SampleRate = getFlags()->GWP_ASAN_SampleRate;
    Opt.InstallSignalHandlers = getFlags()->GWP_ASAN_InstallSignalHandlers;
    // Embedded GWP-ASan is locked through the Scudo atfork handler (via
    // Allocator::disable calling GWPASan.disable). Disable GWP-ASan's atfork
    // handler.
    Opt.InstallForkHandlers = false;
    Opt.Backtrace = gwp_asan::options::getBacktraceFunction();
    GuardedAlloc.init(Opt);

    if (Opt.InstallSignalHandlers)
      gwp_asan::crash_handler::installSignalHandlers(
          &GuardedAlloc, Printf, gwp_asan::options::getPrintBacktraceFunction(),
          gwp_asan::crash_handler::getSegvBacktraceFunction());
#endif // GWP_ASAN_HOOKS
  }

  ALWAYS_INLINE void initThreadMaybe(bool MinimalInit = false) {
    TSDRegistry.initThreadMaybe(this, MinimalInit);
  }

  void reset() { memset(this, 0, sizeof(*this)); }

  void unmapTestOnly() {
    TSDRegistry.unmapTestOnly();
    Primary.unmapTestOnly();
#ifdef GWP_ASAN_HOOKS
    if (getFlags()->GWP_ASAN_InstallSignalHandlers)
      gwp_asan::crash_handler::uninstallSignalHandlers();
    GuardedAlloc.uninitTestOnly();
#endif // GWP_ASAN_HOOKS
  }

  TSDRegistryT *getTSDRegistry() { return &TSDRegistry; }

  // The Cache must be provided zero-initialized.
  void initCache(CacheT *Cache) {
    Cache->initLinkerInitialized(&Stats, &Primary);
  }

  // Release the resources used by a TSD, which involves:
  // - draining the local quarantine cache to the global quarantine;
  // - releasing the cached pointers back to the Primary;
  // - unlinking the local stats from the global ones (destroying the cache does
  //   the last two items).
  void commitBack(TSD<ThisT> *TSD) {
    Quarantine.drain(&TSD->QuarantineCache,
                     QuarantineCallback(*this, TSD->Cache));
    TSD->Cache.destroy(&Stats);
  }

  ALWAYS_INLINE void *untagPointerMaybe(void *Ptr) {
    if (Primary.SupportsMemoryTagging)
      return reinterpret_cast<void *>(
          untagPointer(reinterpret_cast<uptr>(Ptr)));
    return Ptr;
  }

  NOINLINE u32 collectStackTrace() {
#ifdef HAVE_ANDROID_UNSAFE_FRAME_POINTER_CHASE
    // Discard collectStackTrace() frame and allocator function frame.
    constexpr uptr DiscardFrames = 2;
    uptr Stack[MaxTraceSize + DiscardFrames];
    uptr Size =
        android_unsafe_frame_pointer_chase(Stack, MaxTraceSize + DiscardFrames);
    Size = Min<uptr>(Size, MaxTraceSize + DiscardFrames);
    return Depot.insert(Stack + Min<uptr>(DiscardFrames, Size), Stack + Size);
#else
    return 0;
#endif
  }

  uptr computeOddEvenMaskForPointerMaybe(Options Options, uptr Ptr, uptr Size) {
    if (!Options.get(OptionBit::UseOddEvenTags))
      return 0;

    // If a chunk's tag is odd, we want the tags of the surrounding blocks to be
    // even, and vice versa. Blocks are laid out Size bytes apart, and adding
    // Size to Ptr will flip the least significant set bit of Size in Ptr, so
    // that bit will have the pattern 010101... for consecutive blocks, which we
    // can use to determine which tag mask to use.
    return (Ptr & (1ULL << getLeastSignificantSetBitIndex(Size))) ? 0xaaaa
                                                                  : 0x5555;
  }

  NOINLINE void *allocate(uptr Size, Chunk::Origin Origin,
                          uptr Alignment = MinAlignment,
                          bool ZeroContents = false) {
    initThreadMaybe();
    Options Options = Primary.Options.load();

#ifdef GWP_ASAN_HOOKS
    if (UNLIKELY(GuardedAlloc.shouldSample())) {
      if (void *Ptr = GuardedAlloc.allocate(roundUpTo(Size, Alignment)))
        return Ptr;
    }
#endif // GWP_ASAN_HOOKS

    const FillContentsMode FillContents = ZeroContents ? ZeroFill
                                          : TSDRegistry.getDisableMemInit()
                                              ? NoFill
                                              : Options.getFillContentsMode();

    if (UNLIKELY(Alignment > MaxAlignment)) {
      if (Options.get(OptionBit::MayReturnNull))
        return nullptr;
      reportAlignmentTooBig(Alignment, MaxAlignment);
    }
    if (UNLIKELY(Alignment < MinAlignment))
      Alignment = MinAlignment;

    // If the requested size happens to be 0 (more common than you might think),
    // allocate MinAlignment bytes on top of the header. Then add the extra
    // bytes required to fulfill the alignment requirements: we allocate enough
    // to be sure that there will be an address in the block that will satisfy
    // the alignment.
    const uptr NeededSize =
        roundUpTo(Size, MinAlignment) +
        ((Alignment > MinAlignment) ? Alignment : Chunk::getHeaderSize());

    // Takes care of extravagantly large sizes as well as integer overflows.
    static_assert(MaxAllowedMallocSize < UINTPTR_MAX - MaxAlignment, "");
    if (UNLIKELY(Size >= MaxAllowedMallocSize)) {
      if (Options.get(OptionBit::MayReturnNull))
        return nullptr;
      reportAllocationSizeTooBig(Size, NeededSize, MaxAllowedMallocSize);
    }
    DCHECK_LE(Size, NeededSize);

    void *Block = nullptr;
    uptr ClassId = 0;
    uptr SecondaryBlockEnd = 0;
    if (LIKELY(PrimaryT::canAllocate(NeededSize))) {
      ClassId = SizeClassMap::getClassIdBySize(NeededSize);
      DCHECK_NE(ClassId, 0U);
      bool UnlockRequired;
      auto *TSD = TSDRegistry.getTSDAndLock(&UnlockRequired);
      Block = TSD->Cache.allocate(ClassId);
      // If the allocation failed, the most likely reason with a 32-bit primary
      // is the region being full. In that event, retry in each successively
      // larger class until it fits. If it fails to fit in the largest class,
      // fallback to the Secondary.
      if (UNLIKELY(!Block)) {
        while (ClassId < SizeClassMap::LargestClassId) {
          Block = TSD->Cache.allocate(++ClassId);
          if (LIKELY(Block))
            break;
        }
        if (UNLIKELY(!Block))
          ClassId = 0;
      }
      if (UnlockRequired)
        TSD->unlock();
    }
    if (UNLIKELY(ClassId == 0))
      Block = Secondary.allocate(NeededSize, Alignment, &SecondaryBlockEnd,
                                 FillContents);

    if (UNLIKELY(!Block)) {
      if (Options.get(OptionBit::MayReturnNull))
        return nullptr;
      reportOutOfMemory(NeededSize);
    }

    const uptr BlockUptr = reinterpret_cast<uptr>(Block);
    const uptr UnalignedUserPtr = BlockUptr + Chunk::getHeaderSize();
    const uptr UserPtr = roundUpTo(UnalignedUserPtr, Alignment);

    void *Ptr = reinterpret_cast<void *>(UserPtr);
    void *TaggedPtr = Ptr;
    if (LIKELY(ClassId)) {
      // We only need to zero or tag the contents for Primary backed
      // allocations. We only set tags for primary allocations in order to avoid
      // faulting potentially large numbers of pages for large secondary
      // allocations. We assume that guard pages are enough to protect these
      // allocations.
      //
      // FIXME: When the kernel provides a way to set the background tag of a
      // mapping, we should be able to tag secondary allocations as well.
      //
      // When memory tagging is enabled, zeroing the contents is done as part of
      // setting the tag.
      if (UNLIKELY(useMemoryTagging(Options))) {
        uptr PrevUserPtr;
        Chunk::UnpackedHeader Header;
        const uptr BlockSize = PrimaryT::getSizeByClassId(ClassId);
        const uptr BlockEnd = BlockUptr + BlockSize;
        // If possible, try to reuse the UAF tag that was set by deallocate().
        // For simplicity, only reuse tags if we have the same start address as
        // the previous allocation. This handles the majority of cases since
        // most allocations will not be more aligned than the minimum alignment.
        //
        // We need to handle situations involving reclaimed chunks, and retag
        // the reclaimed portions if necessary. In the case where the chunk is
        // fully reclaimed, the chunk's header will be zero, which will trigger
        // the code path for new mappings and invalid chunks that prepares the
        // chunk from scratch. There are three possibilities for partial
        // reclaiming:
        //
        // (1) Header was reclaimed, data was partially reclaimed.
        // (2) Header was not reclaimed, all data was reclaimed (e.g. because
        //     data started on a page boundary).
        // (3) Header was not reclaimed, data was partially reclaimed.
        //
        // Case (1) will be handled in the same way as for full reclaiming,
        // since the header will be zero.
        //
        // We can detect case (2) by loading the tag from the start
        // of the chunk. If it is zero, it means that either all data was
        // reclaimed (since we never use zero as the chunk tag), or that the
        // previous allocation was of size zero. Either way, we need to prepare
        // a new chunk from scratch.
        //
        // We can detect case (3) by moving to the next page (if covered by the
        // chunk) and loading the tag of its first granule. If it is zero, it
        // means that all following pages may need to be retagged. On the other
        // hand, if it is nonzero, we can assume that all following pages are
        // still tagged, according to the logic that if any of the pages
        // following the next page were reclaimed, the next page would have been
        // reclaimed as well.
        uptr TaggedUserPtr;
        if (getChunkFromBlock(BlockUptr, &PrevUserPtr, &Header) &&
            PrevUserPtr == UserPtr &&
            (TaggedUserPtr = loadTag(UserPtr)) != UserPtr) {
          uptr PrevEnd = TaggedUserPtr + Header.SizeOrUnusedBytes;
          const uptr NextPage = roundUpTo(TaggedUserPtr, getPageSizeCached());
          if (NextPage < PrevEnd && loadTag(NextPage) != NextPage)
            PrevEnd = NextPage;
          TaggedPtr = reinterpret_cast<void *>(TaggedUserPtr);
          resizeTaggedChunk(PrevEnd, TaggedUserPtr + Size, BlockEnd);
          if (UNLIKELY(FillContents != NoFill && !Header.OriginOrWasZeroed)) {
            // If an allocation needs to be zeroed (i.e. calloc) we can normally
            // avoid zeroing the memory now since we can rely on memory having
            // been zeroed on free, as this is normally done while setting the
            // UAF tag. But if tagging was disabled per-thread when the memory
            // was freed, it would not have been retagged and thus zeroed, and
            // therefore it needs to be zeroed now.
            memset(TaggedPtr, 0,
                   Min(Size, roundUpTo(PrevEnd - TaggedUserPtr,
                                       archMemoryTagGranuleSize())));
          } else if (Size) {
            // Clear any stack metadata that may have previously been stored in
            // the chunk data.
            memset(TaggedPtr, 0, archMemoryTagGranuleSize());
          }
        } else {
          const uptr OddEvenMask =
              computeOddEvenMaskForPointerMaybe(Options, BlockUptr, BlockSize);
          TaggedPtr = prepareTaggedChunk(Ptr, Size, OddEvenMask, BlockEnd);
        }
        storeAllocationStackMaybe(Options, Ptr);
      } else if (UNLIKELY(FillContents != NoFill)) {
        // This condition is not necessarily unlikely, but since memset is
        // costly, we might as well mark it as such.
        memset(Block, FillContents == ZeroFill ? 0 : PatternFillByte,
               PrimaryT::getSizeByClassId(ClassId));
      }
    }

    Chunk::UnpackedHeader Header = {};
    if (UNLIKELY(UnalignedUserPtr != UserPtr)) {
      const uptr Offset = UserPtr - UnalignedUserPtr;
      DCHECK_GE(Offset, 2 * sizeof(u32));
      // The BlockMarker has no security purpose, but is specifically meant for
      // the chunk iteration function that can be used in debugging situations.
      // It is the only situation where we have to locate the start of a chunk
      // based on its block address.
      reinterpret_cast<u32 *>(Block)[0] = BlockMarker;
      reinterpret_cast<u32 *>(Block)[1] = static_cast<u32>(Offset);
      Header.Offset = (Offset >> MinAlignmentLog) & Chunk::OffsetMask;
    }
    Header.ClassId = ClassId & Chunk::ClassIdMask;
    Header.State = Chunk::State::Allocated;
    Header.OriginOrWasZeroed = Origin & Chunk::OriginMask;
    Header.SizeOrUnusedBytes =
        (ClassId ? Size : SecondaryBlockEnd - (UserPtr + Size)) &
        Chunk::SizeOrUnusedBytesMask;
    Chunk::storeHeader(Cookie, Ptr, &Header);

    if (&__scudo_allocate_hook)
      __scudo_allocate_hook(TaggedPtr, Size);

    return TaggedPtr;
  }

  NOINLINE void deallocate(void *Ptr, Chunk::Origin Origin, uptr DeleteSize = 0,
                           UNUSED uptr Alignment = MinAlignment) {
    // For a deallocation, we only ensure minimal initialization, meaning thread
    // local data will be left uninitialized for now (when using ELF TLS). The
    // fallback cache will be used instead. This is a workaround for a situation
    // where the only heap operation performed in a thread would be a free past
    // the TLS destructors, ending up in initialized thread specific data never
    // being destroyed properly. Any other heap operation will do a full init.
    initThreadMaybe(/*MinimalInit=*/true);
    Options Options = Primary.Options.load();

#ifdef GWP_ASAN_HOOKS
    if (UNLIKELY(GuardedAlloc.pointerIsMine(Ptr))) {
      GuardedAlloc.deallocate(Ptr);
      return;
    }
#endif // GWP_ASAN_HOOKS

    if (&__scudo_deallocate_hook)
      __scudo_deallocate_hook(Ptr);

    if (UNLIKELY(!Ptr))
      return;
    if (UNLIKELY(!isAligned(reinterpret_cast<uptr>(Ptr), MinAlignment)))
      reportMisalignedPointer(AllocatorAction::Deallocating, Ptr);

    Ptr = untagPointerMaybe(Ptr);

    Chunk::UnpackedHeader Header;
    Chunk::loadHeader(Cookie, Ptr, &Header);

    if (UNLIKELY(Header.State != Chunk::State::Allocated))
      reportInvalidChunkState(AllocatorAction::Deallocating, Ptr);
    if (Options.get(OptionBit::DeallocTypeMismatch)) {
      if (Header.OriginOrWasZeroed != Origin) {
        // With the exception of memalign'd chunks, that can be still be free'd.
        if (UNLIKELY(Header.OriginOrWasZeroed != Chunk::Origin::Memalign ||
                     Origin != Chunk::Origin::Malloc))
          reportDeallocTypeMismatch(AllocatorAction::Deallocating, Ptr,
                                    Header.OriginOrWasZeroed, Origin);
      }
    }

    const uptr Size = getSize(Ptr, &Header);
    if (DeleteSize && Options.get(OptionBit::DeleteSizeMismatch)) {
      if (UNLIKELY(DeleteSize != Size))
        reportDeleteSizeMismatch(Ptr, DeleteSize, Size);
    }

    quarantineOrDeallocateChunk(Options, Ptr, &Header, Size);
  }

  void *reallocate(void *OldPtr, uptr NewSize, uptr Alignment = MinAlignment) {
    initThreadMaybe();
    Options Options = Primary.Options.load();

    if (UNLIKELY(NewSize >= MaxAllowedMallocSize)) {
      if (Options.get(OptionBit::MayReturnNull))
        return nullptr;
      reportAllocationSizeTooBig(NewSize, 0, MaxAllowedMallocSize);
    }

    void *OldTaggedPtr = OldPtr;
    OldPtr = untagPointerMaybe(OldPtr);

    // The following cases are handled by the C wrappers.
    DCHECK_NE(OldPtr, nullptr);
    DCHECK_NE(NewSize, 0);

#ifdef GWP_ASAN_HOOKS
    if (UNLIKELY(GuardedAlloc.pointerIsMine(OldPtr))) {
      uptr OldSize = GuardedAlloc.getSize(OldPtr);
      void *NewPtr = allocate(NewSize, Chunk::Origin::Malloc, Alignment);
      if (NewPtr)
        memcpy(NewPtr, OldPtr, (NewSize < OldSize) ? NewSize : OldSize);
      GuardedAlloc.deallocate(OldPtr);
      return NewPtr;
    }
#endif // GWP_ASAN_HOOKS

    if (UNLIKELY(!isAligned(reinterpret_cast<uptr>(OldPtr), MinAlignment)))
      reportMisalignedPointer(AllocatorAction::Reallocating, OldPtr);

    Chunk::UnpackedHeader OldHeader;
    Chunk::loadHeader(Cookie, OldPtr, &OldHeader);

    if (UNLIKELY(OldHeader.State != Chunk::State::Allocated))
      reportInvalidChunkState(AllocatorAction::Reallocating, OldPtr);

    // Pointer has to be allocated with a malloc-type function. Some
    // applications think that it is OK to realloc a memalign'ed pointer, which
    // will trigger this check. It really isn't.
    if (Options.get(OptionBit::DeallocTypeMismatch)) {
      if (UNLIKELY(OldHeader.OriginOrWasZeroed != Chunk::Origin::Malloc))
        reportDeallocTypeMismatch(AllocatorAction::Reallocating, OldPtr,
                                  OldHeader.OriginOrWasZeroed,
                                  Chunk::Origin::Malloc);
    }

    void *BlockBegin = getBlockBegin(OldPtr, &OldHeader);
    uptr BlockEnd;
    uptr OldSize;
    const uptr ClassId = OldHeader.ClassId;
    if (LIKELY(ClassId)) {
      BlockEnd = reinterpret_cast<uptr>(BlockBegin) +
                 SizeClassMap::getSizeByClassId(ClassId);
      OldSize = OldHeader.SizeOrUnusedBytes;
    } else {
      BlockEnd = SecondaryT::getBlockEnd(BlockBegin);
      OldSize = BlockEnd -
                (reinterpret_cast<uptr>(OldPtr) + OldHeader.SizeOrUnusedBytes);
    }
    // If the new chunk still fits in the previously allocated block (with a
    // reasonable delta), we just keep the old block, and update the chunk
    // header to reflect the size change.
    if (reinterpret_cast<uptr>(OldPtr) + NewSize <= BlockEnd) {
      if (NewSize > OldSize || (OldSize - NewSize) < getPageSizeCached()) {
        Chunk::UnpackedHeader NewHeader = OldHeader;
        NewHeader.SizeOrUnusedBytes =
            (ClassId ? NewSize
                     : BlockEnd - (reinterpret_cast<uptr>(OldPtr) + NewSize)) &
            Chunk::SizeOrUnusedBytesMask;
        Chunk::compareExchangeHeader(Cookie, OldPtr, &NewHeader, &OldHeader);
        if (UNLIKELY(ClassId && useMemoryTagging(Options))) {
          resizeTaggedChunk(reinterpret_cast<uptr>(OldTaggedPtr) + OldSize,
                            reinterpret_cast<uptr>(OldTaggedPtr) + NewSize,
                            BlockEnd);
          storeAllocationStackMaybe(Options, OldPtr);
        }
        return OldTaggedPtr;
      }
    }

    // Otherwise we allocate a new one, and deallocate the old one. Some
    // allocators will allocate an even larger chunk (by a fixed factor) to
    // allow for potential further in-place realloc. The gains of such a trick
    // are currently unclear.
    void *NewPtr = allocate(NewSize, Chunk::Origin::Malloc, Alignment);
    if (NewPtr) {
      const uptr OldSize = getSize(OldPtr, &OldHeader);
      memcpy(NewPtr, OldTaggedPtr, Min(NewSize, OldSize));
      quarantineOrDeallocateChunk(Options, OldPtr, &OldHeader, OldSize);
    }
    return NewPtr;
  }

  // TODO(kostyak): disable() is currently best-effort. There are some small
  //                windows of time when an allocation could still succeed after
  //                this function finishes. We will revisit that later.
  void disable() {
    initThreadMaybe();
#ifdef GWP_ASAN_HOOKS
    GuardedAlloc.disable();
#endif
    TSDRegistry.disable();
    Stats.disable();
    Quarantine.disable();
    Primary.disable();
    Secondary.disable();
  }

  void enable() {
    initThreadMaybe();
    Secondary.enable();
    Primary.enable();
    Quarantine.enable();
    Stats.enable();
    TSDRegistry.enable();
#ifdef GWP_ASAN_HOOKS
    GuardedAlloc.enable();
#endif
  }

  // The function returns the amount of bytes required to store the statistics,
  // which might be larger than the amount of bytes provided. Note that the
  // statistics buffer is not necessarily constant between calls to this
  // function. This can be called with a null buffer or zero size for buffer
  // sizing purposes.
  uptr getStats(char *Buffer, uptr Size) {
    ScopedString Str(1024);
    disable();
    const uptr Length = getStats(&Str) + 1;
    enable();
    if (Length < Size)
      Size = Length;
    if (Buffer && Size) {
      memcpy(Buffer, Str.data(), Size);
      Buffer[Size - 1] = '\0';
    }
    return Length;
  }

  void printStats() {
    ScopedString Str(1024);
    disable();
    getStats(&Str);
    enable();
    Str.output();
  }

  void releaseToOS() {
    initThreadMaybe();
    Primary.releaseToOS();
    Secondary.releaseToOS();
  }

  // Iterate over all chunks and call a callback for all busy chunks located
  // within the provided memory range. Said callback must not use this allocator
  // or a deadlock can ensue. This fits Android's malloc_iterate() needs.
  void iterateOverChunks(uptr Base, uptr Size, iterate_callback Callback,
                         void *Arg) {
    initThreadMaybe();
    const uptr From = Base;
    const uptr To = Base + Size;
    auto Lambda = [this, From, To, Callback, Arg](uptr Block) {
      if (Block < From || Block >= To)
        return;
      uptr Chunk;
      Chunk::UnpackedHeader Header;
      if (getChunkFromBlock(Block, &Chunk, &Header) &&
          Header.State == Chunk::State::Allocated) {
        uptr TaggedChunk = Chunk;
        if (useMemoryTagging(Primary.Options.load()))
          TaggedChunk = loadTag(Chunk);
        Callback(TaggedChunk, getSize(reinterpret_cast<void *>(Chunk), &Header),
                 Arg);
      }
    };
    Primary.iterateOverBlocks(Lambda);
    Secondary.iterateOverBlocks(Lambda);
#ifdef GWP_ASAN_HOOKS
    GuardedAlloc.iterate(reinterpret_cast<void *>(Base), Size, Callback, Arg);
#endif
  }

  bool canReturnNull() {
    initThreadMaybe();
    return Primary.Options.load().get(OptionBit::MayReturnNull);
  }

  bool setOption(Option O, sptr Value) {
    initThreadMaybe();
    if (O == Option::MemtagTuning) {
      // Enabling odd/even tags involves a tradeoff between use-after-free
      // detection and buffer overflow detection. Odd/even tags make it more
      // likely for buffer overflows to be detected by increasing the size of
      // the guaranteed "red zone" around the allocation, but on the other hand
      // use-after-free is less likely to be detected because the tag space for
      // any particular chunk is cut in half. Therefore we use this tuning
      // setting to control whether odd/even tags are enabled.
      if (Value == M_MEMTAG_TUNING_BUFFER_OVERFLOW)
        Primary.Options.set(OptionBit::UseOddEvenTags);
      else if (Value == M_MEMTAG_TUNING_UAF)
        Primary.Options.clear(OptionBit::UseOddEvenTags);
      return true;
    } else {
      // We leave it to the various sub-components to decide whether or not they
      // want to handle the option, but we do not want to short-circuit
      // execution if one of the setOption was to return false.
      const bool PrimaryResult = Primary.setOption(O, Value);
      const bool SecondaryResult = Secondary.setOption(O, Value);
      const bool RegistryResult = TSDRegistry.setOption(O, Value);
      return PrimaryResult && SecondaryResult && RegistryResult;
    }
    return false;
  }

  // Return the usable size for a given chunk. Technically we lie, as we just
  // report the actual size of a chunk. This is done to counteract code actively
  // writing past the end of a chunk (like sqlite3) when the usable size allows
  // for it, which then forces realloc to copy the usable size of a chunk as
  // opposed to its actual size.
  uptr getUsableSize(const void *Ptr) {
    initThreadMaybe();
    if (UNLIKELY(!Ptr))
      return 0;

#ifdef GWP_ASAN_HOOKS
    if (UNLIKELY(GuardedAlloc.pointerIsMine(Ptr)))
      return GuardedAlloc.getSize(Ptr);
#endif // GWP_ASAN_HOOKS

    Ptr = untagPointerMaybe(const_cast<void *>(Ptr));
    Chunk::UnpackedHeader Header;
    Chunk::loadHeader(Cookie, Ptr, &Header);
    // Getting the usable size of a chunk only makes sense if it's allocated.
    if (UNLIKELY(Header.State != Chunk::State::Allocated))
      reportInvalidChunkState(AllocatorAction::Sizing, const_cast<void *>(Ptr));
    return getSize(Ptr, &Header);
  }

  void getStats(StatCounters S) {
    initThreadMaybe();
    Stats.get(S);
  }

  // Returns true if the pointer provided was allocated by the current
  // allocator instance, which is compliant with tcmalloc's ownership concept.
  // A corrupted chunk will not be reported as owned, which is WAI.
  bool isOwned(const void *Ptr) {
    initThreadMaybe();
#ifdef GWP_ASAN_HOOKS
    if (GuardedAlloc.pointerIsMine(Ptr))
      return true;
#endif // GWP_ASAN_HOOKS
    if (!Ptr || !isAligned(reinterpret_cast<uptr>(Ptr), MinAlignment))
      return false;
    Ptr = untagPointerMaybe(const_cast<void *>(Ptr));
    Chunk::UnpackedHeader Header;
    return Chunk::isValid(Cookie, Ptr, &Header) &&
           Header.State == Chunk::State::Allocated;
  }

  bool useMemoryTagging() const {
    return useMemoryTagging(Primary.Options.load());
  }
  static bool useMemoryTagging(Options Options) {
    return PrimaryT::useMemoryTagging(Options);
  }

  void disableMemoryTagging() { Primary.disableMemoryTagging(); }

  void setTrackAllocationStacks(bool Track) {
    initThreadMaybe();
    if (Track)
      Primary.Options.set(OptionBit::TrackAllocationStacks);
    else
      Primary.Options.clear(OptionBit::TrackAllocationStacks);
  }

  void setFillContents(FillContentsMode FillContents) {
    initThreadMaybe();
    Primary.Options.setFillContentsMode(FillContents);
  }

  const char *getStackDepotAddress() const {
    return reinterpret_cast<const char *>(&Depot);
  }

  const char *getRegionInfoArrayAddress() const {
    return Primary.getRegionInfoArrayAddress();
  }

  static uptr getRegionInfoArraySize() {
    return PrimaryT::getRegionInfoArraySize();
  }

  static void getErrorInfo(struct scudo_error_info *ErrorInfo,
                           uintptr_t FaultAddr, const char *DepotPtr,
                           const char *RegionInfoPtr, const char *Memory,
                           const char *MemoryTags, uintptr_t MemoryAddr,
                           size_t MemorySize) {
    *ErrorInfo = {};
    if (!PrimaryT::SupportsMemoryTagging ||
        MemoryAddr + MemorySize < MemoryAddr)
      return;

    uptr UntaggedFaultAddr = untagPointer(FaultAddr);
    u8 FaultAddrTag = extractTag(FaultAddr);
    BlockInfo Info =
        PrimaryT::findNearestBlock(RegionInfoPtr, UntaggedFaultAddr);

    auto GetGranule = [&](uptr Addr, const char **Data, uint8_t *Tag) -> bool {
      if (Addr < MemoryAddr || Addr + archMemoryTagGranuleSize() < Addr ||
          Addr + archMemoryTagGranuleSize() > MemoryAddr + MemorySize)
        return false;
      *Data = &Memory[Addr - MemoryAddr];
      *Tag = static_cast<u8>(
          MemoryTags[(Addr - MemoryAddr) / archMemoryTagGranuleSize()]);
      return true;
    };

    auto ReadBlock = [&](uptr Addr, uptr *ChunkAddr,
                         Chunk::UnpackedHeader *Header, const u32 **Data,
                         u8 *Tag) {
      const char *BlockBegin;
      u8 BlockBeginTag;
      if (!GetGranule(Addr, &BlockBegin, &BlockBeginTag))
        return false;
      uptr ChunkOffset = getChunkOffsetFromBlock(BlockBegin);
      *ChunkAddr = Addr + ChunkOffset;

      const char *ChunkBegin;
      if (!GetGranule(*ChunkAddr, &ChunkBegin, Tag))
        return false;
      *Header = *reinterpret_cast<const Chunk::UnpackedHeader *>(
          ChunkBegin - Chunk::getHeaderSize());
      *Data = reinterpret_cast<const u32 *>(ChunkBegin);
      return true;
    };

    auto *Depot = reinterpret_cast<const StackDepot *>(DepotPtr);

    auto MaybeCollectTrace = [&](uintptr_t(&Trace)[MaxTraceSize], u32 Hash) {
      uptr RingPos, Size;
      if (!Depot->find(Hash, &RingPos, &Size))
        return;
      for (unsigned I = 0; I != Size && I != MaxTraceSize; ++I)
        Trace[I] = (*Depot)[RingPos + I];
    };

    size_t NextErrorReport = 0;

    // First, check for UAF.
    {
      uptr ChunkAddr;
      Chunk::UnpackedHeader Header;
      const u32 *Data;
      uint8_t Tag;
      if (ReadBlock(Info.BlockBegin, &ChunkAddr, &Header, &Data, &Tag) &&
          Header.State != Chunk::State::Allocated &&
          Data[MemTagPrevTagIndex] == FaultAddrTag) {
        auto *R = &ErrorInfo->reports[NextErrorReport++];
        R->error_type = USE_AFTER_FREE;
        R->allocation_address = ChunkAddr;
        R->allocation_size = Header.SizeOrUnusedBytes;
        MaybeCollectTrace(R->allocation_trace,
                          Data[MemTagAllocationTraceIndex]);
        R->allocation_tid = Data[MemTagAllocationTidIndex];
        MaybeCollectTrace(R->deallocation_trace,
                          Data[MemTagDeallocationTraceIndex]);
        R->deallocation_tid = Data[MemTagDeallocationTidIndex];
      }
    }

    auto CheckOOB = [&](uptr BlockAddr) {
      if (BlockAddr < Info.RegionBegin || BlockAddr >= Info.RegionEnd)
        return false;

      uptr ChunkAddr;
      Chunk::UnpackedHeader Header;
      const u32 *Data;
      uint8_t Tag;
      if (!ReadBlock(BlockAddr, &ChunkAddr, &Header, &Data, &Tag) ||
          Header.State != Chunk::State::Allocated || Tag != FaultAddrTag)
        return false;

      auto *R = &ErrorInfo->reports[NextErrorReport++];
      R->error_type =
          UntaggedFaultAddr < ChunkAddr ? BUFFER_UNDERFLOW : BUFFER_OVERFLOW;
      R->allocation_address = ChunkAddr;
      R->allocation_size = Header.SizeOrUnusedBytes;
      MaybeCollectTrace(R->allocation_trace, Data[MemTagAllocationTraceIndex]);
      R->allocation_tid = Data[MemTagAllocationTidIndex];
      return NextErrorReport ==
             sizeof(ErrorInfo->reports) / sizeof(ErrorInfo->reports[0]);
    };

    if (CheckOOB(Info.BlockBegin))
      return;

    // Check for OOB in the 30 surrounding blocks. Beyond that we are likely to
    // hit false positives.
    for (int I = 1; I != 16; ++I)
      if (CheckOOB(Info.BlockBegin + I * Info.BlockSize) ||
          CheckOOB(Info.BlockBegin - I * Info.BlockSize))
        return;
  }

private:
  using SecondaryT = typename Params::Secondary;
  typedef typename PrimaryT::SizeClassMap SizeClassMap;

  static const uptr MinAlignmentLog = SCUDO_MIN_ALIGNMENT_LOG;
  static const uptr MaxAlignmentLog = 24U; // 16 MB seems reasonable.
  static const uptr MinAlignment = 1UL << MinAlignmentLog;
  static const uptr MaxAlignment = 1UL << MaxAlignmentLog;
  static const uptr MaxAllowedMallocSize =
      FIRST_32_SECOND_64(1UL << 31, 1ULL << 40);

  static_assert(MinAlignment >= sizeof(Chunk::PackedHeader),
                "Minimal alignment must at least cover a chunk header.");
  static_assert(!PrimaryT::SupportsMemoryTagging ||
                    MinAlignment >= archMemoryTagGranuleSize(),
                "");

  static const u32 BlockMarker = 0x44554353U;

  // These are indexes into an "array" of 32-bit values that store information
  // inline with a chunk that is relevant to diagnosing memory tag faults, where
  // 0 corresponds to the address of the user memory. This means that negative
  // indexes may be used to store information about allocations, while positive
  // indexes may only be used to store information about deallocations, because
  // the user memory is in use until it has been deallocated. The smallest index
  // that may be used is -2, which corresponds to 8 bytes before the user
  // memory, because the chunk header size is 8 bytes and in allocators that
  // support memory tagging the minimum alignment is at least the tag granule
  // size (16 on aarch64), and the largest index that may be used is 3 because
  // we are only guaranteed to have at least a granule's worth of space in the
  // user memory.
  static const sptr MemTagAllocationTraceIndex = -2;
  static const sptr MemTagAllocationTidIndex = -1;
  static const sptr MemTagDeallocationTraceIndex = 0;
  static const sptr MemTagDeallocationTidIndex = 1;
  static const sptr MemTagPrevTagIndex = 2;

  static const uptr MaxTraceSize = 64;

  u32 Cookie;
  u32 QuarantineMaxChunkSize;

  GlobalStats Stats;
  PrimaryT Primary;
  SecondaryT Secondary;
  QuarantineT Quarantine;
  TSDRegistryT TSDRegistry;

#ifdef GWP_ASAN_HOOKS
  gwp_asan::GuardedPoolAllocator GuardedAlloc;
#endif // GWP_ASAN_HOOKS

  StackDepot Depot;

  // The following might get optimized out by the compiler.
  NOINLINE void performSanityChecks() {
    // Verify that the header offset field can hold the maximum offset. In the
    // case of the Secondary allocator, it takes care of alignment and the
    // offset will always be small. In the case of the Primary, the worst case
    // scenario happens in the last size class, when the backend allocation
    // would already be aligned on the requested alignment, which would happen
    // to be the maximum alignment that would fit in that size class. As a
    // result, the maximum offset will be at most the maximum alignment for the
    // last size class minus the header size, in multiples of MinAlignment.
    Chunk::UnpackedHeader Header = {};
    const uptr MaxPrimaryAlignment = 1UL << getMostSignificantSetBitIndex(
                                         SizeClassMap::MaxSize - MinAlignment);
    const uptr MaxOffset =
        (MaxPrimaryAlignment - Chunk::getHeaderSize()) >> MinAlignmentLog;
    Header.Offset = MaxOffset & Chunk::OffsetMask;
    if (UNLIKELY(Header.Offset != MaxOffset))
      reportSanityCheckError("offset");

    // Verify that we can fit the maximum size or amount of unused bytes in the
    // header. Given that the Secondary fits the allocation to a page, the worst
    // case scenario happens in the Primary. It will depend on the second to
    // last and last class sizes, as well as the dynamic base for the Primary.
    // The following is an over-approximation that works for our needs.
    const uptr MaxSizeOrUnusedBytes = SizeClassMap::MaxSize - 1;
    Header.SizeOrUnusedBytes = MaxSizeOrUnusedBytes;
    if (UNLIKELY(Header.SizeOrUnusedBytes != MaxSizeOrUnusedBytes))
      reportSanityCheckError("size (or unused bytes)");

    const uptr LargestClassId = SizeClassMap::LargestClassId;
    Header.ClassId = LargestClassId;
    if (UNLIKELY(Header.ClassId != LargestClassId))
      reportSanityCheckError("class ID");
  }

  static inline void *getBlockBegin(const void *Ptr,
                                    Chunk::UnpackedHeader *Header) {
    return reinterpret_cast<void *>(
        reinterpret_cast<uptr>(Ptr) - Chunk::getHeaderSize() -
        (static_cast<uptr>(Header->Offset) << MinAlignmentLog));
  }

  // Return the size of a chunk as requested during its allocation.
  inline uptr getSize(const void *Ptr, Chunk::UnpackedHeader *Header) {
    const uptr SizeOrUnusedBytes = Header->SizeOrUnusedBytes;
    if (LIKELY(Header->ClassId))
      return SizeOrUnusedBytes;
    return SecondaryT::getBlockEnd(getBlockBegin(Ptr, Header)) -
           reinterpret_cast<uptr>(Ptr) - SizeOrUnusedBytes;
  }

  void quarantineOrDeallocateChunk(Options Options, void *Ptr,
                                   Chunk::UnpackedHeader *Header, uptr Size) {
    Chunk::UnpackedHeader NewHeader = *Header;
    if (UNLIKELY(NewHeader.ClassId && useMemoryTagging(Options))) {
      u8 PrevTag = extractTag(loadTag(reinterpret_cast<uptr>(Ptr)));
      if (!TSDRegistry.getDisableMemInit()) {
        uptr TaggedBegin, TaggedEnd;
        const uptr OddEvenMask = computeOddEvenMaskForPointerMaybe(
            Options, reinterpret_cast<uptr>(getBlockBegin(Ptr, &NewHeader)),
            SizeClassMap::getSizeByClassId(NewHeader.ClassId));
        // Exclude the previous tag so that immediate use after free is detected
        // 100% of the time.
        setRandomTag(Ptr, Size, OddEvenMask | (1UL << PrevTag), &TaggedBegin,
                     &TaggedEnd);
      }
      NewHeader.OriginOrWasZeroed = !TSDRegistry.getDisableMemInit();
      storeDeallocationStackMaybe(Options, Ptr, PrevTag);
    }
    // If the quarantine is disabled, the actual size of a chunk is 0 or larger
    // than the maximum allowed, we return a chunk directly to the backend.
    // Logical Or can be short-circuited, which introduces unnecessary
    // conditional jumps, so use bitwise Or and let the compiler be clever.
    const bool BypassQuarantine =
        !Quarantine.getCacheSize() | !Size | (Size > QuarantineMaxChunkSize);
    if (BypassQuarantine) {
      NewHeader.State = Chunk::State::Available;
      Chunk::compareExchangeHeader(Cookie, Ptr, &NewHeader, Header);
      void *BlockBegin = getBlockBegin(Ptr, &NewHeader);
      const uptr ClassId = NewHeader.ClassId;
      if (LIKELY(ClassId)) {
        bool UnlockRequired;
        auto *TSD = TSDRegistry.getTSDAndLock(&UnlockRequired);
        TSD->Cache.deallocate(ClassId, BlockBegin);
        if (UnlockRequired)
          TSD->unlock();
      } else {
        Secondary.deallocate(BlockBegin);
      }
    } else {
      NewHeader.State = Chunk::State::Quarantined;
      Chunk::compareExchangeHeader(Cookie, Ptr, &NewHeader, Header);
      bool UnlockRequired;
      auto *TSD = TSDRegistry.getTSDAndLock(&UnlockRequired);
      Quarantine.put(&TSD->QuarantineCache,
                     QuarantineCallback(*this, TSD->Cache), Ptr, Size);
      if (UnlockRequired)
        TSD->unlock();
    }
  }

  bool getChunkFromBlock(uptr Block, uptr *Chunk,
                         Chunk::UnpackedHeader *Header) {
    *Chunk =
        Block + getChunkOffsetFromBlock(reinterpret_cast<const char *>(Block));
    return Chunk::isValid(Cookie, reinterpret_cast<void *>(*Chunk), Header);
  }

  static uptr getChunkOffsetFromBlock(const char *Block) {
    u32 Offset = 0;
    if (reinterpret_cast<const u32 *>(Block)[0] == BlockMarker)
      Offset = reinterpret_cast<const u32 *>(Block)[1];
    return Offset + Chunk::getHeaderSize();
  }

  void storeAllocationStackMaybe(Options Options, void *Ptr) {
    if (!UNLIKELY(Options.get(OptionBit::TrackAllocationStacks)))
      return;
    auto *Ptr32 = reinterpret_cast<u32 *>(Ptr);
    Ptr32[MemTagAllocationTraceIndex] = collectStackTrace();
    Ptr32[MemTagAllocationTidIndex] = getThreadID();
  }

  void storeDeallocationStackMaybe(Options Options, void *Ptr,
                                   uint8_t PrevTag) {
    if (!UNLIKELY(Options.get(OptionBit::TrackAllocationStacks)))
      return;

    // Disable tag checks here so that we don't need to worry about zero sized
    // allocations.
    ScopedDisableMemoryTagChecks x;
    auto *Ptr32 = reinterpret_cast<u32 *>(Ptr);
    Ptr32[MemTagDeallocationTraceIndex] = collectStackTrace();
    Ptr32[MemTagDeallocationTidIndex] = getThreadID();
    Ptr32[MemTagPrevTagIndex] = PrevTag;
  }

  uptr getStats(ScopedString *Str) {
    Primary.getStats(Str);
    Secondary.getStats(Str);
    Quarantine.getStats(Str);
    return Str->length();
  }
};

} // namespace scudo

#endif // SCUDO_COMBINED_H_