sanitizer_procmaps_common.cpp
5.27 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
//===-- sanitizer_procmaps_common.cpp -------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Information about the process mappings (common parts).
//===----------------------------------------------------------------------===//
#include "sanitizer_platform.h"
#if SANITIZER_FREEBSD || SANITIZER_LINUX || SANITIZER_NETBSD || \
SANITIZER_OPENBSD || SANITIZER_SOLARIS
#include "sanitizer_common.h"
#include "sanitizer_placement_new.h"
#include "sanitizer_procmaps.h"
namespace __sanitizer {
static ProcSelfMapsBuff cached_proc_self_maps;
static StaticSpinMutex cache_lock;
static int TranslateDigit(char c) {
if (c >= '0' && c <= '9')
return c - '0';
if (c >= 'a' && c <= 'f')
return c - 'a' + 10;
if (c >= 'A' && c <= 'F')
return c - 'A' + 10;
return -1;
}
// Parse a number and promote 'p' up to the first non-digit character.
static uptr ParseNumber(const char **p, int base) {
uptr n = 0;
int d;
CHECK(base >= 2 && base <= 16);
while ((d = TranslateDigit(**p)) >= 0 && d < base) {
n = n * base + d;
(*p)++;
}
return n;
}
bool IsDecimal(char c) {
int d = TranslateDigit(c);
return d >= 0 && d < 10;
}
uptr ParseDecimal(const char **p) {
return ParseNumber(p, 10);
}
bool IsHex(char c) {
int d = TranslateDigit(c);
return d >= 0 && d < 16;
}
uptr ParseHex(const char **p) {
return ParseNumber(p, 16);
}
void MemoryMappedSegment::AddAddressRanges(LoadedModule *module) {
// data_ should be unused on this platform
CHECK(!data_);
module->addAddressRange(start, end, IsExecutable(), IsWritable());
}
MemoryMappingLayout::MemoryMappingLayout(bool cache_enabled) {
// FIXME: in the future we may want to cache the mappings on demand only.
if (cache_enabled)
CacheMemoryMappings();
// Read maps after the cache update to capture the maps/unmaps happening in
// the process of updating.
ReadProcMaps(&data_.proc_self_maps);
if (cache_enabled && data_.proc_self_maps.mmaped_size == 0)
LoadFromCache();
Reset();
}
bool MemoryMappingLayout::Error() const {
return data_.current == nullptr;
}
MemoryMappingLayout::~MemoryMappingLayout() {
// Only unmap the buffer if it is different from the cached one. Otherwise
// it will be unmapped when the cache is refreshed.
if (data_.proc_self_maps.data != cached_proc_self_maps.data)
UnmapOrDie(data_.proc_self_maps.data, data_.proc_self_maps.mmaped_size);
}
void MemoryMappingLayout::Reset() {
data_.current = data_.proc_self_maps.data;
}
// static
void MemoryMappingLayout::CacheMemoryMappings() {
ProcSelfMapsBuff new_proc_self_maps;
ReadProcMaps(&new_proc_self_maps);
// Don't invalidate the cache if the mappings are unavailable.
if (new_proc_self_maps.mmaped_size == 0)
return;
SpinMutexLock l(&cache_lock);
if (cached_proc_self_maps.mmaped_size)
UnmapOrDie(cached_proc_self_maps.data, cached_proc_self_maps.mmaped_size);
cached_proc_self_maps = new_proc_self_maps;
}
void MemoryMappingLayout::LoadFromCache() {
SpinMutexLock l(&cache_lock);
if (cached_proc_self_maps.data)
data_.proc_self_maps = cached_proc_self_maps;
}
void MemoryMappingLayout::DumpListOfModules(
InternalMmapVectorNoCtor<LoadedModule> *modules) {
Reset();
InternalScopedString module_name(kMaxPathLength);
MemoryMappedSegment segment(module_name.data(), module_name.size());
for (uptr i = 0; Next(&segment); i++) {
const char *cur_name = segment.filename;
if (cur_name[0] == '\0')
continue;
// Don't subtract 'cur_beg' from the first entry:
// * If a binary is compiled w/o -pie, then the first entry in
// process maps is likely the binary itself (all dynamic libs
// are mapped higher in address space). For such a binary,
// instruction offset in binary coincides with the actual
// instruction address in virtual memory (as code section
// is mapped to a fixed memory range).
// * If a binary is compiled with -pie, all the modules are
// mapped high at address space (in particular, higher than
// shadow memory of the tool), so the module can't be the
// first entry.
uptr base_address = (i ? segment.start : 0) - segment.offset;
LoadedModule cur_module;
cur_module.set(cur_name, base_address);
segment.AddAddressRanges(&cur_module);
modules->push_back(cur_module);
}
}
void GetMemoryProfile(fill_profile_f cb, uptr *stats, uptr stats_size) {
char *smaps = nullptr;
uptr smaps_cap = 0;
uptr smaps_len = 0;
if (!ReadFileToBuffer("/proc/self/smaps", &smaps, &smaps_cap, &smaps_len))
return;
uptr start = 0;
bool file = false;
const char *pos = smaps;
while (pos < smaps + smaps_len) {
if (IsHex(pos[0])) {
start = ParseHex(&pos);
for (; *pos != '/' && *pos > '\n'; pos++) {}
file = *pos == '/';
} else if (internal_strncmp(pos, "Rss:", 4) == 0) {
while (!IsDecimal(*pos)) pos++;
uptr rss = ParseDecimal(&pos) * 1024;
cb(start, rss, file, stats, stats_size);
}
while (*pos++ != '\n') {}
}
UnmapOrDie(smaps, smaps_cap);
}
} // namespace __sanitizer
#endif