sanitizer_stoptheworld_linux_libcdep.cpp 22.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
//===-- sanitizer_stoptheworld_linux_libcdep.cpp --------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// See sanitizer_stoptheworld.h for details.
// This implementation was inspired by Markus Gutschke's linuxthreads.cc.
//
//===----------------------------------------------------------------------===//

#include "sanitizer_platform.h"

#if SANITIZER_LINUX &&                                                   \
    (defined(__x86_64__) || defined(__mips__) || defined(__aarch64__) || \
     defined(__powerpc64__) || defined(__s390__) || defined(__i386__) || \
     defined(__arm__) || SANITIZER_RISCV64)

#include "sanitizer_stoptheworld.h"

#include "sanitizer_platform_limits_posix.h"
#include "sanitizer_atomic.h"

#include <errno.h>
#include <sched.h> // for CLONE_* definitions
#include <stddef.h>
#include <sys/prctl.h> // for PR_* definitions
#include <sys/ptrace.h> // for PTRACE_* definitions
#include <sys/types.h> // for pid_t
#include <sys/uio.h> // for iovec
#include <elf.h> // for NT_PRSTATUS
#if (defined(__aarch64__) || SANITIZER_RISCV64) && !SANITIZER_ANDROID
// GLIBC 2.20+ sys/user does not include asm/ptrace.h
# include <asm/ptrace.h>
#endif
#include <sys/user.h>  // for user_regs_struct
#if SANITIZER_ANDROID && SANITIZER_MIPS
# include <asm/reg.h>  // for mips SP register in sys/user.h
#endif
#include <sys/wait.h> // for signal-related stuff

#ifdef sa_handler
# undef sa_handler
#endif

#ifdef sa_sigaction
# undef sa_sigaction
#endif

#include "sanitizer_common.h"
#include "sanitizer_flags.h"
#include "sanitizer_libc.h"
#include "sanitizer_linux.h"
#include "sanitizer_mutex.h"
#include "sanitizer_placement_new.h"

// Sufficiently old kernel headers don't provide this value, but we can still
// call prctl with it. If the runtime kernel is new enough, the prctl call will
// have the desired effect; if the kernel is too old, the call will error and we
// can ignore said error.
#ifndef PR_SET_PTRACER
#define PR_SET_PTRACER 0x59616d61
#endif

// This module works by spawning a Linux task which then attaches to every
// thread in the caller process with ptrace. This suspends the threads, and
// PTRACE_GETREGS can then be used to obtain their register state. The callback
// supplied to StopTheWorld() is run in the tracer task while the threads are
// suspended.
// The tracer task must be placed in a different thread group for ptrace to
// work, so it cannot be spawned as a pthread. Instead, we use the low-level
// clone() interface (we want to share the address space with the caller
// process, so we prefer clone() over fork()).
//
// We don't use any libc functions, relying instead on direct syscalls. There
// are two reasons for this:
// 1. calling a library function while threads are suspended could cause a
// deadlock, if one of the treads happens to be holding a libc lock;
// 2. it's generally not safe to call libc functions from the tracer task,
// because clone() does not set up a thread-local storage for it. Any
// thread-local variables used by libc will be shared between the tracer task
// and the thread which spawned it.

namespace __sanitizer {

class SuspendedThreadsListLinux : public SuspendedThreadsList {
 public:
  SuspendedThreadsListLinux() { thread_ids_.reserve(1024); }

  tid_t GetThreadID(uptr index) const override;
  uptr ThreadCount() const override;
  bool ContainsTid(tid_t thread_id) const;
  void Append(tid_t tid);

  PtraceRegistersStatus GetRegistersAndSP(uptr index,
                                          InternalMmapVector<uptr> *buffer,
                                          uptr *sp) const override;

 private:
  InternalMmapVector<tid_t> thread_ids_;
};

// Structure for passing arguments into the tracer thread.
struct TracerThreadArgument {
  StopTheWorldCallback callback;
  void *callback_argument;
  // The tracer thread waits on this mutex while the parent finishes its
  // preparations.
  BlockingMutex mutex;
  // Tracer thread signals its completion by setting done.
  atomic_uintptr_t done;
  uptr parent_pid;
};

// This class handles thread suspending/unsuspending in the tracer thread.
class ThreadSuspender {
 public:
  explicit ThreadSuspender(pid_t pid, TracerThreadArgument *arg)
    : arg(arg)
    , pid_(pid) {
      CHECK_GE(pid, 0);
    }
  bool SuspendAllThreads();
  void ResumeAllThreads();
  void KillAllThreads();
  SuspendedThreadsListLinux &suspended_threads_list() {
    return suspended_threads_list_;
  }
  TracerThreadArgument *arg;
 private:
  SuspendedThreadsListLinux suspended_threads_list_;
  pid_t pid_;
  bool SuspendThread(tid_t thread_id);
};

bool ThreadSuspender::SuspendThread(tid_t tid) {
  // Are we already attached to this thread?
  // Currently this check takes linear time, however the number of threads is
  // usually small.
  if (suspended_threads_list_.ContainsTid(tid)) return false;
  int pterrno;
  if (internal_iserror(internal_ptrace(PTRACE_ATTACH, tid, nullptr, nullptr),
                       &pterrno)) {
    // Either the thread is dead, or something prevented us from attaching.
    // Log this event and move on.
    VReport(1, "Could not attach to thread %zu (errno %d).\n", (uptr)tid,
            pterrno);
    return false;
  } else {
    VReport(2, "Attached to thread %zu.\n", (uptr)tid);
    // The thread is not guaranteed to stop before ptrace returns, so we must
    // wait on it. Note: if the thread receives a signal concurrently,
    // we can get notification about the signal before notification about stop.
    // In such case we need to forward the signal to the thread, otherwise
    // the signal will be missed (as we do PTRACE_DETACH with arg=0) and
    // any logic relying on signals will break. After forwarding we need to
    // continue to wait for stopping, because the thread is not stopped yet.
    // We do ignore delivery of SIGSTOP, because we want to make stop-the-world
    // as invisible as possible.
    for (;;) {
      int status;
      uptr waitpid_status;
      HANDLE_EINTR(waitpid_status, internal_waitpid(tid, &status, __WALL));
      int wperrno;
      if (internal_iserror(waitpid_status, &wperrno)) {
        // Got a ECHILD error. I don't think this situation is possible, but it
        // doesn't hurt to report it.
        VReport(1, "Waiting on thread %zu failed, detaching (errno %d).\n",
                (uptr)tid, wperrno);
        internal_ptrace(PTRACE_DETACH, tid, nullptr, nullptr);
        return false;
      }
      if (WIFSTOPPED(status) && WSTOPSIG(status) != SIGSTOP) {
        internal_ptrace(PTRACE_CONT, tid, nullptr,
                        (void*)(uptr)WSTOPSIG(status));
        continue;
      }
      break;
    }
    suspended_threads_list_.Append(tid);
    return true;
  }
}

void ThreadSuspender::ResumeAllThreads() {
  for (uptr i = 0; i < suspended_threads_list_.ThreadCount(); i++) {
    pid_t tid = suspended_threads_list_.GetThreadID(i);
    int pterrno;
    if (!internal_iserror(internal_ptrace(PTRACE_DETACH, tid, nullptr, nullptr),
                          &pterrno)) {
      VReport(2, "Detached from thread %d.\n", tid);
    } else {
      // Either the thread is dead, or we are already detached.
      // The latter case is possible, for instance, if this function was called
      // from a signal handler.
      VReport(1, "Could not detach from thread %d (errno %d).\n", tid, pterrno);
    }
  }
}

void ThreadSuspender::KillAllThreads() {
  for (uptr i = 0; i < suspended_threads_list_.ThreadCount(); i++)
    internal_ptrace(PTRACE_KILL, suspended_threads_list_.GetThreadID(i),
                    nullptr, nullptr);
}

bool ThreadSuspender::SuspendAllThreads() {
  ThreadLister thread_lister(pid_);
  bool retry = true;
  InternalMmapVector<tid_t> threads;
  threads.reserve(128);
  for (int i = 0; i < 30 && retry; ++i) {
    retry = false;
    switch (thread_lister.ListThreads(&threads)) {
      case ThreadLister::Error:
        ResumeAllThreads();
        return false;
      case ThreadLister::Incomplete:
        retry = true;
        break;
      case ThreadLister::Ok:
        break;
    }
    for (tid_t tid : threads) {
      if (SuspendThread(tid))
        retry = true;
    }
  }
  return suspended_threads_list_.ThreadCount();
}

// Pointer to the ThreadSuspender instance for use in signal handler.
static ThreadSuspender *thread_suspender_instance = nullptr;

// Synchronous signals that should not be blocked.
static const int kSyncSignals[] = { SIGABRT, SIGILL, SIGFPE, SIGSEGV, SIGBUS,
                                    SIGXCPU, SIGXFSZ };

static void TracerThreadDieCallback() {
  // Generally a call to Die() in the tracer thread should be fatal to the
  // parent process as well, because they share the address space.
  // This really only works correctly if all the threads are suspended at this
  // point. So we correctly handle calls to Die() from within the callback, but
  // not those that happen before or after the callback. Hopefully there aren't
  // a lot of opportunities for that to happen...
  ThreadSuspender *inst = thread_suspender_instance;
  if (inst && stoptheworld_tracer_pid == internal_getpid()) {
    inst->KillAllThreads();
    thread_suspender_instance = nullptr;
  }
}

// Signal handler to wake up suspended threads when the tracer thread dies.
static void TracerThreadSignalHandler(int signum, __sanitizer_siginfo *siginfo,
                                      void *uctx) {
  SignalContext ctx(siginfo, uctx);
  Printf("Tracer caught signal %d: addr=0x%zx pc=0x%zx sp=0x%zx\n", signum,
         ctx.addr, ctx.pc, ctx.sp);
  ThreadSuspender *inst = thread_suspender_instance;
  if (inst) {
    if (signum == SIGABRT)
      inst->KillAllThreads();
    else
      inst->ResumeAllThreads();
    RAW_CHECK(RemoveDieCallback(TracerThreadDieCallback));
    thread_suspender_instance = nullptr;
    atomic_store(&inst->arg->done, 1, memory_order_relaxed);
  }
  internal__exit((signum == SIGABRT) ? 1 : 2);
}

// Size of alternative stack for signal handlers in the tracer thread.
static const int kHandlerStackSize = 8192;

// This function will be run as a cloned task.
static int TracerThread(void* argument) {
  TracerThreadArgument *tracer_thread_argument =
      (TracerThreadArgument *)argument;

  internal_prctl(PR_SET_PDEATHSIG, SIGKILL, 0, 0, 0);
  // Check if parent is already dead.
  if (internal_getppid() != tracer_thread_argument->parent_pid)
    internal__exit(4);

  // Wait for the parent thread to finish preparations.
  tracer_thread_argument->mutex.Lock();
  tracer_thread_argument->mutex.Unlock();

  RAW_CHECK(AddDieCallback(TracerThreadDieCallback));

  ThreadSuspender thread_suspender(internal_getppid(), tracer_thread_argument);
  // Global pointer for the signal handler.
  thread_suspender_instance = &thread_suspender;

  // Alternate stack for signal handling.
  InternalMmapVector<char> handler_stack_memory(kHandlerStackSize);
  stack_t handler_stack;
  internal_memset(&handler_stack, 0, sizeof(handler_stack));
  handler_stack.ss_sp = handler_stack_memory.data();
  handler_stack.ss_size = kHandlerStackSize;
  internal_sigaltstack(&handler_stack, nullptr);

  // Install our handler for synchronous signals. Other signals should be
  // blocked by the mask we inherited from the parent thread.
  for (uptr i = 0; i < ARRAY_SIZE(kSyncSignals); i++) {
    __sanitizer_sigaction act;
    internal_memset(&act, 0, sizeof(act));
    act.sigaction = TracerThreadSignalHandler;
    act.sa_flags = SA_ONSTACK | SA_SIGINFO;
    internal_sigaction_norestorer(kSyncSignals[i], &act, 0);
  }

  int exit_code = 0;
  if (!thread_suspender.SuspendAllThreads()) {
    VReport(1, "Failed suspending threads.\n");
    exit_code = 3;
  } else {
    tracer_thread_argument->callback(thread_suspender.suspended_threads_list(),
                                     tracer_thread_argument->callback_argument);
    thread_suspender.ResumeAllThreads();
    exit_code = 0;
  }
  RAW_CHECK(RemoveDieCallback(TracerThreadDieCallback));
  thread_suspender_instance = nullptr;
  atomic_store(&tracer_thread_argument->done, 1, memory_order_relaxed);
  return exit_code;
}

class ScopedStackSpaceWithGuard {
 public:
  explicit ScopedStackSpaceWithGuard(uptr stack_size) {
    stack_size_ = stack_size;
    guard_size_ = GetPageSizeCached();
    // FIXME: Omitting MAP_STACK here works in current kernels but might break
    // in the future.
    guard_start_ = (uptr)MmapOrDie(stack_size_ + guard_size_,
                                   "ScopedStackWithGuard");
    CHECK(MprotectNoAccess((uptr)guard_start_, guard_size_));
  }
  ~ScopedStackSpaceWithGuard() {
    UnmapOrDie((void *)guard_start_, stack_size_ + guard_size_);
  }
  void *Bottom() const {
    return (void *)(guard_start_ + stack_size_ + guard_size_);
  }

 private:
  uptr stack_size_;
  uptr guard_size_;
  uptr guard_start_;
};

// We have a limitation on the stack frame size, so some stuff had to be moved
// into globals.
static __sanitizer_sigset_t blocked_sigset;
static __sanitizer_sigset_t old_sigset;

class StopTheWorldScope {
 public:
  StopTheWorldScope() {
    // Make this process dumpable. Processes that are not dumpable cannot be
    // attached to.
    process_was_dumpable_ = internal_prctl(PR_GET_DUMPABLE, 0, 0, 0, 0);
    if (!process_was_dumpable_)
      internal_prctl(PR_SET_DUMPABLE, 1, 0, 0, 0);
  }

  ~StopTheWorldScope() {
    // Restore the dumpable flag.
    if (!process_was_dumpable_)
      internal_prctl(PR_SET_DUMPABLE, 0, 0, 0, 0);
  }

 private:
  int process_was_dumpable_;
};

// When sanitizer output is being redirected to file (i.e. by using log_path),
// the tracer should write to the parent's log instead of trying to open a new
// file. Alert the logging code to the fact that we have a tracer.
struct ScopedSetTracerPID {
  explicit ScopedSetTracerPID(uptr tracer_pid) {
    stoptheworld_tracer_pid = tracer_pid;
    stoptheworld_tracer_ppid = internal_getpid();
  }
  ~ScopedSetTracerPID() {
    stoptheworld_tracer_pid = 0;
    stoptheworld_tracer_ppid = 0;
  }
};

void StopTheWorld(StopTheWorldCallback callback, void *argument) {
  StopTheWorldScope in_stoptheworld;
  // Prepare the arguments for TracerThread.
  struct TracerThreadArgument tracer_thread_argument;
  tracer_thread_argument.callback = callback;
  tracer_thread_argument.callback_argument = argument;
  tracer_thread_argument.parent_pid = internal_getpid();
  atomic_store(&tracer_thread_argument.done, 0, memory_order_relaxed);
  const uptr kTracerStackSize = 2 * 1024 * 1024;
  ScopedStackSpaceWithGuard tracer_stack(kTracerStackSize);
  // Block the execution of TracerThread until after we have set ptrace
  // permissions.
  tracer_thread_argument.mutex.Lock();
  // Signal handling story.
  // We don't want async signals to be delivered to the tracer thread,
  // so we block all async signals before creating the thread. An async signal
  // handler can temporary modify errno, which is shared with this thread.
  // We ought to use pthread_sigmask here, because sigprocmask has undefined
  // behavior in multithreaded programs. However, on linux sigprocmask is
  // equivalent to pthread_sigmask with the exception that pthread_sigmask
  // does not allow to block some signals used internally in pthread
  // implementation. We are fine with blocking them here, we are really not
  // going to pthread_cancel the thread.
  // The tracer thread should not raise any synchronous signals. But in case it
  // does, we setup a special handler for sync signals that properly kills the
  // parent as well. Note: we don't pass CLONE_SIGHAND to clone, so handlers
  // in the tracer thread won't interfere with user program. Double note: if a
  // user does something along the lines of 'kill -11 pid', that can kill the
  // process even if user setup own handler for SEGV.
  // Thing to watch out for: this code should not change behavior of user code
  // in any observable way. In particular it should not override user signal
  // handlers.
  internal_sigfillset(&blocked_sigset);
  for (uptr i = 0; i < ARRAY_SIZE(kSyncSignals); i++)
    internal_sigdelset(&blocked_sigset, kSyncSignals[i]);
  int rv = internal_sigprocmask(SIG_BLOCK, &blocked_sigset, &old_sigset);
  CHECK_EQ(rv, 0);
  uptr tracer_pid = internal_clone(
      TracerThread, tracer_stack.Bottom(),
      CLONE_VM | CLONE_FS | CLONE_FILES | CLONE_UNTRACED,
      &tracer_thread_argument, nullptr /* parent_tidptr */,
      nullptr /* newtls */, nullptr /* child_tidptr */);
  internal_sigprocmask(SIG_SETMASK, &old_sigset, 0);
  int local_errno = 0;
  if (internal_iserror(tracer_pid, &local_errno)) {
    VReport(1, "Failed spawning a tracer thread (errno %d).\n", local_errno);
    tracer_thread_argument.mutex.Unlock();
  } else {
    ScopedSetTracerPID scoped_set_tracer_pid(tracer_pid);
    // On some systems we have to explicitly declare that we want to be traced
    // by the tracer thread.
    internal_prctl(PR_SET_PTRACER, tracer_pid, 0, 0, 0);
    // Allow the tracer thread to start.
    tracer_thread_argument.mutex.Unlock();
    // NOTE: errno is shared between this thread and the tracer thread.
    // internal_waitpid() may call syscall() which can access/spoil errno,
    // so we can't call it now. Instead we for the tracer thread to finish using
    // the spin loop below. Man page for sched_yield() says "In the Linux
    // implementation, sched_yield() always succeeds", so let's hope it does not
    // spoil errno. Note that this spin loop runs only for brief periods before
    // the tracer thread has suspended us and when it starts unblocking threads.
    while (atomic_load(&tracer_thread_argument.done, memory_order_relaxed) == 0)
      sched_yield();
    // Now the tracer thread is about to exit and does not touch errno,
    // wait for it.
    for (;;) {
      uptr waitpid_status = internal_waitpid(tracer_pid, nullptr, __WALL);
      if (!internal_iserror(waitpid_status, &local_errno))
        break;
      if (local_errno == EINTR)
        continue;
      VReport(1, "Waiting on the tracer thread failed (errno %d).\n",
              local_errno);
      break;
    }
  }
}

// Platform-specific methods from SuspendedThreadsList.
#if SANITIZER_ANDROID && defined(__arm__)
typedef pt_regs regs_struct;
#define REG_SP ARM_sp

#elif SANITIZER_LINUX && defined(__arm__)
typedef user_regs regs_struct;
#define REG_SP uregs[13]

#elif defined(__i386__) || defined(__x86_64__)
typedef user_regs_struct regs_struct;
#if defined(__i386__)
#define REG_SP esp
#else
#define REG_SP rsp
#endif
#define ARCH_IOVEC_FOR_GETREGSET
// Compiler may use FP registers to store pointers.
static constexpr uptr kExtraRegs[] = {NT_X86_XSTATE, NT_FPREGSET};

#elif defined(__powerpc__) || defined(__powerpc64__)
typedef pt_regs regs_struct;
#define REG_SP gpr[PT_R1]

#elif defined(__mips__)
typedef struct user regs_struct;
# if SANITIZER_ANDROID
#  define REG_SP regs[EF_R29]
# else
#  define REG_SP regs[EF_REG29]
# endif

#elif defined(__aarch64__)
typedef struct user_pt_regs regs_struct;
#define REG_SP sp
static constexpr uptr kExtraRegs[] = {0};
#define ARCH_IOVEC_FOR_GETREGSET

#elif SANITIZER_RISCV64
typedef struct user_regs_struct regs_struct;
#define REG_SP sp
static constexpr uptr kExtraRegs[] = {0};
#define ARCH_IOVEC_FOR_GETREGSET

#elif defined(__s390__)
typedef _user_regs_struct regs_struct;
#define REG_SP gprs[15]
static constexpr uptr kExtraRegs[] = {0};
#define ARCH_IOVEC_FOR_GETREGSET

#else
#error "Unsupported architecture"
#endif // SANITIZER_ANDROID && defined(__arm__)

tid_t SuspendedThreadsListLinux::GetThreadID(uptr index) const {
  CHECK_LT(index, thread_ids_.size());
  return thread_ids_[index];
}

uptr SuspendedThreadsListLinux::ThreadCount() const {
  return thread_ids_.size();
}

bool SuspendedThreadsListLinux::ContainsTid(tid_t thread_id) const {
  for (uptr i = 0; i < thread_ids_.size(); i++) {
    if (thread_ids_[i] == thread_id) return true;
  }
  return false;
}

void SuspendedThreadsListLinux::Append(tid_t tid) {
  thread_ids_.push_back(tid);
}

PtraceRegistersStatus SuspendedThreadsListLinux::GetRegistersAndSP(
    uptr index, InternalMmapVector<uptr> *buffer, uptr *sp) const {
  pid_t tid = GetThreadID(index);
  constexpr uptr uptr_sz = sizeof(uptr);
  int pterrno;
#ifdef ARCH_IOVEC_FOR_GETREGSET
  auto append = [&](uptr regset) {
    uptr size = buffer->size();
    // NT_X86_XSTATE requires 64bit alignment.
    uptr size_up = RoundUpTo(size, 8 / uptr_sz);
    buffer->reserve(Max<uptr>(1024, size_up));
    struct iovec regset_io;
    for (;; buffer->resize(buffer->capacity() * 2)) {
      buffer->resize(buffer->capacity());
      uptr available_bytes = (buffer->size() - size_up) * uptr_sz;
      regset_io.iov_base = buffer->data() + size_up;
      regset_io.iov_len = available_bytes;
      bool fail =
          internal_iserror(internal_ptrace(PTRACE_GETREGSET, tid,
                                           (void *)regset, (void *)&regset_io),
                           &pterrno);
      if (fail) {
        VReport(1, "Could not get regset %p from thread %d (errno %d).\n",
                (void *)regset, tid, pterrno);
        buffer->resize(size);
        return false;
      }

      // Far enough from the buffer size, no need to resize and repeat.
      if (regset_io.iov_len + 64 < available_bytes)
        break;
    }
    buffer->resize(size_up + RoundUpTo(regset_io.iov_len, uptr_sz) / uptr_sz);
    return true;
  };

  buffer->clear();
  bool fail = !append(NT_PRSTATUS);
  if (!fail) {
    // Accept the first available and do not report errors.
    for (uptr regs : kExtraRegs)
      if (regs && append(regs))
        break;
  }
#else
  buffer->resize(RoundUpTo(sizeof(regs_struct), uptr_sz) / uptr_sz);
  bool fail = internal_iserror(
      internal_ptrace(PTRACE_GETREGS, tid, nullptr, buffer->data()), &pterrno);
  if (fail)
    VReport(1, "Could not get registers from thread %d (errno %d).\n", tid,
            pterrno);
#endif
  if (fail) {
    // ESRCH means that the given thread is not suspended or already dead.
    // Therefore it's unsafe to inspect its data (e.g. walk through stack) and
    // we should notify caller about this.
    return pterrno == ESRCH ? REGISTERS_UNAVAILABLE_FATAL
                            : REGISTERS_UNAVAILABLE;
  }

  *sp = reinterpret_cast<regs_struct *>(buffer->data())[0].REG_SP;
  return REGISTERS_AVAILABLE;
}

} // namespace __sanitizer

#endif  // SANITIZER_LINUX && (defined(__x86_64__) || defined(__mips__)
        // || defined(__aarch64__) || defined(__powerpc64__)
        // || defined(__s390__) || defined(__i386__) || defined(__arm__)